Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.742
Filtrar
Más filtros











Intervalo de año de publicación
1.
PeerJ ; 12: e17616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952966

RESUMEN

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Cordón Umbilical , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Humanos , Cordón Umbilical/citología , Femenino , Tejido Adiposo/citología , Células Cultivadas , Vellosidades Coriónicas/fisiología , Amnios/citología , Diferenciación Celular
2.
Wound Manag Prev ; 70(2)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38959348

RESUMEN

BACKGROUND: In the United States, craniofacial injuries are the most frequently observed traumas in the pediatric population. Human birth tissue products contain growth factors, cytokines, and signaling molecules that can be potentially harnessed for tissue regeneration and wound healing. PURPOSE: A cryopreserved ultra-thick amniotic membrane (AM) allograft wound dressing was used in a patient with significant facial soft tissue loss due to a dog bite injury. METHODS: This is a single case report of a pediatric patient. After obtaining IRB exemption, operative and postoperative clinic notes were reviewed. RESULTS: A 10-year-old female presented to the emergency department after suffering a dog bite to her left cheek and upper lip, resulting in tissue loss. A cryopreserved ultra-thick AM allograft was used to cover the area of tissue loss as part of surgical reconstruction. The patient was followed up at 1 week, 3 weeks, 4 months, and 1 year after the graft was placed, and rapid healing and full epithelialization were achieved in addition to scar contracture due to wound location. CONCLUSION: In the setting of acute trauma and tissue loss, human birth tissue was found to promote epithelialization and regenerative healing of facial tissues.


Asunto(s)
Mordeduras y Picaduras , Criopreservación , Traumatismos Faciales , Cicatrización de Heridas , Animales , Humanos , Femenino , Criopreservación/métodos , Perros , Mordeduras y Picaduras/complicaciones , Mordeduras y Picaduras/fisiopatología , Mordeduras y Picaduras/cirugía , Cicatrización de Heridas/fisiología , Niño , Traumatismos Faciales/cirugía , Traumatismos Faciales/complicaciones , Traumatismos Faciales/fisiopatología , Cordón Umbilical , Aloinjertos/fisiopatología , Procedimientos de Cirugía Plástica/métodos
3.
Stem Cell Res Ther ; 15(1): 196, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956734

RESUMEN

Over the past decade, we have witnessed the development of cell transplantation as a new strategy for repairing spinal cord injury (SCI). However, due to the complexity of the central nervous system (CNS), achieving successful clinical translation remains a significant challenge. Human umbilical cord mesenchymal stem cells (hUMSCs) possess distinct advantages, such as easy collection, lack of ethical concerns, high self-renewal ability, multilineage differentiation potential, and immunomodulatory properties. hUMSCs are promising for regenerating the injured spinal cord to a significant extent. At the same time, for advancing SCI treatment, the appropriate benefit and risk evaluation methods play a pivotal role in determining the clinical applicability of treatment plans. Hence, this study discusses the advantages and risks of hUMSCs in SCI treatment across four dimensions-comprehensive evaluation of motor and sensory function, imaging, electrophysiology, and autonomic nervous system (ANS) function-aiming to improve the rationality of relevant clinical research and the feasibility of clinical translation.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Cordón Umbilical , Humanos , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Medición de Riesgo , Diferenciación Celular , Animales
4.
Sci Rep ; 14(1): 15113, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956421

RESUMEN

The aims of this study were to determine whether human umbilical cord mesenchymal stem cells (hucMSCs) modified by miRNA-25-3p (miR-25-3p) overexpression could promote venous endothelial cell proliferation and attenuate portal endothelial cell injury. HucMSCs and human umbilical vein endothelial cells (HUVEC) were isolated and cultured from human umbilical cord and characterized. Lentiviral vectors expressing miRNA-25-3p were transfected into hucMSCs and confirmed by PCR. We verified the effect of miR-25-3p-modified hucMSCs on HUVEC by cell co-culture and cell supernatant experiments. Subsequently, exosomes of miR-25-3p-modified hucMSCs were isolated from cell culture supernatants and characterized by WB, NTA and TEM. We verified the effects of miR-25-3p-modified exosomes derived from hucMSCs on HUVEC proliferation, migration, and angiogenesis by in vitro cellular function experiments. Meanwhile, we further examined the downstream target genes and signaling pathways potentially affected by miR-25-3p-modified hucMSC-derived exosomes in HUVEC. Finally, we established a rat portal vein venous thrombosis model by injecting CM-DiR-labeled hucMSCs intravenously into rats and examining the homing of cells in the portal vein by fluorescence microscopy. Histological and immunohistochemical experiments were used to examine the effects of miRNA-25-3p-modified hucMSCs on the proliferation and damage of portal vein endothelial cells. Primary hucMSCs and HUVECs were successfully isolated, cultured and characterized. Primary hucMSCs were modified with a lentiviral vector carrying miR-25-3p at MOI 80. Co-culture and cell supernatant intervention experiments showed that overexpression of miRNA-25-3p in hucMSCs enhanced HUVEC proliferation, migration and tube formation in vitro. We successfully isolated and characterized exosomes of miR-25-3p-modified hucMSCs, and exosome intervention experiments demonstrated that miR-25-3p-modified exosomes derived from hucMSCs similarly enhanced the proliferation, migration, and angiogenesis of HUVECs. Subsequent PCR and WB analyses indicated PTEN/KLF4/AKT/ERK1/2 as potential pathways of action. Analysis in a rat portal vein thrombosis model showed that miR-25-3p-modified hucMSCs could homing to damaged portal veins. Subsequent histological and immunohistochemical examinations demonstrated that intervention with miR-25-3p overexpression-modified hucMSCs significantly reduced damage and attenuated thrombosis in rat portal veins. The above findings indicate suggest that hucMSCs based on miR-25-3p modification may be a promising therapeutic approach for use in venous thrombotic diseases.


Asunto(s)
Proliferación Celular , Exosomas , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , MicroARNs , Vena Porta , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratas , Exosomas/metabolismo , Exosomas/genética , Vena Porta/metabolismo , Movimiento Celular/genética , Ratas Sprague-Dawley , Masculino , Trombosis de la Vena/genética , Trombosis de la Vena/metabolismo , Trombosis de la Vena/patología , Trombosis de la Vena/terapia , Células Cultivadas , Técnicas de Cocultivo , Transducción de Señal , Cordón Umbilical/citología
5.
Stem Cell Res Ther ; 15(1): 190, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956621

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) demonstrate a wide range of therapeutic capabilities in the treatment of inflammatory bowel disease (IBD). The intraperitoneal injection of MSCs has exhibited superior therapeutic efficacy on IBD than intravenous injection. Nevertheless, the precise in vivo distribution of MSCs and their biological consequences following intraperitoneal injection remain inadequately understood. Additional studies are required to explore the correlation between MSCs distribution and their biological effects. METHODS: First, the distribution of human umbilical cord MSCs (hUC-MSCs) and the numbers of Treg and Th17 cells in mesenteric lymph nodes (MLNs) were analyzed after intraperitoneal injection of hUC-MSCs. Subsequently, the investigation focused on the levels of transforming growth factor beta1 (TGF-ß1), a key cytokine to the biology of both Treg and Th17 cells, in tissues of mice with colitis, particularly in MLNs. The study also delved into the impact of hUC-MSCs therapy on Treg cell counts in MLNs, as well as the consequence of TGFB1 knockdown hUC-MSCs on the differentiation of Treg cells and the treatment of IBD. RESULTS: The therapeutic effectiveness of intraperitoneally administered hUC-MSCs in the treatment of colitis was found to be significant, which was closely related to their quick migration to MLNs and secretion of TGF-ß1. The abundance of hUC-MSCs in MLNs of colitis mice is much higher than that in other organs even the inflamed sites of colon. Intraperitoneal injection of hUC-MSCs led to a significant increase in the number of Treg cells and a decrease in Th17 cells especially in MLNs. Furthermore, the concentration of TGF-ß1, the key cytokine for Treg differentiation, were also found to be significantly elevated in MLNs after hUC-MSCs treatment. Knockdown of TGFB1 in hUC-MSCs resulted in a noticeable reduction of Treg cells in MLNs and the eventually failure of hUC-MSCs therapy in colitis. CONCLUSIONS: MLNs may be a critical site for the regulatory effect of hUC-MSCs on Treg/Th17 cells and the therapeutic effect on colitis. TGF-ß1 derived from hUC-MSCs promotes local Treg differentiation in MLNs. This study will provide new ideas for the development of MSC-based therapeutic strategies in IBD patients.


Asunto(s)
Diferenciación Celular , Colitis , Ganglios Linfáticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Linfocitos T Reguladores , Células Th17 , Factor de Crecimiento Transformador beta1 , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Humanos , Colitis/terapia , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ganglios Linfáticos/metabolismo , Células Th17/metabolismo , Células Th17/inmunología , Cordón Umbilical/citología , Mesenterio/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C , Masculino , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología
6.
J Nanobiotechnology ; 22(1): 373, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926800

RESUMEN

BACKGROUND: The use of stem cell-derived exosomes (Exos) as therapeutic vehicles is receiving increasing attention. Exosome administration has several advantages over cell transplantation, thus making exosomes promising candidates for large-scale clinical implementation and commercialization. However, exosome extraction and purification efficiencies are relatively low, and therapeutic heterogeneity is high due to differences in culture conditions and cell viability. Therefore, in this study, we investigated a priming procedure to enhance the production and therapeutic effects of exosomes from human umbilical cord mesenchymal stem cells (hucMSCs). After preconditioning hucMSCs with agonists/inhibitors that target the Wnt/ß-catenin pathway, we assessed both the production of exosomes and the therapeutic efficacy of the optimized exosomes in the context of diabetic wound healing, hoping to provide a safer, more stable and more effective option for clinical application. RESULTS: The Wnt signalling pathway agonist CHIR99021 increased exosome production by 1.5-fold without causing obvious changes in the characteristics of the hucMSCs or the size of the exosome particles. Further studies showed that CHIR99021 promoted the production of exosomes by facilitating exocytosis. This process was partly mediated by SNAP25. To further explore whether CHIR99021 changed the cargo that was loaded into the exosomes and its therapeutic effects, we performed proteomic and transcriptomic analyses of exosomes from primed and control hucMSCs. The results showed that CHIR99021 significantly upregulated the expression of proteins that are associated with cell migration and wound healing. Animal experiments confirmed that, compared to control hucMSC-derived exosomes, CHIR99021-pretreated hucMSC-derived exosomes (CHIR-Exos) significantly accelerated wound healing in diabetic mice, enhanced local collagen deposition, promoted angiogenesis, and reduced chronic inflammation. Subsequent in vitro experiments confirmed that the CHIR-Exos promoted wound healing by facilitating cell migration, inhibiting oxidative stress-induced apoptosis, and preventing cell cycle arrest. CONCLUSIONS: The Wnt agonist CHIR99021 significantly increased exosome secretion by hucMSCs, which was partly mediated by SNAP25. Notably, CHIR99021 treatment also significantly increased the exosomal levels of proteins that are associated with wound healing and cell migration, resulting in enhanced acceleration of wound healing. All of these results suggested that pretreatment of hucMSCs with CHIR99021 not only promoted exosome production but also improved the exosome therapeutic efficacy, thus providing a promising option for large-scale clinical implementation and commercialization.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Cordón Umbilical , Vía de Señalización Wnt , Cicatrización de Heridas , Exosomas/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Humanos , Animales , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Cordón Umbilical/citología , Piridinas/farmacología , Diabetes Mellitus Experimental/metabolismo , Pirimidinas/farmacología , Masculino , Células Cultivadas , Movimiento Celular/efectos de los fármacos
7.
J Orthop Surg Res ; 19(1): 366, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902778

RESUMEN

BACKGROUND: In knee osteoarthritis (KOA), treatments involving knee injections of bone marrow-derived mesenchymal stem cells (BM-MSC), adipose tissue-derived mesenchymal stem cells (AD-MSC), or umbilical cord-derived mesenchymal stem cells (UC-MSC) have shown promise in alleviating symptoms. However, which types of mesenchymal stem cells (MSCs) have the best therapeutic outcomes remain uncertain. METHOD: We systematically searched PubMed, OVID, Web of Science, and the Cochrane Library until January 1, 2024. The study evaluated five endpoints: Visual Analog Score (VAS) for Pain, Range of Motion (ROM), Whole-Organ Magnetic Resonance Imaging Score (WORMS), Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), and adverse events (ADs). Standard meta-analysis and network meta-analysis were performed using Stata 16.0. RESULTS: Fifteen studies involving 585 patients were included in the meta-analysis. Standard meta-analysis revealed significant improvements with MSCs in VAS score (P < 0.001), knee ROM (P < 0.001), and WOMAC (P < 0.016) compared to traditional therapy. In the network meta-analysis, autologous MSCs significantly improved VAS score [SMD = 2.94, 95% CI (1.90, 4.56)] and knee ROM [SMD = 0.26, 95% CI (0.08, 0.82)] compared to traditional therapy. Similarly, BM-MSC significantly improved VAS score [SMD = 0.31, 95% CI (0.11, 0.91)] and knee ROM [SMD = 0.26, 95% CI (0.08, 0.82)] compared to hyaluronic acid. However, compared with traditional therapy, autologous or allogeneic MSCs were associated with more adverse reactions [SMD = 0.11, 95% CI (0.02, 0.59)], [SMD = 0.13, 95% CI (0.002, 0.72)]. Based on the surface under the cumulative ranking results, autologous BM-MSC showed the most improvement in ROM and pain relief in KOA patients, UC-MSC (SUCRA 94.1%) were most effective for positive WORMS, and AD-MSC (SUCRA 70.6%) were most effective for WOMAC-positive patients. CONCLUSION: MSCs transplantation effectively treats KOA patients, with autologous BM-MSC potentially offering more excellent benefits.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Resultado del Tratamiento , Metaanálisis en Red , Células Madre Mesenquimatosas , Tejido Adiposo/citología , Rango del Movimiento Articular , Cordón Umbilical/citología , Trasplante Autólogo/métodos , Masculino , Femenino , Persona de Mediana Edad , Dimensión del Dolor
8.
Artículo en Inglés | MEDLINE | ID: mdl-38847145

RESUMEN

BACKGROUND: Macrovascular lesions are the main cause of death and disability in diabetes mellitus, and excessive accumulation of cholesterol and lipids can lead to long-term and repeated damage of vascular endothelial cells. Umbilical cord mesenchymal stem cells (UCMSCs) can attenuate vascular endothelial damage in type 1 diabetic mice, while Fufang Xueshuantong capsule (FXC) has a protective effect on endothelial function; however, whether FXC in combination with UCMSCs can improve T2DM macrovascular lesions as well as its mechanism of action are not clear. Therefore, the aim of this study was to reveal the role of FXC + UCMSCs in T2DM vasculopathy and their potential mechanism in the treatment of T2DM. METHODS: The control and T2DM groups were intragastrically administered with equal amounts of saline, the UCMSCs group was injected with UCMSCs (1×106, resuspended cells with 0.5 mL PBS) in the tail vein, the FXC group was intragastrically administered with 0.58 g/kg FXC, and the UCMSCs + FXC group was injected with UCMSCs (1×106) in the tail vein, followed by FXC (0.58 g/kg), for 8 weeks. RESULTS: We found that FXC+UCMSCs effectively reduced lipid levels (TG, TC, and LDL-C) and ameliorated aortic lesions in T2DM rats. Meanwhile, Nrf2 and HO-1 expression were upregulated. We demonstrated that inhibition of Nrf-2 expression blocked the inhibitory effect of FXC+UCMSCs-CM on apoptosis and oxidative stress injury. CONCLUSION: Our data suggest that FXC+UCMSCs may attenuate oxidative stress injury and macroangiopathy in T2DM by activating the Nrf-2/HO-1 pathway.


Asunto(s)
Diabetes Mellitus Experimental , Medicamentos Herbarios Chinos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Animales , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Trasplante de Células Madre Mesenquimatosas/métodos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/citología , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/prevención & control , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Hemo Oxigenasa (Desciclizante)/metabolismo , Terapia Combinada/métodos , Células Cultivadas
9.
Placenta ; 153: 59-74, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823320

RESUMEN

INTRODUCTION: Preeclampsia (PE) is a pregnancy-specific complication. Its etiology and pathogenesis remain unclear. Previous studies have shown that neutrophil extracellular traps (NETs) cause placental dysfunction and lead to PE. Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-EXOs) have been widely used to treat different diseases. We investigated whether hUCMSC-EXOs can protect against NET-induced placental damage. METHODS: NETs were detected in the placenta by immunofluorescence. The impact of NETs on cellular function and the effect of hUCMSC-EXOs on NET-induced placental damage were evaluated by 5-ethynyl-20-deoxyuridine (EdU) cell proliferation, lactate dehydrogenase (LDH), reactive oxygen species (ROS), and cell migration, invasion and tube formation assays; flow cytometry; and Western blotting. RESULTS: The number of placental NETs was increased in PE patients compared with control individuals. NETs impaired the function of endothelial cells and trophoblasts. These effects were partially reversed after N-acetyl-L-cysteine (NAC; ROS inhibitor) or DNase I (NET lysing agent) pretreatment. HUCMSC-EXOs ameliorated NET-induced functional impairment of endothelial cells and trophoblasts in vitro, partially reversed NET-induced inhibition of endothelial cell and trophoblast proliferation, and partially restored trophoblast migration and invasion and endothelial cell tube formation. Exosomes inhibited ROS production in these two cell types, suppressed p38 mitogen-activated protein kinase (p38 MAPK) signaling activation, activated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, and modulated the Bax, Bim, Bcl-2 and cleaved caspase-3 levels to inhibit apoptosis. DISCUSSION: HUCMSC-EXOs can reverse NET-induced placental endothelial cell and trophoblast damage, possibly constituting a theoretical basis for the treatment of PE with exosomes.


Asunto(s)
Exosomas , Trampas Extracelulares , Células Madre Mesenquimatosas , Placenta , Preeclampsia , Cordón Umbilical , Humanos , Exosomas/metabolismo , Femenino , Embarazo , Trampas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Placenta/metabolismo , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Preeclampsia/metabolismo , Adulto , Trofoblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
J Med Virol ; 96(6): e29757, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899432

RESUMEN

No effective treatments can ameliorate symptoms of long COVID patients. Our study assessed the safety and efficacy of human umbilical cord-derived mesenchymal stem cells (UC-MSCs) in the treatment of long COVID patients. Ten long COVID patients were enrolled and received intravenous infusions of UC-MSCs on Days 0, 7, and 14. Adverse events and clinical symptoms were recorded, and chest-high-resolution CT (HRCT) images and laboratory parameters were analyzed. During UC-MSCs treatment and follow-up, we did not observe serious adverse events, the symptoms of long COVID patients were significantly relieved in a short time, especially sleep difficulty, depression or anxiety, memory issues, and so forth, and the lung lesions were also repaired. The routine laboratory parameters did not exhibit any significant abnormalities following UC-MSCs transplantation (UMSCT). The proportion of regulatory T cells gradually increased, but it was not statistically significant until 12 months. The proportion of naive B cells was elevated, while memory B cells, class-switched B-cells, and nonswitched B-cells decreased at 1 month after infusion. Additionally, we observed a transient elevation in circulating interleukin (IL)-6 after UMSCT, while tumor necrosis factor (TNF)-α, IL-17A, and IL-10 showed no significant changes. The levels of circulating immunoglobulin (Ig) M increased significantly at month 2, while IgA increased significantly at month 6. Furthermore, the SARS-CoV-2 IgG levels remained consistently high in all patients at Month 6, and there was no significant decrease during the subsequent 12-month follow-up. UMSCT was safe and tolerable in long COVID patients. It showed potential in alleviating long COVID symptoms and improving interstitial lung lesions.


Asunto(s)
COVID-19 , Trasplante de Células Madre Mesenquimatosas , Cordón Umbilical , Humanos , COVID-19/terapia , COVID-19/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Femenino , Persona de Mediana Edad , Cordón Umbilical/citología , Células Madre Mesenquimatosas , Anciano , Resultado del Tratamiento , Adulto , SARS-CoV-2 , Linfocitos T Reguladores/inmunología , Linfocitos B/inmunología , Interleucina-6/sangre
11.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891860

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease commonly found in elderly people and obese patients. Currently, OA treatments are determined based on their condition severity and a medical professional's advice. The aim of this study was to differentiate human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) into chondrocytes for transplantation in OA-suffering guinea pigs. hWJ-MSCs were isolated using the explant culture method, and then, their proliferation, phenotypes, and differentiation ability were evaluated. Subsequently, hWJ-MSCs-derived chondrocytes were induced and characterized based on immunofluorescent staining, qPCR, and immunoblotting techniques. Then, early-OA-suffering guinea pigs were injected with hyaluronic acid (HA) containing either MSCs or 14-day-old hWJ-MSCs-derived chondrocytes. Results showed that hWJ-MSCs-derived chondrocytes expressed specific markers of chondrocytes including Aggrecan, type II collagen, and type X collagen proteins and ß-catenin, Sox9, Runx2, Col2a1, Col10a1, and ACAN gene expression markers. Administration of HA plus hWJ-MSCs-derived chondrocytes (HA-CHON) produced a better recovery rate of degenerative cartilages than HA plus MSCs or only HA. Histological assessments demonstrated no significant difference in Mankin's scores of recovered cartilages between HA-CHON-treated guinea pigs and normal articular cartilage guinea pigs. Transplantation of hWJ-MSCs-derived chondrocytes was more effective than undifferentiated hWJ-MSCs or hyaluronic acid for OA treatment in guinea pigs. This study provides a promising treatment to be used in early OA patients to promote recovery and prevent disease progression to severe osteoarthritis.


Asunto(s)
Diferenciación Celular , Condrocitos , Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis , Cordón Umbilical , Gelatina de Wharton , Animales , Cobayas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Condrocitos/metabolismo , Condrocitos/citología , Osteoartritis/terapia , Osteoartritis/patología , Osteoartritis/metabolismo , Humanos , Gelatina de Wharton/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/citología , Ácido Hialurónico/farmacología , Células Cultivadas
12.
Int J Nanomedicine ; 19: 4923-4939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828201

RESUMEN

Purpose: In recent years, exosomes have been proved to be used to treat many diseases. However, due to the lack of uniform quality control standards for exosomes, the safety of exosomes is still a problem to be solved, especially now more and more exosomes are used in clinical trials, and its non-clinical safety evaluation is particularly important. However, there is no safety evaluation standard for exosomes at present. Therefore, this study will refer to the evaluation criteria of therapeutic biological products, adopt non-human primates to evaluate the non-clinical safety of human umbilical cord mesenchymal stem cell exosomes from the general pharmacology and immunotoxicity, aiming at establishing a safety evaluation system of exosomes and providing reference for the clinical application of exosomes in the future. Methods: 3.85 × 1012 exosomes derived from human umbilical cord mesenchymal stem cells were injected into cynomolgus monkeys intravenously. The changes of general clinical conditions, hematology, immunoglobulin, Th1/Th2 cytokines, T lymphocytes and B lymphocytes, and immune organs were observed before and within 14 days after injection. Results: The results showed that exosomes did not have obvious pathological effects on the general clinical conditions, blood, coagulation function, organ coefficient, immunoglobulin, Th1/Th2 cytokines, lymphocytes, major organs, and major immune organs (spleen, thymus, bone marrow) of cynomolgus monkeys. However, the number of granulocyte-macrophage colonies in exosomes group was significantly higher than that in control group. Conclusion: To sum up, the general pharmacological results and immunotoxicity results showed that the injection of 3.85 × 1012 exosomes may have no obvious adverse reactions to cynomolgus monkeys. This dose of exosomes is relatively safe for treatment, which provides basis research for non-clinical safety evaluation of exosomes and provides reliable research basis for future clinical application of exosomes.


Asunto(s)
Exosomas , Macaca fascicularis , Células Madre Mesenquimatosas , Cordón Umbilical , Animales , Exosomas/química , Células Madre Mesenquimatosas/citología , Humanos , Cordón Umbilical/citología , Masculino , Femenino , Citocinas/metabolismo
13.
Clin Exp Hypertens ; 46(1): 2366270, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38864268

RESUMEN

OBJECTIVE: To elucidate the underlying mechanism by which the proliferation and migration abilities of human umbilical cord mesenchymal stem cells (hUC-MSCs) determine their therapeutic efficacy in rheumatoid arthritis treatment. METHODS: The DBA/1J mice were utilized to establish a collagen-induced RA (CIA) mouse model and to validate the therapeutic efficacy of hUC-MSCs transfected with CD151 siRNA. RNA-seq, QT-PCR and western blotting were utilized to evaluate the mRNA and protein levels of the PI3K/AKT pathway, respectively. RESULTS: IFN-γ significantly enhanced the proliferation and migration abilities of hUC-MSCs, up-regulating the expression of CD151, a gene related to cell proliferation and migration. Effective inhibition of this effect was achieved through CD151 siRNA treatment. However, IFN-γ did not affect hUC-MSCs differentiation or changes in cell surface markers. Additionally, transplantation of CD151-interfered hUC-MSCs (siRNA-CD151-hUC-MSCs) resulted in decreased colonization in the toes of CIA mice and worse therapeutic effects compared to empty vector treatment (siRNA-NC-hUC-MSCs). CONCLUSION: IFN-γ facilitates the proliferation and migration of hUC-MSCs through the CD151/PI3K/AKT pathway. The therapeutic efficacy of siRNA-CD151-hUC-MSCs was found to be inferior to that of siRNA-NC-hUC-MSCs.


Asunto(s)
Artritis Reumatoide , Movimiento Celular , Proliferación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones Endogámicos DBA , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Artritis Reumatoide/terapia , Artritis Reumatoide/metabolismo , Ratones , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Fosfatidilinositol 3-Quinasas/metabolismo , Humanos , Interferón gamma/metabolismo , Cordón Umbilical/citología , Artritis Experimental/terapia , Artritis Experimental/metabolismo , Masculino
14.
Cell Biochem Funct ; 42(4): e4040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850132

RESUMEN

Liver ischemia-reperfusion injury (IRI) is an important factor affecting the prognosis of liver transplantation, and extended criteria donors (e.g., steatosis donor livers) are considered to be more sensitive to ischemia-reperfusion injury in liver transplantation. Currently, the application of human umbilical cord mesenchymal stem cells (hMSCs) has great promise in the treatment of various injuries in the liver. This study aimed to investigate the therapeutic role and mechanism of hMSCs in fatty liver IRI. After more than 8 weeks of high-fat chow feeding, we constructed a fatty liver mouse model and established ischemic injury of about 70% of the liver. Six hours after IRI, liver injury was significantly alleviated in hMSCs-treated mice, and the expression levels of liver enzyme, inflammatory factor TNF-α, and apoptotic proteins were significantly lower than those of the control group, which were also significant in pathological sections. Transcriptomics analysis showed that IFNγ was significantly upregulated in the hMSCs group. Mechanistically, IFNγ, which activates the MAPK pathway, is a potent agonist that promotes the occurrence of autophagy in hepatocytes to exert a protective function, which was confirmed by in vitro experiments. In summary, hMSCs treatment could slow down IRI in fatty liver by activating autophagy through upregulation of IFNγ, and this effect was partly direct.


Asunto(s)
Autofagia , Hígado Graso , Interferón gamma , Células Madre Mesenquimatosas , Daño por Reperfusión , Cordón Umbilical , Regulación hacia Arriba , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Humanos , Animales , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Interferón gamma/metabolismo , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Ratones , Hígado Graso/metabolismo , Hígado Graso/terapia , Hígado Graso/patología , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas
15.
Mol Biol Rep ; 51(1): 734, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874773

RESUMEN

BACKGROUND: Liver cirrhosis, a prevalent chronic liver disease, is characterized by liver fibrosis as its central pathological process. Recent advancements highlight the clinical efficacy of umbilical cord mesenchymal stem cell (UC-MSC) therapy in the treatment of liver cirrhosis. METHODS AND RESULTS: We investigated the pharmacodynamic effects of UC-MSCs and MSC conditional medium (MSC-CM) in vivo, utilizing a carbon tetrachloride (CCl4)-induced fibrotic rat model. Concurrently, we assessed the in vitro impact of MSCs and MSC-CM on various cellular process of hepatic stellate cells (HSCs), including proliferation, apoptosis, activation, immunomodulatory capabilities, and inflammatory factor secretion. Our results indicate that both MSCs and MSC-CM significantly ameliorate the pathological extent of fibrosis in animal tissues, reducing the collagen content, serum biochemical indices and fibrosis biomarkers. In vitro, MSC-CM significantly inhibited the activation of the HSC line LX-2. Notably, MSC-CM modulated the expression of type I procollagen and TGFß-1 while increasing MMP1 expression. This modulation restored the MMP1/TIMP1 ratio imbalance and extracellular matrix deposition in TGFß-1 induced fibrosis. Both MSCs and MSC-CM not only induced apoptosis in HSCs but also suppressed proliferation and inflammatory cytokine release from activated HSCs. Furthermore, MSCs and MSC-CM exerted a suppressive effect on total lymphocyte activation. CONCLUSIONS: UC-MSCs and MSC-CM primarily modulate liver fibrosis severity by regulating HSC activation. This study provides both in vivo and in vitro pharmacodynamic evidence supporting the use of MSCs in liver fibrosis treatment.


Asunto(s)
Apoptosis , Proliferación Celular , Células Estrelladas Hepáticas , Cirrosis Hepática , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Cordón Umbilical , Células Estrelladas Hepáticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Cirrosis Hepática/metabolismo , Cordón Umbilical/citología , Ratas , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Tetracloruro de Carbono , Modelos Animales de Enfermedad , Medios de Cultivo Condicionados/farmacología , Ratas Sprague-Dawley , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Línea Celular , Citocinas/metabolismo
16.
Mol Biol Rep ; 51(1): 762, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874690

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is experiencing a concerning rise in both incidence and mortality rates. Current therapeutic strategies are limited in their effectiveness, largely due to the complex causes of the disease and significant levels of drug resistance. Given the latest developments in human umbilical cord mesenchymal stem cells (hUC-MSCs) research, there is a debate over the continued use of stem cell transplantation for treating tumors. Consequently, this study seeks to explore the role of hUC-MSCs in the management of HCC. METHODS AND RESULTS: HUC-MSCs increased the number (10.75 ± 1.50) in the DEN/TCPOBOP-induced mice hepatoma model, compared with DMSO group (7.25 ± 1.71). Moreover, the liver index in hUC-MSCs group (0.21 ± 0.06) was greater than that in DMSO group (0.09 ± 0.01). Immunohistochemical (IHC) analysis revealed that while hUC-MSCs did not alter Foxp3 expression, they significantly stimulated Ki67 expression, indicative of increased tumor cellular proliferation. Additionally, immunofluorescence (IF) studies showed that hUC-MSCs increased CD8+ T cell counts without affecting macrophage numbers. Notably, granzyme B expression remained nearly undetectable. We observed that serum IL-18 levels were higher in the hUC-MSCs group (109.66 ± 0.38 pg/ml) compared to the DMSO group (91.14 ± 4.37 pg/ml). Conversely, IL-1ß levels decreased in the hUC-MSCs group (63.00 ± 0.53 pg/ml) relative to the DMSO group (97.38 ± 9.08 pg/ml). CONCLUSIONS: According to this study, hUC-MSCs promoted the growth of liver tumors. Therefore, we proposed that hUC-MSCs are not suitable for treating HCC, as they exhibit clinically prohibited abnormalities.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Interleucina-18 , Neoplasias Hepáticas , Células Madre Mesenquimatosas , Cordón Umbilical , Células Madre Mesenquimatosas/metabolismo , Humanos , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Cordón Umbilical/citología , Interleucina-18/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Línea Celular Tumoral , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología
17.
BMJ Open ; 14(6): e084237, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925694

RESUMEN

INTRODUCTION: Acute-on-chronic liver failure (ACLF) is a prevalent and life-threatening liver disease with high short-term mortality. Although recent clinical trials on the use of mesenchymal stem cells (MSCs) for ACLF treatment have shown promising results, multicentre randomised controlled phase II clinical trials remain uncommon. The primary aim of this trial is to assess the safety and efficacy of different MSCs treatment courses for ACLF. METHODS AND ANALYSIS: This is a multicentre, double-blind, two-stage, randomised and placebo-controlled clinical trial. In the first stage, 150 patients with ACLF will be enrolled and randomly assigned to either a control group (50 cases) or an MSCs treatment group (100 cases). They will receive either a placebo or umbilical cord-derived MSCs (UC-MSCs) treatment three times (at weeks 0, 1 and 2). In the second stage, 28 days after the first UC-MSCs infusion, surviving patients in the MSCs treatment group will be further randomly divided into MSCs-short and MSCs-prolonged groups at a 1:1 ratio. They will receive two additional rounds of placebo or UC-MSCs treatment at weeks 4 and 5. The primary endpoints are the transplant-free survival rate and the incidence of treatment-related adverse events. Secondary endpoints include international normalised ratio, total bilirubin, serum albumin, blood urea nitrogen, model for end-stage liver disease score and Child-Turcotte-Pugh score. ETHICS AND DISSEMINATION: Ethical approval of this study has been obtained from the Fifth Medical Center of the Chinese PLA General Hospital (KY-2023-3-19-1). All results of the study will be submitted to international journals and international conferences for publication on completion of the study. TRIAL REGISTRATION NUMBER: NCT05985863.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Trasplante de Células Madre Mesenquimatosas , Cordón Umbilical , Humanos , Insuficiencia Hepática Crónica Agudizada/terapia , Método Doble Ciego , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/citología , Adulto , Femenino , Masculino , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Persona de Mediana Edad , Resultado del Tratamiento
18.
Front Biosci (Landmark Ed) ; 29(6): 217, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38940047

RESUMEN

BACKGROUND: Although umbilical cord mesenchymal stem cell (UCMSC) infusion has been proposed as a promising strategy for the treatment of acute lung injury (ALI), the parameters of UCMSC transplantation, such as infusion routes and doses, need to be further optimized. METHODS: In this study, we compared the therapeutic effects of UCMSCs transplanted via intravenous injection and intratracheal instillation on lipopolysaccharide-induced ALI using a rat model. Following transplantation, levels of inflammatory factors in serum; neutrophils, total white blood cells, and lymphocytes in bronchoalveolar lavage fluid (BALF); and lung damage levels were analyzed. RESULTS: The results indicated that UCMSCs administered via both intravenous and intratracheal routes were effective in alleviating ALI, as determined by analyses of arterial blood gas, lung histopathology, BALF contents, and levels of inflammatory factors. Comparatively, the intratracheal instillation of UCMSCs was found to result in lower levels of lymphocytes and total proteins in BALF, whereas greater reductions in the serum levels of tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) were detected in rats receiving intravenously injected stem cells. CONCLUSIONS: Our findings in this study provide convincing evidence to indicate the efficacy of UCMSC therapy in the treatment of ALI mediated via different delivery routes, thereby providing a reliable theoretical basis for further clinical studies. Moreover, these findings imply that the effects obtained using the two assessed delivery routes for UCMSC transplantation are mediated via different mechanisms, which could be attributable to different cellular or molecular targets.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Trasplante de Células Madre Mesenquimatosas , Ratas Sprague-Dawley , Cordón Umbilical , Animales , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/inducido químicamente , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/citología , Ratas , Masculino , Líquido del Lavado Bronquioalveolar/citología , Células Madre Mesenquimatosas/citología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Inyecciones Intravenosas
19.
BMJ Case Rep ; 17(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719262

RESUMEN

We present the case of a term newborn with trisomy 21 who presented to the paediatric emergency department with periumbilical flare and green-brown discharge from a clamped umbilical cord, initially suspected to be omphalitis. However, it was noticed later, that when the infant strained or cried, a thick, bubbling and offensive green-brown discharge came out of the clamped umbilical cord with umbilical flatus. An ultrasound abdomen and umbilical cord confirmed the presence of a persistent omphalomesenteric duct (POMD). He was then transferred to the paediatric surgical unit. There, he underwent a laparotomy and surgical resection of the POMD and was discharged home 2 days later.


Asunto(s)
Síndrome de Down , Conducto Vitelino , Humanos , Síndrome de Down/complicaciones , Recién Nacido , Conducto Vitelino/anomalías , Conducto Vitelino/diagnóstico por imagen , Masculino , Cordón Umbilical/anomalías , Cordón Umbilical/diagnóstico por imagen , Cordón Umbilical/patología , Laparotomía/métodos
20.
Aging (Albany NY) ; 16(9): 7928-7945, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38696318

RESUMEN

Recently, there has been growing interest in using cell therapy through core decompression (CD) to treat osteonecrosis of the femoral head (ONFH). Our study aimed to investigate the effectiveness and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in treating steroid-induced ONFH. We constructed a steroid-induced ONFH rabbit model as well as dexamethasone (Dex)-treated bone microvascular endothelial cells (BMECs) model of human femoral head. We injected hUCMSCs into the rabbit femoral head via CD. The effects of hUCMSCs on steroid-induced ONFH rabbit model and Dex-treated BMECs were evaluated via micro-CT, microangiography, histology, immunohistochemistry, wound healing, tube formation, and western blotting assay. Furthermore, we conducted single-cell RNA sequencing (scRNA-seq) to examine the characteristics of endothelial cells, the activation of signaling pathways, and inter-cellular communication in ONFH. Our data reveal that hUCMSCs improved the femoral head microstructure and bone repair and promoted angiogenesis in the steroid-induced ONFH rabbit model. Importantly, hUCMSCs improved the migration ability and angioplasty of Dex-treated BMECs by secreting COL6A2 to activate FAK/PI3K/AKT signaling pathway via integrin α1ß1.


Asunto(s)
Dexametasona , Células Endoteliales , Necrosis de la Cabeza Femoral , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Conejos , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/terapia , Necrosis de la Cabeza Femoral/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Endoteliales/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Dexametasona/farmacología , Cordón Umbilical/citología , Cabeza Femoral/patología , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA