Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Hear Res ; 447: 109008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636186

RESUMEN

The auditory cortex is the source of descending connections providing contextual feedback for auditory signal processing at almost all levels of the lemniscal auditory pathway. Such feedback is essential for cognitive processing. It is likely that corticofugal pathways are degraded with aging, becoming important players in age-related hearing loss and, by extension, in cognitive decline. We are testing the hypothesis that surface, epidural stimulation of the auditory cortex during aging may regulate the activity of corticofugal pathways, resulting in modulation of central and peripheral traits of auditory aging. Increased auditory thresholds during ongoing age-related hearing loss in the rat are attenuated after two weeks of epidural stimulation with direct current applied to the surface of the auditory cortex for two weeks in alternate days (Fernández del Campo et al., 2024). Here we report that the same cortical electrical stimulation protocol induces structural and cytochemical changes in the aging cochlea and auditory brainstem, which may underlie recovery of age-degraded auditory sensitivity. Specifically, we found that in 18 month-old rats after two weeks of cortical electrical stimulation there is, relative to age-matched non-stimulated rats: a) a larger number of choline acetyltransferase immunoreactive neuronal cell body profiles in the ventral nucleus of the trapezoid body, originating the medial olivocochlear system.; b) a reduction of age-related dystrophic changes in the stria vascularis; c) diminished immunoreactivity for the pro-inflammatory cytokine TNFα in the stria vascularis and spiral ligament. d) diminished immunoreactivity for Iba1 and changes in the morphology of Iba1 immunoreactive cells in the lateral wall, suggesting reduced activation of macrophage/microglia; d) Increased immunoreactivity levels for calretinin in spiral ganglion neurons, suggesting excitability modulation by corticofugal stimulation. Altogether, these findings support that non-invasive neuromodulation of the auditory cortex during aging preserves the cochlear efferent system and ameliorates cochlear aging traits, including stria vascularis dystrophy, dysregulated inflammation and altered excitability in primary auditory neurons.


Asunto(s)
Envejecimiento , Corteza Auditiva , Vías Auditivas , Cóclea , Estimulación Eléctrica , Presbiacusia , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiopatología , Cóclea/inervación , Cóclea/metabolismo , Cóclea/fisiopatología , Cóclea/patología , Presbiacusia/fisiopatología , Presbiacusia/metabolismo , Presbiacusia/patología , Vías Auditivas/fisiopatología , Vías Auditivas/metabolismo , Masculino , Envejecimiento/patología , Envejecimiento/metabolismo , Modelos Animales de Enfermedad , Factores de Edad , Neuronas Eferentes/metabolismo , Microglía/metabolismo , Microglía/patología , Umbral Auditivo , Colina O-Acetiltransferasa/metabolismo , Núcleo Olivar/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico , Audición , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de Unión al Calcio , Proteínas de Microfilamentos
2.
ACS Chem Neurosci ; 15(6): 1197-1205, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451201

RESUMEN

Vitamin C (Vc) plays a pivotal role in a series of pathological processes, such as tumors, immune diseases, and neurological disorders. However, its therapeutic potential for tinnitus management remains unclear. In this study, we find that Vc relieves tinnitus in noise-exposed rats. In the 7-day therapy groups, spontaneous firing rate (SFR) increases from 1.17 ± 0.10 Hz to 1.77 ± 0.15 Hz after noise exposure. Vc effectively reduces the elevated SFR to 0.99 ± 0.07 and 0.55 ± 0.05 Hz at different doses. The glutamate level in auditory cortex of noise-exposed rats (3.78 ± 0.42 µM) increases relative to that in the control group (1.34 ± 0.22 µM). High doses of Vc (500 mg/kg/day) effectively reduce the elevated glutamate levels (1.49 ± 0.28 µM). Mechanistic studies show that the expression of glutamate transporter 1 (GLT-1) is impaired following noise exposure and that Vc treatment effectively restores GLT-1 expression in the auditory cortex. Meanwhile, the GLT-1 inhibitor, dl-threo-beta-benzyloxyaspartic acid (dl-TBOA), invalidates the protection role of Vc. Our finding shows that Vc substantially enhances glutamate clearance by upregulating GLT-1 and consequently alleviates noise-induced tinnitus. This study provides valuable insight into a novel biological target for the development of therapeutic interventions that may prevent the onset of tinnitus.


Asunto(s)
Corteza Auditiva , Acúfeno , Ratas , Animales , Corteza Auditiva/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Neuroprotección , Acúfeno/tratamiento farmacológico , Acúfeno/metabolismo , Ácido Glutámico/metabolismo , Modelos Animales de Enfermedad , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo
3.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37857485

RESUMEN

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Asunto(s)
Corteza Auditiva , Proteínas Proto-Oncogénicas c-akt , Masculino , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Corteza Auditiva/metabolismo , Espinas Dendríticas/metabolismo , Tensinas/metabolismo , Memoria a Largo Plazo/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Memoria a Corto Plazo/fisiología , Sirolimus/farmacología , Miedo/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Mamíferos
4.
J Comp Neurol ; 531(4): 502-514, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36453284

RESUMEN

Roughly 20% of the neurons in the mouse cortex are inhibitory interneurons (INs). Of these, the three major subtypes are parvalbumin (PV), somatostatin (SST), and vasoactive intestinal polypeptide (VIP) expressing neurons. We used monosynaptic rabies tracing to compare the presynaptic input landscape onto these three IN subtypes in the mouse primary auditory cortex (A1). We compared both local patterns of monosynaptic inputs as well as long-range input patterns. The local monosynaptic input landscape to SST neurons was more widespread as compared to PV and VIP neurons. The brain-wide input landscape was rich and heterogeneous with >40 brain regions connecting to all the three INs subtypes from both hemispheres. The general pattern of the long-range input landscape was similar among the groups of INs. Nevertheless, a few differences could be identified. At low resolution, the proportion of local versus long-range inputs was smaller for PV neurons. At mesoscale resolution, we found fewer inputs from temporal association area to VIP INs, and more inputs to SST neurons from basal forebrain and lateral amygdala. Our work can be used as a resource for a quantitative comparison of the location and level of inputs impinging onto discrete populations of neurons in mouse A1.


Asunto(s)
Corteza Auditiva , Ratones , Animales , Corteza Auditiva/metabolismo , Neuronas/metabolismo , Interneuronas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Encéfalo/metabolismo , Parvalbúminas/metabolismo
5.
Glia ; 71(2): 187-204, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052476

RESUMEN

For a long time, myelin was thought to be restricted to excitatory neurons, and studies on dysmyelination focused primarily on excitatory cells. Recent evidence showed that axons of inhibitory neurons in the neocortex are also myelinated, but the role of myelin on inhibitory circuits remains unknown. Here we studied the impact of mild hypomyelination on both excitatory and inhibitory connectivity in the primary auditory cortex (A1) with well-characterized mouse models of hypomyelination due to loss of oligodendrocyte ErbB receptor signaling. Using laser-scanning photostimulation, we found that mice with mild hypomyelination have reduced functional inhibitory connections to A1 L2/3 neurons without changes in excitatory connections, resulting in altered excitatory/inhibitory balance. These effects are not associated with altered expression of GABAergic and glutamatergic synaptic components, but with reduced density of parvalbumin-positive (PV+ ) neurons, axons, and synaptic terminals, which reflect reduced PV expression by interneurons rather than PV+ neuronal loss. While immunostaining shows that hypomyelination occurs in both PV+ and PV- axons, there is a strong correlation between MBP and PV expression, suggesting that myelination influences PV expression. Together, the results indicate that mild hypomyelination impacts A1 neuronal networks, reducing inhibitory activity, and shifting networks towards excitation.


Asunto(s)
Corteza Auditiva , Parvalbúminas , Ratones , Animales , Parvalbúminas/metabolismo , Corteza Auditiva/metabolismo , Receptores ErbB/metabolismo , Interneuronas/metabolismo , Oligodendroglía/metabolismo
6.
J Alzheimers Dis ; 89(4): 1385-1402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36031901

RESUMEN

BACKGROUND: Effective treatment of Alzheimer's disease (AD) will hinge on early detection. This has led to the search for early biomarkers that use non-invasive testing. One possible early biomarker is auditory temporal processing deficits, which reflect central auditory pathway dysfunction and precede cognitive and memory declines in AD. Gap detection is a measure of auditory temporal processing, is impaired in human AD, and is also impaired in the 5XFAD mouse model of AD. Gap detection deficits appear as early as postnatal day 60 in 5XFAD mice, months before cognitive deficits or cell death, supporting gap detection as an early biomarker. However, it remains unclear how gap detection deficits relate to the progression of amyloid pathology in the auditory system. OBJECTIVE: To determine the progression of amyloid pathology throughout the central auditory system and across age in 5XFAD mice. METHODS: We quantified intracellular and extracellular antibody labelling of Aß42 in 6 regions of the central auditory system from p14 to p150. RESULTS: Pathology appeared first in primary auditory cortex (A1) as intracellular accumulation of Aß42 in layer 5 pyramidal neurons by age p21. Extracellular plaques appeared later, by age p90, in A1, medial geniculate body, and inferior colliculus. Auditory brainstem structures showed minimal amyloid pathology. We also observed pathology in the caudal pontine reticular nucleus, a brainstem structure that is outside of the central auditory pathway but which is involved in the acoustic startle reflex. CONCLUSION: These results suggest that Aß42 accumulation, but not plaques, may impair gap detection.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Corteza Auditiva , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Animales , Corteza Auditiva/metabolismo , Corteza Auditiva/patología , Vías Auditivas , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide/patología
7.
Neurochem Res ; 47(9): 2715-2727, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35469366

RESUMEN

The family of epidermal growth factor (EGF) including neuregulin-1 are implicated in the neuropathology of schizophrenia. We established a rat model of schizophrenia by exposing perinatal rats to EGF and reported that the auditory pathophysiological traits of this model such as prepulse inhibition, auditory steady-state response, and mismatch negativity are relevant to those of schizophrenia. We assessed the activation status of the auditory cortex in this model, as well as that in patients with schizophrenia, by monitoring the three neural activity-induced proteins: EGR1 (zif268), c-fos, and Arc. Among the activity markers, protein levels of EGR1 were significantly higher at the adult stage in EGF model rats than those in control rats. The group difference was observed despite an EGF model rat and a control rat being housed together, ruling out the contribution of rat vocalization effects. These changes in EGR1 levels were seen to be specific to the auditory cortex of this model. The increase in EGR1 levels were detectable at the juvenile stage and continued until old ages but displayed a peak immediately after puberty, whereas c-fos and Arc levels were nearly indistinguishable between groups at all ages with an exception of Arc decrease at the juvenile stage. A similar increase in EGR1 levels was observed in the postmortem superior temporal cortex of patients with schizophrenia. The commonality of the EGR1 increase indicates that the EGR1 elevation in the auditory cortex might be one of the molecular signatures of this animal model and schizophrenia associating with hallucination.


Asunto(s)
Corteza Auditiva , Esquizofrenia , Animales , Corteza Auditiva/metabolismo , Modelos Animales de Enfermedad , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Factor de Crecimiento Epidérmico , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas
8.
Bioelectromagnetics ; 43(2): 106-118, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35066900

RESUMEN

Numerous studies have shown that radiofrequency electromagnetic radiation (RF-EMR) may negatively affect human health. We detected the effect of 3500 MHz RF-EMR on anxiety-like behavior and the auditory cortex (ACx) in guinea pigs. Forty male guinea pigs were randomly divided into four groups and exposed to a continuous wave of 3500 MHz RF-EMF at an average specific absorption rate (SAR) of 0, 2, 4, or 10 W/kg for 72 h. After exposure, malondialdehyde (MDA) levels, antioxidant enzyme activity, anxiety-like behavior, hearing thresholds, cell ultrastructure, and apoptosis were detected. Our results revealed that hearing thresholds and basic indexes of animal behavior did not change significantly after exposure (P > 0.05). However, the MDA levels of ACx were increased (P < 0.05), and catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) activities were decreased (P < 0.05) in the exposure groups compared to the sham group. Ultrastructural changes of ACx, including swollen mitochondria and layered myelin sheaths, were observed. Cytochrome-c relocalization, caspase-9, and cleaved caspase-3 activation were detected in the exposure groups. In conclusion, these results suggest that oxidative stress is an important mechanism underlying the biological effects of RF-EMR, which can induce ultrastructural damage to the ACx and cell apoptosis through a mitochondria-dependent mechanism. Moreover, oxidative stress, apoptosis induction and ultrastructural damage increase in a SAR-dependent manner. However, RF-EMR does not increase hearing thresholds or induce anxiety. Bioelectromagnetics. 43:106-118, 2022. © 2021 Bioelectromagnetics Society.


Asunto(s)
Corteza Auditiva , Teléfono Celular , Animales , Antioxidantes/metabolismo , Ansiedad/etiología , Corteza Auditiva/metabolismo , Campos Electromagnéticos/efectos adversos , Radiación Electromagnética , Cobayas , Masculino , Estrés Oxidativo
9.
Cereb Cortex ; 32(10): 2140-2155, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-34628498

RESUMEN

Neuron-derived 17ß-estradiol (E2) alters synaptic transmission and plasticity in brain regions with endocrine and non-endocrine functions. Investigations into a modulatory role of E2 in synaptic activity and plasticity have mainly focused on the rodent hippocampal formation. In songbirds, E2 is synthesized by auditory forebrain neurons and promotes auditory signal processing and memory for salient acoustic stimuli; however, the modulatory effects of E2 on memory-related synaptic plasticity mechanisms have not been directly examined in the auditory forebrain. We investigated the effects of bidirectional E2 manipulations on synaptic transmission and long-term potentiation (LTP) in the rat primary auditory cortex (A1). Immunohistochemistry revealed widespread neuronal expression of the E2 biosynthetic enzyme aromatase in multiple regions of the rat sensory and association neocortex, including A1. In A1, E2 application reduced the threshold for in vivo LTP induction at layer IV synapses, whereas pharmacological suppression of E2 production by aromatase inhibition abolished LTP induction at layer II/III synapses. In acute A1 slices, glutamate and γ-aminobutyric acid (GABA) receptor-mediated currents were sensitive to E2 manipulations in a layer-specific manner. These findings demonstrate that locally synthesized E2 modulates synaptic transmission and plasticity in A1 and suggest potential mechanisms by which E2 contributes to auditory signal processing and memory.


Asunto(s)
Aromatasa , Corteza Auditiva , Animales , Aromatasa/metabolismo , Aromatasa/farmacología , Corteza Auditiva/metabolismo , Estradiol/farmacología , Potenciación a Largo Plazo/fisiología , Masculino , Plasticidad Neuronal/fisiología , Prosencéfalo/metabolismo , Ratas , Sinapsis/fisiología , Transmisión Sináptica
10.
Cell ; 184(22): 5622-5634.e25, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34610277

RESUMEN

Disinhibitory neurons throughout the mammalian cortex are powerful enhancers of circuit excitability and plasticity. The differential expression of neuropeptide receptors in disinhibitory, inhibitory, and excitatory neurons suggests that each circuit motif may be controlled by distinct neuropeptidergic systems. Here, we reveal that a bombesin-like neuropeptide, gastrin-releasing peptide (GRP), recruits disinhibitory cortical microcircuits through selective targeting and activation of vasoactive intestinal peptide (VIP)-expressing cells. Using a genetically encoded GRP sensor, optogenetic anterograde stimulation, and trans-synaptic tracing, we reveal that GRP regulates VIP cells most likely via extrasynaptic diffusion from several local and long-range sources. In vivo photometry and CRISPR-Cas9-mediated knockout of the GRP receptor (GRPR) in auditory cortex indicate that VIP cells are strongly recruited by novel sounds and aversive shocks, and GRP-GRPR signaling enhances auditory fear memories. Our data establish peptidergic recruitment of selective disinhibitory cortical microcircuits as a mechanism to regulate fear memories.


Asunto(s)
Corteza Auditiva/metabolismo , Bombesina/metabolismo , Miedo/fisiología , Memoria/fisiología , Red Nerviosa/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Señalización del Calcio , Condicionamiento Clásico , Péptido Liberador de Gastrina/química , Péptido Liberador de Gastrina/metabolismo , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Receptores de Bombesina/metabolismo , Sonido , Péptido Intestinal Vasoactivo/metabolismo
11.
Eur J Neurosci ; 54(9): 7072-7091, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34535925

RESUMEN

Estrogens support major brain functions including cognition, reproduction, neuroprotection and sensory processing. Neuroestrogens are synthesized within some brain areas by the enzyme aromatase and can rapidly modulate local circuit functions, yet the cellular physiology and sensory-response profiles of aromatase neurons are essentially unknown. In songbirds, social and acoustic stimuli drive neuroestrogen elevations in the auditory forebrain caudomedial nidopallium (NCM). In both males and females, neuroestrogens rapidly enhance NCM auditory processing and auditory learning. Estrogen-producing neurons in NCM may therefore exhibit distinguishing profiles for sensory-activation and intrinsic electrophysiology. Here, we explored these questions using both immunocyctochemistry and electrophysiological recordings. Immunoreactivity for aromatase and the immediate early gene EGR1, a marker of activity and plasticity, were quantified in NCM of song-exposed animals versus silence-exposed controls. Using whole-cell patch clamp recordings from NCM slices, we also documented the intrinsic excitability profiles of aromatase-positive and aromatase-negative neurons. We observed that a subset of aromatase neurons were significantly activated during song playback, in both males and females, and in both hemispheres. A comparable population of non-aromatase-expressing neurons were also similarly driven by song stimulation. Membrane properties (i.e., resting membrane potential, rheobase, input resistance and multiple action potential parameters) were similarly indistinguishable between NCM aromatase and non-aromatase neurons. Together, these findings demonstrate that aromatase and non-aromatase neurons in NCM are indistinct in terms of their intrinsic electrophysiology and responses to song. Nevertheless, such similarities in response properties may belie more subtle differences in underlying conductances and/or computational roles that may be crucial to their function.


Asunto(s)
Corteza Auditiva , Pinzones , Animales , Aromatasa/genética , Aromatasa/metabolismo , Corteza Auditiva/metabolismo , Estradiol , Femenino , Masculino , Neuronas/metabolismo , Prosencéfalo/metabolismo , Vocalización Animal
12.
Front Neural Circuits ; 15: 714780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34366798

RESUMEN

Anatomical and physiological studies have described the cortex as a six-layer structure that receives, elaborates, and sends out information exclusively as excitatory output to cortical and subcortical regions. This concept has increasingly been challenged by several anatomical and functional studies that showed that direct inhibitory cortical outputs are also a common feature of the sensory and motor cortices. Similar to their excitatory counterparts, subsets of Somatostatin- and Parvalbumin-expressing neurons have been shown to innervate distal targets like the sensory and motor striatum and the contralateral cortex. However, no evidence of long-range VIP-expressing neurons, the third major class of GABAergic cortical inhibitory neurons, has been shown in such cortical regions. Here, using anatomical anterograde and retrograde viral tracing, we tested the hypothesis that VIP-expressing neurons of the mouse auditory and motor cortices can also send long-range projections to cortical and subcortical areas. We were able to demonstrate, for the first time, that VIP-expressing neurons of the auditory cortex can reach not only the contralateral auditory cortex and the ipsilateral striatum and amygdala, as shown for Somatostatin- and Parvalbumin-expressing long-range neurons, but also the medial geniculate body and both superior and inferior colliculus. We also demonstrate that VIP-expressing neurons of the motor cortex send long-range GABAergic projections to the dorsal striatum and contralateral cortex. Because of its presence in two such disparate cortical areas, this would suggest that the long-range VIP projection is likely a general feature of the cortex's network.


Asunto(s)
Corteza Auditiva/metabolismo , Vías Auditivas/metabolismo , Neuronas GABAérgicas/metabolismo , Corteza Motora/fisiología , Péptido Intestinal Vasoactivo/biosíntesis , Animales , Corteza Auditiva/química , Vías Auditivas/química , Femenino , Neuronas GABAérgicas/química , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos
13.
BMC Neurosci ; 22(1): 38, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34020590

RESUMEN

BACKGROUND: The receptor for advanced glycation end-products (RAGE) is involved in neuroinflammation. This study investigated the changes in RAGE expression following noise-induced hearing loss. METHODS: Three-week-old female Sprague-Dawley rats were exposed to 115 dB SPL white noise for 4 h daily for 3 d (noise group, n = 16). In parallel, age and sex-matched control rats were raised under standard conditions without noise exposure (control group, n = 16). After 2 h (noise immediate, n = 8) and 4 wk (noise 4-week, n = 8) of noise exposure, the auditory cortex was harvested and cytoplasmic and nuclear fractions were isolated. The gene expression levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6), interleukin 1 beta (IL1ß), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and RAGE were evaluated using real-time reverse transcription polymerase chain reaction. The protein expression levels of nuclear RAGE and cytosolic RAGE were evaluated using western blotting. Additionally, matrix metalloproteinase 9 (MMP9) was pharmacologically inhibited in the noise immediate group, and then nuclear and cytosolic RAGE expression levels were evaluated. RESULTS: The noise immediate and noise 4-week groups exhibited increased auditory thresholds at 4, 8, 16, and 32 kHz frequencies. The genes encoding the pro-inflammatory cytokines TNF-α, IL6, IL1ß, and NF- κB were increased 3.74, 1.63, 6.42, and 6.23-fold in the noise immediate group, respectively (P = 0.047, 0.043, 0.044, and 0.041). RAGE mRNA expression was elevated 1.42-fold in the noise 4-week group (P = 0.032). Cytosolic RAGE expression was increased 1.76 and 6.99-fold in the noise immediate and noise 4-week groups, respectively (P = 0.04 and 0.03). Nuclear RAGE expression was comparable between the noise and control groups. matrix metalloproteinase 9 (MMP9) inhibition reduced cytosolic RAGE expression in the noise immediate group (P = 0.004). CONCLUSIONS: Noise exposure increased the expression of cytosolic RAGE in the auditory cortex and upregulated pro-inflammatory genes, but this response could be alleviated by MMP9 inhibition.


Asunto(s)
Corteza Auditiva/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Mediadores de Inflamación/metabolismo , Receptor para Productos Finales de Glicación Avanzada/biosíntesis , Animales , Femenino , Expresión Génica , Pérdida Auditiva Provocada por Ruido/genética , Ratas , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/genética
14.
Nat Commun ; 12(1): 2730, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980868

RESUMEN

Neurostimulant drugs or magnetic/electrical stimulation techniques can overcome attention deficits, but these drugs or techniques are weakly beneficial in boosting the learning capabilities of healthy subjects. Here, we report a stimulation technique, mid-infrared modulation (MIM), that delivers mid-infrared light energy through the opened skull or even non-invasively through a thinned intact skull and can activate brain neurons in vivo without introducing any exogeneous gene. Using c-Fos immunohistochemistry, in vivo single-cell electrophysiology and two-photon Ca2+ imaging in mice, we demonstrate that MIM significantly induces firing activities of neurons in the targeted cortical area. Moreover, mice that receive MIM targeting to the auditory cortex during an auditory associative learning task exhibit a faster learning speed (~50% faster) than control mice. Together, this non-invasive, opsin-free MIM technique is demonstrated with potential for modulating neuronal activity.


Asunto(s)
Corteza Auditiva/metabolismo , Neuronas/metabolismo , Opsinas/metabolismo , Animales , Electrofisiología , Inmunohistoquímica , Masculino , Ratones , Opsinas/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo
15.
J Mol Neurosci ; 71(11): 2260-2274, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33423191

RESUMEN

Deprivation of acoustic input during a critical period leads to abnormal auditory development in humans. The molecular basis underlying the susceptibility of auditory cortex to loss of afferent input remains largely unknown. The transcription factor early growth response-1 (EGR-1) expression in the visual cortex has been shown to be crucial in the formation of vision, but the role of EGR-1 during the process of auditory function formation is still unclear. In this study, we presented data showing that EGR-1 was expressed in the neurons of the primary auditory cortex (A1) in mice. We observed that the auditory deprivation induced by kanamycin during the auditory critical period leads to laminar-specific alteration of neuronal distribution and EGR-1 expression in A1. In addition, MK-801 administration inhibited the expression of EGR-1 in A1 and aggravated the abnormal cortical electric response caused by kanamycin injection. Finally, we showed that the expression of PI3K, the phosphorylation of Akt, as well as the phosphorylation of cAMP-responsive element-binding protein (CREB) were decreased in A1 after kanamycin-induced hearing loss. These results characterized the expression of EGR-1 in A1 in response to the acoustic input and suggested the involvement of EGR-1 in auditory function formation.


Asunto(s)
Corteza Auditiva/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Pérdida Auditiva/genética , Animales , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/fisiopatología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Maleato de Dizocilpina/farmacología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico , Antagonistas de Aminoácidos Excitadores/farmacología , Pérdida Auditiva/etiología , Pérdida Auditiva/metabolismo , Kanamicina/toxicidad , Ratones , Ratones Endogámicos CBA , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
16.
FEBS J ; 287(21): 4747-4766, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32112499

RESUMEN

Central presbycusis is caused by degradation of the auditory centre during ageing. Its main characteristics are difficulties in understanding language and localizing sound. Presbycusis is an increasingly critical public health problem, but the underlying molecular mechanism has not been fully elucidated. Ferroptosis is a form of regulated cell death caused by iron- and reactive oxygen species-induced lipid peroxidation. Ferroptosis is related to many pathological processes, but whether it participates in the degeneration of the auditory system remains unclear. To investigate this, we measured iron levels in a simulated ageing model established by the addition of d-galactose (d-gal). We found, for the first time, that iron accumulated within cells and that the ultrastructural features of ferroptosis appeared in the auditory cortex with ageing. These changes were accompanied by upregulation of iron regulatory protein 2 (IRP-2), which led to an increase in transferrin receptor 1 (TfR-1), thus increasing iron entry into cells and potentially leading to ferroptosis. In addition, the malondialdehyde (MDA) content and the occurrence of mitochondrial DNA common deletions (CDs) increased, neuron degeneration appeared, and glutathione (GSH) and superoxide dismutase (SOD) activity decreased. Furthermore, we found that treatment with the iron chelator deferoxamine (DFO) and knockdown of IRP-2 both relieved ferroptosis during the simulated ageing process, thus achieving a partial protective effect to delay ageing. In summary, we describe here the first discovery that age-related iron deposition and ferroptosis may be associated with auditory cortex neurodegeneration. Relieving ferroptosis might thus be a new intervention strategy for age-related hearing loss.


Asunto(s)
Apoptosis/genética , Corteza Auditiva/metabolismo , Ferroptosis/genética , Enfermedades Neurodegenerativas/genética , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/ultraestructura , Quelantes/farmacología , Deferoxamina/farmacología , Ferroptosis/efectos de los fármacos , Expresión Génica , Humanos , Hierro/metabolismo , Proteína 2 Reguladora de Hierro/genética , Proteína 2 Reguladora de Hierro/metabolismo , Masculino , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Células PC12 , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
17.
Sci Rep ; 10(1): 3602, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32108169

RESUMEN

Birdsong learning, like human speech, depends on the early memorization of auditory models, yet how initial auditory experiences are formed and consolidated is unclear. In songbirds, a putative cortical locus is the caudomedial nidopallium (NCM), and one mechanism to facilitate auditory consolidation is 17ß-estradiol (E2), which is associated with human speech-language development, and is abundant in both NCM and human temporal cortex. Circulating and NCM E2 levels are dynamic during learning, suggesting E2's involvement in encoding recent auditory experiences. Therefore, we tested this hypothesis in juvenile male songbirds using a comprehensive assessment of neuroanatomy, behavior, and neurophysiology. First, we found that brain aromatase expression, and thus the capacity to synthesize neuroestrogens, remains high in the auditory cortex throughout development. Further, while systemic estrogen synthesis blockade suppressed juvenile song production, neither systemic nor unilateral E2 synthesis inhibition in NCM disrupted eventual song imitation. Surprisingly, early life neuroestrogen synthesis blockade in NCM enhanced the neural representations of both the birds' own song and the tutor song in NCM and a downstream sensorimotor region, HVC, respectively. Taken together, these findings indicate that E2 plays a multifaceted role during development, and that, contrary to prediction, tutor song memorization is unimpaired by unilateral estrogen synthesis blockade in the auditory cortex.


Asunto(s)
Aromatasa/metabolismo , Corteza Auditiva/metabolismo , Estradiol/metabolismo , Pinzones/fisiología , Aprendizaje/fisiología , Neuronas/fisiología , Vocalización Animal/fisiología , Animales , Vías Auditivas , Conducta Animal , Humanos , Conducta Imitativa , Masculino , Memoria , Habla
18.
Horm Behav ; 121: 104713, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32057821

RESUMEN

Animals continually assess their environment for cues associated with threats, competitors, allies, mates or prey, and experience is crucial for those associations. The auditory cortex is important for these computations to enable valence assignment and associative learning. The caudomedial nidopallium (NCM) is part of the songbird auditory association cortex and it is implicated in juvenile song learning, song memorization, and song perception. Like human auditory cortex, NCM is a site of action of estradiol (E2) and is enriched with the enzyme aromatase (E2-synthase). However, it is unclear how E2 modulates auditory learning and perception in the vertebrate auditory cortex. In this study we employ a novel, auditory-dependent operant task governed by social reinforcement to test the hypothesis that neuro-E2 synthesis supports auditory learning in adult male zebra finches. We show that local suppression of aromatase activity in NCM disrupts auditory association learning. By contrast, post-learning performance is unaffected by either NCM aromatase blockade or NCM pharmacological inactivation, suggesting that NCM E2 production and even NCM itself are not required for post-learning auditory discrimination or memory retrieval. Therefore, neuroestrogen synthesis in auditory cortex supports the association between sounds and behaviorally relevant consequences.


Asunto(s)
Aprendizaje por Asociación/fisiología , Corteza Auditiva/metabolismo , Percepción Auditiva/fisiología , Estrógenos/metabolismo , Pinzones/fisiología , Estimulación Acústica , Animales , Corteza Auditiva/fisiología , Cognición/fisiología , Condicionamiento Operante/fisiología , Estradiol/fisiología , Pinzones/metabolismo , Masculino , Memoria/fisiología , Células Neuroendocrinas/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Refuerzo Social , Vocalización Animal/fisiología
19.
Int J Mol Med ; 45(3): 715-730, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31922237

RESUMEN

Age­related hearing loss, also termed central presbycusis, is a progressive neurodegenerative disease; it is a devastating disorder that severely affects the quality of life of elderly individuals. Substantial evidence has indicated that oxidative stress and associated protein folding dysfunction have a marked influence on neurodegenerative diseases. In this study, we aimed to cells to investigate whether metformin protects against age­related pathologies and to elucidate the underlying mechanisms; specifically, we focused on the role of unfolded protein response (UPR) via the AMPK/ERK1/2 signaling pathways. For this purpose, the biguanide compound, metformin, a medication widely used in the treatment of type 2 diabetes, was administered to rats in a model of mimetic aging. In addition, senescent PC12 were treated with metformin. Although it has been well established that UPR signaling is activated in response to cellular stress and is associated with the pathogenesis of neuronal deterioration, the detailed functions of the UPR in the auditory cortex remain unclear. We found that metformin treatment markedly affected the UPR and the AMPK/ERK1/2 signaling pathway, and maintained the auditory brainstem response (ABR) threshold during the aging process. The results indicated that the regulation of the UPR and AMPK/ERK1/2 signaling pathway by metformin significantly attenuated hearing loss, cell apoptosis and age­related neurodegeneration. Reversing these harmful effects through the use of metformin suggests its involvement in restoring the antioxidant status and protein homeostasis related to the underlying pathology of presbycusis. The findings of this study may provide a better approach for the treatment of age­related neurodegeneration diseases.


Asunto(s)
Envejecimiento/efectos de los fármacos , Antioxidantes/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metformina/farmacología , Respuesta de Proteína Desplegada/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antioxidantes/análisis , Apoptosis/efectos de los fármacos , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/metabolismo , Modelos Animales de Enfermedad , Galactosa/efectos adversos , Masculino , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Presbiacusia , Ratas , Ratas Sprague-Dawley
20.
Artículo en Inglés | MEDLINE | ID: mdl-31781892

RESUMEN

Neuron-derived estrogens are synthesized by aromatase and act through membrane receptors to modulate neuronal physiology. In many systems, long-lasting hormone treatments can alter sensory-evoked neuronal activation. However, the significance of acute neuroestrogen production is less understood. Both sexes of zebra finches can synthesize estrogens rapidly in the auditory cortex, yet it is unclear how this modulates neuronal cell signaling. We examined whether acute estrogen synthesis blockade attenuates auditory-induced expression of early growth response 1 (Egr-1) in the auditory cortex of both sexes. cAMP response element-binding protein phosphorylation (pCREB) induction by song stimuli and acute estrogen synthesis was also examined. We administered the aromatase inhibitor fadrozole prior to song exposure and measured Egr-1 across several auditory regions. Fadrozole attenuated Egr-1 in the auditory cortex greater in males than females. Females had greater expression and clustering of aromatase cells than males in high vocal center (HVC) shelf. Auditory-induced Egr-1 expression exhibited a large sex difference following fadrozole treatment. We did not observe changes in pCREB expression with song presentation or aromatase blockade. These findings are consistent with the hypothesis that acute neuroestrogen synthesis can drive downstream transcriptional responses in several cortical auditory regions, and that this mechanism is more prominent in males.


Asunto(s)
Corteza Auditiva/fisiología , Antagonistas de Estrógenos/farmacología , Estrógenos/metabolismo , Fadrozol/farmacología , Pinzones/fisiología , Neuronas/metabolismo , Vocalización Animal/fisiología , Animales , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/metabolismo , Vías Auditivas/fisiología , Femenino , Pinzones/genética , Pinzones/metabolismo , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Masculino , Neuronas/efectos de los fármacos , Factores Sexuales , Vocalización Animal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA