Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.367
Filtrar
1.
Biomolecules ; 14(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786000

RESUMEN

Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and ßγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the ßγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens ßγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in ßB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even ß-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.


Asunto(s)
Cisteína , Cristalino , gamma-Cristalinas , gamma-Cristalinas/metabolismo , gamma-Cristalinas/química , gamma-Cristalinas/genética , Cisteína/metabolismo , Cisteína/química , Humanos , Cristalino/metabolismo , Cristalino/química , Animales , Catarata/metabolismo
2.
Stem Cell Res Ther ; 15(1): 141, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745238

RESUMEN

BACKGROUND: Previous studies have suggested that macrophages are present during lens regeneration in newts, but their role in the process is yet to be elucidated. METHODS: Here we generated a transgenic reporter line using the newt, Pleurodeles waltl, that traces macrophages during lens regeneration. Furthermore, we assessed early changes in gene expression during lens regeneration using two newt species, Notophthalmus viridescens and Pleurodeles waltl. Finally, we used clodronate liposomes to deplete macrophages during lens regeneration in both species and tested the effect of a subsequent secondary injury after macrophage recovery. RESULTS: Macrophage depletion abrogated lens regeneration, induced the formation of scar-like tissue, led to inflammation, decreased iris pigment epithelial cell (iPEC) proliferation, and increased rates of apoptosis in the eye. Some of these phenotypes persisted throughout the last observation period of 100 days and could be attenuated by exogenous FGF2 administration. A distinct transcript profile encoding acute inflammatory effectors was established for the dorsal iris. Reinjury of the newt eye alleviated the effects of macrophage depletion, including the resolution of scar-like tissue, and re-initiated the regeneration process. CONCLUSIONS: Together, our findings highlight the importance of macrophages for facilitating a pro-regenerative environment in the newt eye by regulating fibrotic responses, modulating the overall inflammatory landscape, and maintaining the proper balance of early proliferation and late apoptosis of the iPECs.


Asunto(s)
Fibrosis , Cristalino , Macrófagos , Regeneración , Salamandridae , Animales , Macrófagos/metabolismo , Regeneración/efectos de los fármacos , Cristalino/metabolismo , Cristalino/citología , Cristalino/lesiones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
3.
Mol Biol Cell ; 35(6): ar75, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598298

RESUMEN

To cause vision-disrupting fibrotic secondary cataract (PCO), lens epithelial cells that survive cataract surgery must migrate to the posterior of the lens capsule and differentiate into myofibroblasts. During this process, the cells become exposed to the FGF that diffuses out of the vitreous body. In normal development, such relatively high levels of FGF induce lens epithelial cells to differentiate into lens fiber cells. It has been a mystery as to how lens cells could instead undergo a mutually exclusive cell fate, namely epithelial to myofibroblast transition, in the FGF-rich environment of the posterior capsule. We and others have reported that the ability of TGFß to induce lens cell fibrosis requires the activity of endogenous ErbBs. We show here that lens fiber-promoting levels of FGF induce desensitization of ErbB1 (EGFR) that involves its phosphorylation on threonine 669 mediated by both ERK and p38 activity. Transinhibition of ErbB1 by FGF is overcome by a time-dependent increase in ErbB1 levels induced by TGFß, the activation of which is increased after cataract surgery. Our studies provide a rationale for why TGFß upregulates ErbB1 in lens cells and further support the receptor as a therapeutic target for PCO.


Asunto(s)
Catarata , Células Epiteliales , Receptores ErbB , Fibrosis , Cristalino , Factor de Crecimiento Transformador beta , Humanos , Catarata/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Receptores ErbB/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Cristalino/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
4.
J Nutr Biochem ; 129: 109636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38561079

RESUMEN

The purpose of this study is to investigate if grape consumption, in the form of grape powder (GP), could protect against ultraviolet (UV)-induced cataract. Mice were fed with the regular diet, sugar placebo diet, or a grape diet (regular diet supplemented with 5%, 10%, and 15% GP) for 3 months. The mice were then exposed to UV radiation to induce cataract. The results showed that the GP diet dose-dependently inhibited UV-induced cataract and preserved glutathione pools. Interestingly, UV-induced Nrf2 activation was abolished in the groups on the GP diet, suggesting GP consumption may improve redox homeostasis in the lens, making Nrf2 activation unnecessary. For molecular target prediction, a total of 471 proteins regulated by GP were identified using Agilent Literature Search (ALS) software. Among these targets, the X-linked inhibitor of apoptosis (XIAP) was correlated with all of the main active ingredients of GP, including resveratrol, catechin, quercetin, and anthocyanins. Our data confirmed that GP prevented UV-induced suppression of XIAP, indicating that XIAP might be one of the critical molecular targets of GP. In conclusion, this study demonstrated that GP protected the lens from UV-induced cataract development in mice. The protective effects of GP may be attributed to its ability to improve redox homeostasis and activate the XIAP-mediated antiapoptotic pathway.


Asunto(s)
Catarata , Suplementos Dietéticos , Factor 2 Relacionado con NF-E2 , Rayos Ultravioleta , Vitis , Proteína Inhibidora de la Apoptosis Ligada a X , Animales , Catarata/prevención & control , Catarata/metabolismo , Catarata/etiología , Factor 2 Relacionado con NF-E2/metabolismo , Rayos Ultravioleta/efectos adversos , Vitis/química , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Ratones , Cristalino/metabolismo , Cristalino/efectos de la radiación , Cristalino/efectos de los fármacos , Masculino , Resveratrol/farmacología , Glutatión/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Antocianinas/farmacología
5.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669339

RESUMEN

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Asunto(s)
Envejecimiento , Dominio Catalítico , Catarata , Glutamato-Cisteína Ligasa , Glutatión , Cristalino , Catarata/patología , Catarata/genética , Catarata/metabolismo , Animales , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Ratones , Glutatión/metabolismo , Cristalino/metabolismo , Cristalino/patología , Envejecimiento/metabolismo , Humanos , Modelos Animales de Enfermedad , Mutación , Técnicas de Sustitución del Gen
6.
Curr Eye Res ; 49(6): 591-604, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38450708

RESUMEN

PURPOSE: Fibrotic cataracts, including anterior subcapsular cataract (ASC) as well as posterior capsule opacification (PCO), are a common vision-threatening cause worldwide. Still, little is known about the underlying mechanisms. Here, we demonstrate a miRNA-based pathway regulating the pathological fibrosis process of lens epithelium. METHODS: Gain- and loss-of-function approaches, as well as multiple fibrosis models of the lens, were applied to validate the crucial role of two miR-1225 family members in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice. RESULTS: Both miR-1225-3p and miR-1225-5p prominently stimulate the migration and EMT process of lens epithelial cells (LECs) in vitro as well as lens fibrosis in vivo. Moreover, we demonstrated that the underlying mechanism for these effects of miR-1225-5p is via directly targeting Keap1 to regulate Keap1/Nrf2 signaling. In addition, evidence showed that Keap1/Nrf2 signaling is activated in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice, and inhibition of the Nrf2 pathway can significantly reverse the process of LECs EMT as well as lens fibrosis. CONCLUSIONS: These results suggest that blockade of miR-1225-5p prevents lens fibrosis via targeting Keap1 thereby inhibiting Nrf2 activation. The 'miR-1225-Keap1-Nrf2' signaling axis presumably holds therapeutic promise in the treatment of fibrotic cataracts.


Asunto(s)
Catarata , Modelos Animales de Enfermedad , Fibrosis , Proteína 1 Asociada A ECH Tipo Kelch , Ratones Endogámicos C57BL , MicroARNs , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , MicroARNs/genética , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Humanos , Catarata/metabolismo , Catarata/genética , Catarata/patología , Cristalino/metabolismo , Cristalino/patología , Regulación de la Expresión Génica , Células Cultivadas , Células Epiteliales/metabolismo , Western Blotting , Movimiento Celular , Transición Epitelial-Mesenquimal
7.
Sci Rep ; 14(1): 4123, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374148

RESUMEN

Although cataract is the leading cause of blindness worldwide, the detailed pathogenesis of cataract remains unclear, and clinically useful drug treatments are still lacking. In this study, we examined the effects of glutamate using an ex vivo model in which rat lens is cultured in a galactose-containing medium to induce opacity formation. After inducing lens opacity formation in galactose medium, glutamate was added, and the opacity decreased when the culture was continued. Next, microarray analysis was performed using samples in which the opacity was reduced by glutamate, and genes whose expression increased with galactose culture and decreased with the addition of glutamate were extracted. Subsequently, STRING analysis was performed on a group of genes that showed variation as a result of quantitative measurement of gene expression by RT-qPCR. The results suggest that apoptosis, oxidative stress, endoplasmic reticulum (ER) stress, cell proliferation, epithelial-mesenchymal transition (EMT), cytoskeleton, and histones are involved in the formation and reduction of opacity. Therefore, glutamate may reduce opacity by inhibiting oxidative stress and its downstream functions, and by regulating the cytoskeleton and cell proliferation.


Asunto(s)
Catarata , Cristalino , Ratas , Animales , Galactosa/metabolismo , Ácido Glutámico/metabolismo , Catarata/inducido químicamente , Catarata/genética , Cristalino/metabolismo , Apoptosis , Células Epiteliales/metabolismo
8.
J Cell Physiol ; 239(5): e31211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38304971

RESUMEN

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Células Epiteliales , Glucosa , Subunidad alfa del Factor 1 Inducible por Hipoxia , Cristalino , Osteogénesis , Humanos , Cristalino/metabolismo , Cristalino/patología , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Glucosa/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Osteocalcina/metabolismo , Osteocalcina/genética , Catarata/patología , Catarata/metabolismo , Catarata/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Hiperglucemia/metabolismo , Hiperglucemia/genética , Hiperglucemia/patología , Transducción de Señal , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/genética , Células Cultivadas
9.
Curr Eye Res ; 49(5): 496-504, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38200696

RESUMEN

PURPOSE: To identify the inactive genes in cataract lenses and explore their function in lens epithelial cells (LECs). METHODS: Lens epithelium samples obtained from both age-related cataract (ARC) patients and normal donors were subjected to two forms of histone H3 immunoprecipitation: H3K9ac and H3K27me3 chromatin immunoprecipitation (ChIP), followed by ChIP-seq. The intersection set of "active genes in normal controls" and "repressed genes in cataract lenses" was identified. To validate the role of a specific gene, ETV1, within this set, quantitative polymerase chain reaction (qPCR), western blot, and immunofluorescence were performed using clinical lens epithelium samples. Small interference RNA (siRNA) was utilized to reduce the mRNA level of ETV1 in cultured LECs. Following this, transwell assay and western blot was performed to examine the migration ability of the cells. Furthermore, RNA-seq analysis was conducted on both cell samples with ETV1 knockdown and control cells. Additionally, the expression level of ETV1 in LECs was examined using qPCR under H2O2 treatment. RESULTS: Six genes were identified in the intersection set of "active genes in normal controls" and "repressed genes in ARC lenses". Among these genes, ETV1 showed the most significant fold-change decrease in the cataract samples compared to the control samples. After ETV1 knockdown by siRNA in cultured LECs, reduced cell migration was observed, along with a decrease in the expression of ß-Catenin and Vimentin, two specific genes associated with cell migration. In addition, under the oxidative stress induced by H2O2 treatment, the expression level of ETV1 in LECs significantly decreased. CONCLUSIONS: Based on the findings of this study, it can be concluded that ETV1 is significantly reduced in human ARC lenses. The repression of ETV1 in ARC lenses appears to contribute to the disrupted differentiation of lens epithelium, which is likely caused by the inhibition of both cell differentiation and migration processes.


Asunto(s)
Catarata , Proteínas de Unión al ADN , Cristalino , Factores de Transcripción , Humanos , Catarata/genética , Catarata/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Cristalino/metabolismo , Estrés Oxidativo , ARN Interferente Pequeño/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Int J Biol Macromol ; 259(Pt 2): 129290, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199534

RESUMEN

Posterior capsule opacification (PCO) is the most common postoperative complication of cataract surgery. Transforming growth factor-ß (TGF-ß) is related to epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) that is proven to induce PCO formation in clinical and experimental studies. In this study, CRISPR sequences targeting exon of TGF-ßRII were knocked out with lentiviral transfection in LECs. Rabbits' PCO model was established and recombinant adeno-associated virus (AAV) for transferring the gRNA of TGF ßRII were intravitreally injected. SgRNA inhibited TGF-ßRII expression and human LECs proliferation. In TGF-ßRII knockout group, LECs motility and migration were suppressed, N-cadherin and vimentin expressions were significantly decreased, whereas E-cadherin was increased. The animal model showed that TGF-ßRII knockout in vivo was effective in suppressing PCO. The current study suggested that the CRISPR/Cas9 endonuclease system could suppress TGF-ßRII secretion, which participates in the EMT procedure of LECs in vitro and PCO in vivo. These findings might provide a new gene-editing approach and insight into a novel therapeutic strategy for PCO.


Asunto(s)
Opacificación Capsular , Cristalino , Animales , Humanos , Conejos , Opacificación Capsular/genética , Opacificación Capsular/metabolismo , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Cristalino/metabolismo , Células Epiteliales , Transición Epitelial-Mesenquimal/genética , Epitelio/metabolismo , Movimiento Celular , Proliferación Celular
11.
Surv Ophthalmol ; 69(2): 224-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37944599

RESUMEN

Slowing down or stopping the natural process of cataractogenesis is certainly a challenge for those who today propose an option other than surgery. Addressing the same problem in different ways constitutes a new approach to solving what is today the number one cause of reversible blindness worldwide. The technological revolution, as well as the advances in the biological sciences, allows us to conceive mechanisms never thought of before to stop the process that, as a common pathway, constitutes opacification of the crystalline lens. A new dawn for cataracts is coming through molecular, newly-discovered mechanisms. Cataractogenesis and molecular pathways have reactive free oxygen species as a common pathway. Surgical removal is today's gold standard, but perhaps not for much longer.


Asunto(s)
Catarata , Cristalino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Catarata/metabolismo , Cristalino/metabolismo , Antioxidantes , Oxígeno
12.
Mol Cell Biochem ; 479(4): 743-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37171723

RESUMEN

Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFß2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFß2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFß2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.


Asunto(s)
Cadherinas , Opacificación Capsular , Catarata , Cristalino , MicroARNs , Animales , Humanos , Ratones , Opacificación Capsular/genética , Opacificación Capsular/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Fibrosis , Cristalino/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
13.
Curr Eye Res ; 49(4): 380-390, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38108278

RESUMEN

PURPOSE: To observe the effects of oxidative stress on vascular endothelial growth factor (VEGF) and connections of lens epithelial cells. METHODS: Human lens epithelium of patients with age-related cataract (ARC), both SRA01/04 cells and whole mice lens stimulated by H2O2 were employed. VEGF in human aqueous humor of ARC-patients and the supernatant of SRA01/04 cells was determined by ELISA. The expressions of VEFG in human lens epithelium were detected by immunofluorescence staining. Multiple linear regression analysis and spearman rank-order correlation were used to determine the associations between VEGF and parameters of ARC individuals. In H2O2-induced SRA01/04 cells, Catalase (CAT), PP1 (inhibitor of c-Src kinase) and Avastin (VEGF antibody) were used to inhibit the effects of H2O2, activation of c-Src kinase and VEGF, which were detected by Western blot. The alterations of ZO-1 and N-cadherin were tested by immunofluorescence staining and Western blot. In H2O2-induced whole lens, the changes of opacification area in different treatment of inhibitors were observed. RESULTS: The secretion of VEGF in aqueous humor and expression of VEGF in the lens epithelium of ARC patients increased significantly with age. In H2O2-induced SRA01/04 cells, the VEGF in the supernatant was increased with the culture duration and the dose of H2O2. The expressions of p-Src418 and VEGF were also up-regulated, whereas the expressions of ZO-1 and N-cadherin were down-regulated. CAT effectively prevented these changes induced by H2O2, while PP1 inhibited not only p-Src418 but also up-regulation of VEGF, Avastin partially inhibited VEGF up-regulation. Both PP1 and Avastin prevented down-regulation of ZO-1 and N-cadherin, respectively, but Avastin combined with PP1 had no significant synergistic effects. In H2O2-induced cataract, CAT prevented development of opacification area effectively, and PP1 and Avastin did partially. CONCLUSIONS: Oxidative stress disrupts connections of lens epithelial cells by activating c-Src/VEGF, inhibiting which may prevent cataract.


Asunto(s)
Catarata , Cristalino , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo , Bevacizumab/farmacología , Peróxido de Hidrógeno/farmacología , Catarata/metabolismo , Cristalino/metabolismo , Células Epiteliales/metabolismo , Estrés Oxidativo , Cadherinas , Apoptosis
14.
Curr Eye Res ; 49(5): 487-495, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38152055

RESUMEN

BACKGROUND: Dysregulated circular RNAs (circRNAs) is involved in the pathogenesis of age-related cataract (ARC). Here, this study aimed to explore the function and mechanism of circMAP3K4 in ARC. METHODS: Human lens epithelial cells were exposed to hydrogen peroxide (H2O2) for functional experiments. qRT-PCR and western blotting analyses were used for the expression detection of genes and proteins. Cell proliferation was tested using cell counting kit-8 and EdU. Flow cytometry was applied to analyze cell apoptosis and cell cycle. The oxidative stress was evaluated by detecting the production of malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). The target relationship between miR-630 and circMAP3K4 or Excision repair cross-complementing group 6 (ERCC6) was analyzed by dual-luciferase reporter assay and RIP assay. RESULTS: CircMAP3K4 was lowly expressed in ARC patients and H2O2-induced HLECs. Functionally, forced expression of circMAP3K4 protected HLECs against H2O2-evoked proliferation inhibition, cell cycle arrest and the promotion of cell apoptosis and oxidative stress. Mechanistically, circMAP3K4 acted as a sponge for miR-630 to regulate the expression of its target ERCC6. MiR-630 was highly expressed while ERCC6 was lowly expressed in ARC patients and H2O2-induced HLECs. Up-regulation of miR-630 could reverse the protective effects of circMAP3K4 on HLECs under H2O2 treatment. In addition, inhibition of miR-630 suppressed H2O2-induced HLEC injury, which was abolished by ERCC6 silencing. CONCLUSION: Forced expression of circMAP3K4 protected HLECs against H2O2-evoked apoptotic and oxidative injury via miR-630/ERCC6 axis, suggesting that circMAP3K4 may function as a potential therapeutic target for ARC.


Asunto(s)
Catarata , Cristalino , MicroARNs , ARN Circular , Humanos , Apoptosis , Catarata/patología , ADN Helicasas , Enzimas Reparadoras del ADN , Células Epiteliales/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Cristalino/metabolismo , MicroARNs/metabolismo , Estrés Oxidativo , ARN Circular/genética , ARN Circular/metabolismo
15.
Invest Ophthalmol Vis Sci ; 64(15): 15, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095908

RESUMEN

Purpose: The underlying mechanism of congenital cataracts caused by deficiency or mutation of junctional adhesion molecule C (JAM-C) gene remains unclear. Our study aims to elucidate the abnormal developmental process in Jamc-/- lenses and reveal the genes related to lens development that JAM-C may regulate. Methods: Jamc knockout (Jamc-/-) mouse embryos and pups were generated for in vivo studies. Four key developmental stages from embryonic day (E) 12.5 to postnatal day (P) 0.5 were selected for the following experiments. Hematoxylin and eosin staining was used for histological analysis. The 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and TUNEL staining were performed to label lens epithelial cell (LEC) proliferation and apoptosis, respectively. Immunofluorescence and Western blot were used to analyze the markers of lens epithelium, cell cycle exit, and lens fiber differentiation. Results: JAM-C was expressed throughout the process of lens development. Deletion of Jamc resulted in decreased lens size and disorganized lens fibers, which arose from E16.5 and aggravated gradually. The LECs of Jamc-/- lenses showed decreased quantity and proliferation, accompanied with reduction of key transcription factor, FOXE3. The fibers in Jamc-/- lenses were disorganized. Moreover, Jamc-deficient lens fibers showed significantly altered distribution patterns of Cx46 and Cx50. The marker of fiber homeostasis, γ-crystallin, was also decreased in the inner cortex and core fibers of Jamc-/- lenses. Conclusions: Deletion of JAM-C exhibits malfunction of LEC proliferation and fiber maturation during murine lens development, which may be related to the downregulation of FOXE3 expression and abnormal localization patterns of Cx46 and Cx50.


Asunto(s)
Molécula C de Adhesión de Unión , Cristalino , Animales , Ratones , Diferenciación Celular/fisiología , Proliferación Celular , Células Epiteliales/metabolismo , Epitelio , Molécula C de Adhesión de Unión/metabolismo , Cristalino/metabolismo , Ratones Noqueados
16.
Invest Ophthalmol Vis Sci ; 64(15): 12, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38079167

RESUMEN

Purpose: Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a predominant pathological process underlying fibrotic cataracts. Here we investigated the role and mechanism of lanosterol synthase (LSS), a key rate-limiting enzyme in sterol biosynthesis, in EMT of LECs. Methods: Human lens epithelial explants, primary rabbit LECs, and whole rat lenses were treated with TGFß2. RNA-sequencing was conducted to explore genetic changes during fibrosis of human lens epithelial explants. Loss- and gain-of-function studies were performed in primary LECs to investigate roles and mechanisms of LSS, lanosterol and sterol regulatory element binding transcription protein 1 (SREBP1) in EMT. Rat lenses were applied to evaluate the potential effect of lanosterol on lens fibrosis. Expression of LSS, SREBP1, EMT-related regulators, and markers were analyzed by Western blot, qRT-PCR, or immunofluorescent staining. Results: LSS and steroid biosynthesis were downregulated in TGFß2-induced lens fibrosis. LSS inhibition directly triggered EMT by inducing Smad2/3 phosphorylation and nucleus translocation, an overexpression of LSS protected LECs from EMT by inhibiting Smad2/3 activation. Moreover, LSS inhibition decreased the expression of SREBP1, which regulated EMT via intervening TGFß2/Smad2/3 transduction. Furthermore, lanosterol protected LECs from EMT caused by both TGFß2 treatment and LSS inhibition via suppressing Smad2/3 activation and maintained lens transparency by preventing fibrotic plaques formation. Conclusions: We first identified that LSS protected LECs from EMT and played an antifibrotic role to maintain lens transparency. Additionally, lanosterol and sterol biosynthesis regulation might be promising strategies for preventing and treating fibrotic cataracts.


Asunto(s)
Catarata , Cristalino , Animales , Humanos , Conejos , Ratas , Catarata/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Fibrosis , Lanosterol/metabolismo , Lanosterol/farmacología , Cristalino/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo
17.
Biomolecules ; 13(12)2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38136638

RESUMEN

Fibrotic cataracts, posterior capsular opacification (PCO), and anterior subcapsular cataracts (ASC) are mainly attributed to the transforming growth factor-ß (TGFß)-induced epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs). Previous investigations from our laboratory have shown the novel role of non-canonical TGFß signaling in the progression of EMT in LECs. In this study, we have identified YAP as a critical signaling molecule involved in lens fibrosis. The observed increase in nuclear YAP in capsules of human ASC patients points toward the involvement of YAP in lens fibrosis. In addition, the immunohistochemical (IHC) analyses on ocular sections from mice that overexpress TGFß in the lens (TGFßtg) showed a co-expression of YAP and α-SMA in the fibrotic plaques when compared to wild-type littermate lenses, which do not. The incubation of rat lens explants with verteporfin, a YAP inhibitor, prevented a TGFß-induced fiber-like phenotype, α-SMA, and fibronectin expression, as well as delocalization of E-cadherin and ß-catenin. Finally, LECs co-incubated with TGFß and YAP inhibitor did not exhibit an induction in matrix metalloproteinase 2 compared to those LECs treated with TGFß alone. In conclusion, these data demonstrate that YAP is required for TGFß-mediated lens EMT and fibrosis.


Asunto(s)
Opacificación Capsular , Cristalino , Humanos , Ratas , Animales , Ratones , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Señalizadoras YAP , Cristalino/metabolismo , Células Epiteliales/metabolismo , Opacificación Capsular/patología , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis
18.
Biomolecules ; 13(11)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-38002297

RESUMEN

While the lens is an avascular tissue with an immune-privileged status, studies have now revealed that there are immune responses specifically linked to the lens. The response to lens injury, such as following cataract surgery, has been shown to involve the activation of the resident immune cell population of the lens and the induction of immunomodulatory factors by the wounded epithelium. However, there has been limited investigation into the immediate response of the lens to wounding, particularly those induced factors that are intrinsic to the lens and its associated resident immune cells. Using an established chick embryo ex vivo cataract surgery model has made it possible to determine the early immune responses of this tissue to injury, including its resident immune cells, through a transcriptome analysis. RNA-seq studies were performed to determine the gene expression profile at 1 h post wounding compared to time 0. The results provided evidence that, as occurs in other tissues, the resident immune cells of the lens rapidly acquired a molecular signature consistent with their activation. These studies also identified the expression of many inflammatory factors by the injured lens that are associated with both the induction and regulation of the immune response.


Asunto(s)
Extracción de Catarata , Catarata , Cristalino , Animales , Embrión de Pollo , Cristalino/metabolismo , Catarata/genética , Catarata/metabolismo , Pollos , Epitelio/metabolismo
19.
Cells ; 12(20)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887322

RESUMEN

Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.


Asunto(s)
Catarata , Cristalino , Animales , Ratones , Cristalino/metabolismo , Catarata/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/metabolismo , Organoides/metabolismo
20.
Biomolecules ; 13(10)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37892142

RESUMEN

Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.


Asunto(s)
Neoplasias de la Mama , Cristalino , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Comunicación Celular , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Cristalino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA