Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.466
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38862431

RESUMEN

Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.


Asunto(s)
Neoplasias , Precursores del ARN , ARN de Transferencia , Ribonucleasa P , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/enzimología , Precursores del ARN/metabolismo , Precursores del ARN/genética , Inestabilidad Genómica , Animales , Daño del ADN , Procesamiento Postranscripcional del ARN , Ensamble y Desensamble de Cromatina/genética
3.
J Vis Exp ; (207)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856223

RESUMEN

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) base is the predominant form of commonly observed DNA oxidative damage. DNA impairment profoundly impacts gene expression and serves as a pivotal factor in stimulating neurodegenerative disorders, cancer, and aging. Therefore, precise quantification of 8-oxoG has clinical significance in the investigation of DNA damage detection methodologies. However, at present, the existing approaches for 8-oxoG detection pose challenges in terms of convenience, expediency, affordability, and heightened sensitivity. We employed the sandwich enzyme-linked immunosorbent assay (ELISA) technique, a highly efficient and swift colorimetric method, to detect variations in 8-oxo-dG content in MCF-7 cell samples stimulated with different concentrations of hydrogen peroxide (H2O2). We determined the concentration of H2O2 that induced oxidative damage in MCF-7 cells by detecting its IC50 value in MCF-7 cells. Subsequently, we treated MCF-7 cells with 0, 0.25, and 0.75 mM H2O2 for 12 h and extracted 8-oxo-dG from the cells. Finally, the samples were subjected to ELISA. Following a series of steps, including plate spreading, washing, incubation, color development, termination of the reaction, and data collection, we successfully detected changes in the 8-oxo-dG content in MCF-7 cells induced by H2O2. Through such endeavors, we aim to establish a method to evaluate the degree of DNA oxidative damage within cell samples and, in doing so, advance the development of more expedient and convenient approaches for DNA damage detection. This endeavor is poised to make a meaningful contribution to the exploration of associative analyses between DNA oxidative damage and various domains, including clinical research on diseases and the detection of toxic substances.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina , Daño del ADN , Ensayo de Inmunoadsorción Enzimática , Peróxido de Hidrógeno , Estrés Oxidativo , Humanos , Daño del ADN/efectos de los fármacos , Células MCF-7 , Ensayo de Inmunoadsorción Enzimática/métodos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análisis
4.
J Cancer Res Clin Oncol ; 150(6): 299, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850382

RESUMEN

BACKGROUND: Microvesicles are membraned particles produced by different types of cells recently investigated for anticancer purposes. The current study aimed to investigate the effects of human bone marrow mesenchymal stem cell-derived microvesicles (BMSC-MVs) on the multiple myeloma cell line U266. BMSC-MVs were isolated from BMSCs via ultracentrifugation and characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). U266 cells were treated with 15, 30, 60, and 120 µg/mL BMSC-MVs for three and seven days and the effects of treatment in terms of viability, cytotoxicity, and DNA damage were investigated via the MTT assay, lactate dehydrogenase (LDH) assay, and 8­hydroxy-2'-deoxyguanosine (8­OHdG) measurement, respectively. Moreover, the apoptosis rate of the U266 cells treated with 60 µg/mL BMSC-MVs was also assessed seven days following treatment via flow cytometry. Ultimately, the expression level of BCL2, BAX, and CCND1 by the U266 cells was examined seven days following treatment with 60 µg/mL BMSC-MVs using qRT-PCR. RESULTS: BMSC-MVs had an average size of ~ 410 nm. According to the MTT and LDH assays, BMSC-MV treatment reduced the U266 cell viability and mediated cytotoxic effects against them, respectively. Moreover, elevated 8­OHdG levels following BMSC-MV treatment demonstrated a dose-dependent increase of DNA damage in the treated cells. BMSC-MV-treated U266 cells also exhibited an increased apoptosis rate after seven days of treatment. The expression level of BCL2 and CCND1 decreased in the treated cells whereas the BAX expression demonstrated an incremental pattern. CONCLUSIONS: Our findings accentuate the therapeutic benefit of BMSC-MVs against the multiple myeloma cell line U266 and demonstrate how microvesicles could be of therapeutic advantage. Future in vivo studies could further corroborate these findings.


Asunto(s)
Apoptosis , Micropartículas Derivadas de Células , Células Madre Mesenquimatosas , Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Células Madre Mesenquimatosas/metabolismo , Línea Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Supervivencia Celular , Daño del ADN
5.
Nat Commun ; 15(1): 4696, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824133

RESUMEN

Age-related microangiopathy, also known as small vessel disease (SVD), causes damage to the brain, retina, liver, and kidney. Based on the DNA damage theory of aging, we reasoned that genomic instability may underlie an SVD caused by dominant C-terminal variants in TREX1, the most abundant 3'-5' DNA exonuclease in mammals. C-terminal TREX1 variants cause an adult-onset SVD known as retinal vasculopathy with cerebral leukoencephalopathy (RVCL or RVCL-S). In RVCL, an aberrant, C-terminally truncated TREX1 mislocalizes to the nucleus due to deletion of its ER-anchoring domain. Since RVCL pathology mimics that of radiation injury, we reasoned that nuclear TREX1 would cause DNA damage. Here, we show that RVCL-associated TREX1 variants trigger DNA damage in humans, mice, and Drosophila, and that cells expressing RVCL mutant TREX1 are more vulnerable to DNA damage induced by chemotherapy and cytokines that up-regulate TREX1, leading to depletion of TREX1-high cells in RVCL mice. RVCL-associated TREX1 mutants inhibit homology-directed repair (HDR), causing DNA deletions and vulnerablility to PARP inhibitors. In women with RVCL, we observe early-onset breast cancer, similar to patients with BRCA1/2 variants. Our results provide a mechanistic basis linking aberrant TREX1 activity to the DNA damage theory of aging, premature senescence, and microvascular disease.


Asunto(s)
Daño del ADN , Exodesoxirribonucleasas , Fosfoproteínas , Animales , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratones , Reparación del ADN por Recombinación , Fenotipo , Mutación , Drosophila/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Femenino , Drosophila melanogaster/genética , Masculino , Enfermedades de la Retina , Enfermedades Vasculares , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias
6.
Cell Death Dis ; 15(6): 417, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879509

RESUMEN

Chemotherapy is a crucial treatment for colorectal tumors. However, its efficacy is restricted by chemoresistance. Recently, Golgi dispersal has been suggested to be a potential response to chemotherapy, particularly to drugs that induce DNA damage. However, the underlying mechanisms by which Golgi dispersal enhances the capacity to resist DNA-damaging agents remain unclear. Here, we demonstrated that DNA-damaging agents triggered Golgi dispersal in colorectal cancer (CRC), and cancer stem cells (CSCs) possessed a greater degree of Golgi dispersal compared with differentiated cancer cells (non-CSCs). We further revealed that Golgi dispersal conferred resistance against the lethal effects of DNA-damaging agents. Momentously, Golgi dispersal activated the Golgi stress response via the PKCα/GSK3α/TFE3 axis, resulting in enhanced protein and vesicle trafficking, which facilitated drug efflux through ABCG2. Identification of Golgi dispersal indicated an unexpected pathway regulating chemoresistance in CRC.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Aparato de Golgi , Células Madre Neoplásicas , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Humanos , Aparato de Golgi/metabolismo , Aparato de Golgi/efectos de los fármacos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Línea Celular Tumoral , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Daño del ADN , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
7.
Sci Rep ; 14(1): 13628, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871783

RESUMEN

This study intended to investigate if gynecological cancers compromise ovarian function and reduce the success of assisted reproduction techniques (ART). No clinical and molecular data together is available on this issue for gynecological or other organ cancers. Steroidogenic pathways and DNA damage response characteristics of the granulosa cells retrieved from the 39 gynecological cancer patients were analyzed together with their clinical ART characteristics in comparison to 31 control ART patients. Patients with gynecological malignancies were similar to the control IVF patients for the number of mature oocytes retrieved, fertilization rates and embryo development competency. Molecular analyses of the granulosa cells retrieved from these cancer patients did not detect any perturbations in gonadotropin receptor expression and response, sex steroid production, cholesterol utilization/storage and, DNA damage response pattern in comparison to control IVF patients without cancer. This study provides the first reassuring clinical and molecular combined data set that the presence of gynecological malignancy does not appear to have any detrimental effect on clinical IVF cycle characteristics and ovarian functioning at molecular level.


Asunto(s)
Daño del ADN , Fertilización In Vitro , Neoplasias de los Genitales Femeninos , Humanos , Femenino , Fertilización In Vitro/métodos , Neoplasias de los Genitales Femeninos/genética , Neoplasias de los Genitales Femeninos/patología , Neoplasias de los Genitales Femeninos/metabolismo , Adulto , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Embarazo
8.
J Cancer Res Clin Oncol ; 150(6): 305, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871970

RESUMEN

PURPOSE: The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). METHODS: Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. RESULTS: The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (P = 0.044) and tumor size (P = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM-p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM-p53 signaling pathway in xenograft tumor tissue. CONCLUSION: COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.


Asunto(s)
Proliferación Celular , Daño del ADN , Progresión de la Enfermedad , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Animales , Ratones , Femenino , Masculino , Ratones Desnudos , Línea Celular Tumoral , Apoptosis , Pronóstico , Persona de Mediana Edad , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Movimiento Celular , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica
9.
J Exp Clin Cancer Res ; 43(1): 159, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840237

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) was historically considered to be less responsive to radiation therapy (RT) compared to other cancer indications. However, advancements in precision high-dose radiation delivery through single-fraction and multi-fraction stereotactic ablative radiotherapy (SABR) have led to better outcomes and reduced treatment-related toxicities, sparking renewed interest in using RT to treat RCC. Moreover, numerous studies have revealed that certain therapeutic agents including chemotherapies can increase the sensitivity of tumors to RT, leading to a growing interest in combining these treatments. Here, we developed a rational combination of two radiosensitizers in a tumor-targeted liposomal formulation for augmenting RT in RCC. The objective of this study is to assess the efficacy of a tumor-targeted liposomal formulation combining the mTOR inhibitor everolimus (E) with the survivin inhibitor YM155 (Y) in enhancing the sensitivity of RCC tumors to radiation. EXPERIMENTAL DESIGN: We slightly modified our previously published tumor-targeted liposomal formulation to develop a rational combination of E and Y in a single liposomal formulation (EY-L) and assessed its efficacy in RCC cell lines in vitro and in RCC tumors in vivo. We further investigated how well EY-L sensitizes RCC cell lines and tumors toward radiation and explored the underlying mechanism of radiosensitization. RESULTS: EY-L outperformed the corresponding single drug-loaded formulations E-L and Y-L in terms of containing primary tumor growth and improving survival in an immunocompetent syngeneic mouse model of RCC. EY-L also exhibited significantly higher sensitization of RCC cells towards radiation in vitro than E-L and Y-L. Additionally, EY-L sensitized RCC tumors towards radiation therapy in xenograft and murine RCC models. EY-L mediated induction of mitotic catastrophe via downregulation of multiple cell cycle checkpoints and DNA damage repair pathways could be responsible for the augmentation of radiation therapy. CONCLUSION: Taken together, our study demonstrated the efficacy of a strategic combination therapy in sensitizing RCC to radiation therapy via inhibition of DNA damage repair and a substantial increase in mitotic catastrophe. This combination therapy may find its use in the augmentation of radiation therapy during the treatment of RCC patients.


Asunto(s)
Carcinoma de Células Renales , Reparación del ADN , Neoplasias Renales , Survivin , Serina-Treonina Quinasas TOR , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/radioterapia , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Animales , Survivin/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Renales/patología , Neoplasias Renales/radioterapia , Neoplasias Renales/tratamiento farmacológico , Reparación del ADN/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Mitosis/efectos de los fármacos , Mitosis/efectos de la radiación , Imidazoles/farmacología , Daño del ADN , Everolimus/farmacología , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Liposomas/farmacología , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico
10.
Biomed Pharmacother ; 176: 116864, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38865847

RESUMEN

BACKGROUND: DNA repair allows the survival of cancer cells. Therefore, the development of DNA repair inhibitors is a critical need for sensitizing cancers to chemoradiation. Sae2CtIP has specific functions in initiating DNA end resection, as well as coordinating cell cycle checkpoints, and it also greatly interacts with the DDR at different levels. RESULTS: In this study, we demonstrated that corylin, a potential sensitizer, causes deficiencies in DNA repair and DNA damage checkpoints in yeast cells. More specifically, corylin increases DNA damage sensitivity through the Sae2-dependent pathway and impairs the activation of Mec1-Ddc2, Rad53-p and γ-H2A. In breast cancer cells, corylin increases apoptosis and reduces proliferation following Dox treatment by inhibiting CtIP. Xenograft assays showed that treatment with corylin combined with Dox significantly reduced tumor growth in vivo. CONCLUSIONS: Our findings herein delineate the mechanisms of action of corylin in regulating DNA repair and indicate that corylin has potential long-term clinical utility as a DDR inhibitor.


Asunto(s)
Daño del ADN , Reparación del ADN , Recombinación Homóloga , Humanos , Animales , Reparación del ADN/efectos de los fármacos , Recombinación Homóloga/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Ratones Desnudos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Doxorrubicina/farmacología , Ratones , Ratones Endogámicos BALB C , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38832821

RESUMEN

LncRNA is a group of transcripts with a length exceeding 200 nucleotides that contribute to tumour development. Our research group found that LINC00052 expression was repressed during the formation of breast cancer (BC) multicellular spheroids. Intriguingly, LINC00052 precise role in BC remains uncertain. We explored LINC00052 expression in BC patients` RNA samples (TCGA) in silico, as well as in an in-house patient cohort, and inferred its cellular and molecular mechanisms. In vitro studies evaluated LINC00052 relevance in BC cells viability, cell cycle and DNA damage. Results. Bioinformatic RNAseq analysis of BC patients showed that LINC00052 is overexpressed in samples from all BC molecular subtypes. A similar LINC00052 expression pattern was observed in an in-house patient cohort. In addition, higher LINC00052 levels are related to better BC patient´s overall survival. Remarkably, MCF-7 and ZR-75-1 cells treated with estradiol showed increased LINC00052 expression compared to control, while these changes were not observed in MDA-MB-231 cells. In parallel, bioinformatic analyses indicated that LINC00052 influences DNA damage and cell cycle. MCF-7 cells with low LINC00052 levels exhibited increased cellular protection against DNA damage and diminished growth capacity. Furthermore, in cisplatin-resistant MCF-7 cells, LINC00052 expression was downregulated. Conclusion. This work shows that LINC00052 expression is associated with better BC patient survival. Remarkably, LINC00052 expression can be regulated by Estradiol. Additionally, assays suggest that LINC00052 could modulate MCF-7 cells growth and DNA damage repair. Overall, this study highlights the need for further research to unravel LINC00052 molecular mechanisms and potential clinical applications in BC.


Asunto(s)
Neoplasias de la Mama , Biología Computacional , Daño del ADN , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Biología Computacional/métodos , ARN Largo no Codificante/genética , Femenino , Ciclo Celular/genética , Proliferación Celular , Línea Celular Tumoral , Células MCF-7 , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos/genética , Supervivencia Celular/genética , Pronóstico , Perfilación de la Expresión Génica
12.
Invest Ophthalmol Vis Sci ; 65(6): 7, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38833258

RESUMEN

Purpose: The purpose of this study was to analyze the extent of DNA breaks in primary uveal melanoma (UM) with regard to radiotherapy dose delivery (single-dose versus fractionated) and monosomy 3 status. Methods: A total of 54 patients with UM were included. Stereotactic radiotherapy (SRT) was performed in 23 patients, with 8 undergoing single-dose SRT (sdSRT) treatment and 15 receiving fractionated SRT (fSRT). DNA breaks in the enucleated or endoresected tumors were visualized by a TUNEL assay and quantified by measuring the TUNEL-positive area. Protein expression was analyzed by immunohistochemistry. Co-detection of chromosome 3 with proteins was performed by immuno-fluorescent in situ hybridization. Results: The amount of DNA breaks in the total irradiated group was increased by 2.7-fold (P < 0.001) compared to non-irradiated tissue. Tumors treated with fSRT were affected more severely, showing 2.1-fold more DNA damage (P = 0.007) compared to the cases after single (high) dose irradiation (sdSRT). Monosomy 3 tumors showed less DNA breaks compared to disomy 3 samples (P = 0.004). The presence of metastases after radiotherapy correlated with monosomy 3 and less DNA breaks compared to patients with non-metastatic cancer in the combined group with fSRT and sdSRT (P < 0.05). Conclusions: Fractionated irradiation led to more DNA damage than single-dose treatment in primary UM. As tumors with monosomy 3 showed less DNA breaks than those with disomy 3, this may indicate that they are less radiosensitive, which may influence the efficacy of irradiation.


Asunto(s)
Cromosomas Humanos Par 3 , Daño del ADN , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/radioterapia , Neoplasias de la Úvea/genética , Melanoma/radioterapia , Melanoma/genética , Femenino , Cromosomas Humanos Par 3/genética , Masculino , Persona de Mediana Edad , Anciano , Adulto , Anciano de 80 o más Años , Hibridación Fluorescente in Situ , Etiquetado Corte-Fin in Situ , Dosificación Radioterapéutica , Inmunohistoquímica , Radiocirugia/efectos adversos , Radiocirugia/métodos , Relación Dosis-Respuesta en la Radiación
13.
Mol Biol Rep ; 51(1): 725, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851636

RESUMEN

Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.


Asunto(s)
Roturas del ADN de Doble Cadena , Enfermedades Neurodegenerativas , Enfermedades Neuroinflamatorias , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Animales , Roturas del ADN de Doble Cadena/efectos de la radiación , Humanos , Enfermedades Neuroinflamatorias/etiología , Reparación del ADN/genética , Daño del ADN/efectos de la radiación
14.
Sci Rep ; 14(1): 13079, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844507

RESUMEN

As patient exposure to ionizing radiation from medical imaging and its risks are continuing issues, this study aimed to evaluate DNA damage and repair markers after myocardial perfusion single-photon emission computed tomography (MPS). Thirty-two patients undergoing Tc-99m sestamibi MPS were studied. Peripheral blood was collected before radiotracer injection at rest and 60-90 min after injection. The comet assay (single-cell gel electrophoresis) was performed with peripheral blood cells to detect DNA strand breaks. Three descriptors were evaluated: the percentage of DNA in the comet tail, tail length, and tail moment (the product of DNA tail percentage and tail length). Quantitative PCR (qPCR) was performed to evaluate the expression of five genes related to signaling pathways in response to DNA damage and repair (ATM, ATR, BRCA1, CDKN1A, and XPC). Mann-Whitney's test was employed for statistical analysis; p < 0.05 was considered significant. Mean Tc-99m sestamibi dose was 15.1 mCi. After radiotracer injection, comparing post-exposure to pre-exposure samples of each of the 32 patients, no statistically significant differences of the DNA percentage in the tail, tail length or tail moment were found. qPCR revealed increased expression of BRCA1 and XPC, without any significant difference regarding the other genes. No significant increase in DNA strand breaks was detected after a single radiotracer injection for MPS. There was activation of only two repair genes, which may indicate that, in the current patient sample, the effects of ionizing radiation on the DNA were not large enough to trigger intense repair responses, suggesting the absence of significant DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Femenino , Masculino , Tomografía Computarizada de Emisión de Fotón Único/métodos , Reparación del ADN/genética , Persona de Mediana Edad , Anciano , Tecnecio Tc 99m Sestamibi , Imagen de Perfusión Miocárdica/métodos , Proteína BRCA1/genética , Ensayo Cometa
15.
Sci Rep ; 14(1): 13015, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844752

RESUMEN

Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles are prevalent in many industries, including food and medicine, but their small size raises concerns about potential cellular damage and genotoxic effects. However, there are very limited studies available on their genotoxic effects. Hence, this was done to investigate the effects of multiple administration of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs on genomic DNA stability, mitochondrial membrane potential integrity and inflammation induction in mouse brain tissues. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs at a dose level of 50 mg/kg b.w three times a week for 2 weeks. Genomic DNA integrity was studied using Comet assay and the level of reactive oxygen species (ROS) within brain cells was analyzed using 2,7 dichlorofluorescein diacetate dye. The expression level of Presenilin-1, tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) genes and the integrity of the mitochondrial membrane potential were also detected. Oral administration of Ca(OH)2NPs caused the highest damage to genomic DNA and mitochondrial membrane potential, less genomic DNA and mitochondrial damage was induced by CaTiO3NPs administration while administration of Y2O3NPs did not cause any remarkable change in the integrity of genomic DNA and mitochondrial membrane potential. Highest ROS generation and upregulation of presenilin-1, TNF-α and IL-6 genes were also observed within the brain cells of mice administrated Ca(OH)2NPs but Y2O3NPs administration almost caused no changes in ROS generation and genes expression compared to the negative control. Administration of CaTiO3NPs alone slightly increased ROS generation and the expression level of TNF-α and IL-6 genes. Moreover, no remarkable changes in the integrity of genomic DNA and mitochondrial DNA potential, ROS level and the expression level of presenilin-1, TNF-α and IL-6 genes were noticed after simultaneous coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs. Coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs mitigated Ca(OH)2NPs and CaTiO3NPs induced ROS generation, genomic DNA damage and inflammation along with restoring the integrity of mitochondrial membrane potential through Y2O3NPs scavenging free radicals ability. Therefore, further studies are recommended to study the possibility of using Y2O3NPs to alleviate Ca(OH)2NPs and CaTiO3NPs induced genotoxic effects.


Asunto(s)
Hidróxido de Calcio , Daño del ADN , Inflamación , Potencial de la Membrana Mitocondrial , Nanopartículas , Especies Reactivas de Oxígeno , Titanio , Itrio , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Daño del ADN/efectos de los fármacos , Hidróxido de Calcio/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Titanio/química , Titanio/toxicidad , Inflamación/metabolismo , Inflamación/patología , Itrio/química , Nanopartículas/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , ADN Mitocondrial/metabolismo
16.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843934

RESUMEN

RNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54nrb is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of Nono deletion in the murine KP (KRas G12D , Trp53 -/- ) cell-based lung cancer model. We show that the deletion of Nono impairs the response to DNA damage induced by the topoisomerase II inhibitor etoposide or the radiomimetic drug bleomycin. Nono-deficient KP (KPN) cells display hyperactivation of DSB signalling and high levels of DSBs. The defects in the DDR are accompanied by reduced RNA polymerase II promoter occupancy, impaired nascent RNA synthesis, and attenuated induction of the DDR factor growth arrest and DNA damage-inducible beta (Gadd45b). Our data characterise Gadd45b as a putative Nono-dependent effector of the DDR and suggest that Nono mediates a genome-protective crosstalk of the DDR with the RNA metabolism via induction of Gadd45b.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ARN , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Roturas del ADN de Doble Cadena , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/genética , Bleomicina/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Etopósido/farmacología , Transducción de Señal , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , ARN Polimerasa II/metabolismo , Humanos , Proteinas GADD45
17.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830843

RESUMEN

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , ARN Polimerasa II , Ribonucleasa H , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Terminación de la Transcripción Genética , Daño del ADN , Origen de Réplica , Estructuras R-Loop , Línea Celular Tumoral
18.
Sci Adv ; 10(23): eadm9589, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38838142

RESUMEN

DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.


Asunto(s)
Replicación del ADN , Inmunidad Innata , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Transducción de Señal , Arginina/metabolismo , Arginina/análogos & derivados , Estrés Fisiológico , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Daño del ADN , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
19.
Mol Brain ; 17(1): 32, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840222

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the motor neuron. One aspect of the neuropathology involved in ALS includes increased genomic damage and impaired DNA repair capability. The TAR-DNA binding protein 43 (TDP43) has been associated with both sporadic and familial forms of ALS, and is typically observed as cytosolic mislocalization of protein aggregates, termed TDP43 proteinopathy. TDP43 is a ubiquitous RNA/DNA binding protein with functional implications in a wide range of disease processes, including the repair of DNA double-strand breaks (DSBs). While TDP43 is widely known to regulate RNA metabolism, our lab has reported it also functions directly at the protein level to facilitate DNA repair. Here, we show that the TDP43 protein interacts with DNA mismatch repair (MMR) proteins MLH1 and MSH6 in a DNA damage-inducible manner. We utilized differentiated SH-SY5Y neuronal cultures to identify this inducible relationship using complementary approaches of proximity ligation assay (PLA) and co-immunoprecipitation (CoIP) assay. We observed that signals of TDP43 interaction with MLH1 and MSH6 increased significantly following a 2 h treatment of 10 µM methylmethanesulfonate (MMS), a DNA alkylating agent used to induce MMR repair. Likewise, we observed this effect was abolished in cell lines treated with siRNA directed against TDP43. Finally, we demonstrated these protein interactions were significantly increased in lumbar spinal cord samples of ALS-affected patients compared to age-matched controls. These results will inform our future studies to understand the mechanisms and consequences of this TDP43-MMR interaction in the context of ALS-affected neurons.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN , Homólogo 1 de la Proteína MutL , Unión Proteica , Humanos , Proteínas de Unión al ADN/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Unión Proteica/efectos de los fármacos , Línea Celular Tumoral , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Neuronas/metabolismo , Persona de Mediana Edad , Masculino
20.
Nature ; 630(8017): 744-751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867042

RESUMEN

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Mutagénesis , Mutación , Humanos , Animales , Aductos de ADN/metabolismo , Rayos Ultravioleta , ADN/metabolismo , ADN/química , ADN/genética , Alquilación , ADN Polimerasa Dirigida por ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA