Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Virol ; 96(2): e0106021, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34705560

RESUMEN

Rhinoviruses (RVs) cause recurrent infections of the nasal and pulmonary tracts, life-threatening conditions in chronic respiratory illness patients, predisposition of children to asthmatic exacerbation, and large economic cost. RVs are difficult to treat. They rapidly evolve resistance and are genetically diverse. Here, we provide insight into RV drug resistance mechanisms against chemical compounds neutralizing low pH in endolysosomes. Serial passaging of RV-A16 in the presence of the vacuolar proton ATPase inhibitor bafilomycin A1 (BafA1) or the endolysosomotropic agent ammonium chloride (NH4Cl) promoted the emergence of resistant virus populations. We found two reproducible point mutations in viral proteins 1 and 3 (VP1 and VP3), A2526G (serine 66 to asparagine [S66N]), and G2274U (cysteine 220 to phenylalanine [C220F]), respectively. Both mutations conferred cross-resistance to BafA1, NH4Cl, and the protonophore niclosamide, as identified by massive parallel sequencing and reverse genetics, but not the double mutation, which we could not rescue. Both VP1-S66 and VP3-C220 locate at the interprotomeric face, and their mutations increase the sensitivity of virions to low pH, elevated temperature, and soluble intercellular adhesion molecule 1 receptor. These results indicate that the ability of RV to uncoat at low endosomal pH confers virion resistance to extracellular stress. The data endorse endosomal acidification inhibitors as a viable strategy against RVs, especially if inhibitors are directly applied to the airways. IMPORTANCE Rhinoviruses (RVs) are the predominant agents causing the common cold. Anti-RV drugs and vaccines are not available, largely due to rapid evolutionary adaptation of RVs giving rise to resistant mutants and an immense diversity of antigens in more than 160 different RV types. In this study, we obtained insight into the cell biology of RVs by harnessing the ability of RVs to evolve resistance against host-targeting small chemical compounds neutralizing endosomal pH, an important cue for uncoating of normal RVs. We show that RVs grown in cells treated with inhibitors of endolysosomal acidification evolved capsid mutations yielding reduced virion stability against elevated temperature, low pH, and incubation with recombinant soluble receptor fragments. This fitness cost makes it unlikely that RV mutants adapted to neutral pH become prevalent in nature. The data support the concept of host-directed drug development against respiratory viruses in general, notably at low risk of gain-of-function mutations.


Asunto(s)
Cápside/química , Mutación/efectos de los fármacos , Rhinovirus/fisiología , Desencapsidación Viral/fisiología , Antivirales/farmacología , Cápside/efectos de los fármacos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Endosomas/química , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Molécula 1 de Adhesión Intercelular/metabolismo , Conformación Proteica , Rhinovirus/química , Rhinovirus/efectos de los fármacos , Rhinovirus/genética , Virión/química , Virión/genética , Virión/metabolismo , Internalización del Virus/efectos de los fármacos , Desencapsidación Viral/efectos de los fármacos , Desencapsidación Viral/genética
2.
Vopr Virusol ; 64(3): 132-139, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-31622060

RESUMEN

The aim of this study was to determine the role of the human neonatal receptor for the Fc fragment of IgG (hFcRn) as a common uncoating cellular receptor for echoviruses and coxsackievirus A9 during infection of human rhabdomyosarcoma (RD) cells. MATERIAL AND METHODS: The protective effect of the human serum albumin, purified from globulins, (HSAGF) and antibodies to hFcRn was studied in RD cells infected with several strains and clones of species B enteroviruses possessing different receptor specificity (echoviruses 3, 9, 11, 30 and coxsackieviruses A9, B4, B5). RESULTS: It was shown that HSA-GF at concentrations of 4% or less protected RD cells from infection with echoviruses 3, 9, 11 and coxsackievirus A9. The antibodies to hFcRn at concentrations of 2.5 ug/mL or less demonstrated the similar spectrum of protective activity in RD cells against infection with echoviruses 3, 9, 11, 30 and coxsackievirus A9. The protective effect of HSA-GF or the antibodies to hFcRn was not observed in RD cells infected with coxsackieviruses B4 and B5 that need coxsackievirus-adenovirus receptor for uncoating. DISCUSSION: The usage of the previously characterized echovirus 11 clonal variants with different receptor specificity allowed us to define the function of hFcRn as a canyon-binding uncoating receptor in RD cells. The kinetics and magnitude of the observed protective effects correlated with receptor specificity of the enteroviruses used in this work supporting the two-step interaction of DAF-dependent echoviruses with the cellular receptors. CONCLUSIONS: In this study, the function of hFcRn was defined in RD cells as a canyon-binding and uncoating receptor for echoviruses and coxsackievirus A9. The two-step interaction of DAF-dependent echoviruses during entry into the cells was confirmed: initially with the binding receptor DAF and subsequently with the uncoating receptor hFcRn.


Asunto(s)
Enterovirus Humano B/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptores Fc/metabolismo , Desencapsidación Viral/fisiología , Línea Celular , Línea Celular Tumoral , Humanos
3.
Nat Commun ; 10(1): 3171, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320648

RESUMEN

Enteroviruses are a major cause of human disease. Adipose-specific phospholipase A2 (PLA2G16) was recently identified as a pan-enterovirus host factor and potential drug target. In this study, we identify a possible mechanism of PLA2G16 evasion by employing a dual glycan receptor-binding enterovirus D68 (EV-D68) strain. We previously showed that this strain does not strictly require the canonical EV-D68 receptor sialic acid. Here, we employ a haploid screen to identify sulfated glycosaminoglycans (sGAGs) as its second glycan receptor. Remarkably, engagement of sGAGs enables this virus to bypass PLA2G16. Using cryo-EM analysis, we reveal that, in contrast to sialic acid, sGAGs stimulate genome release from virions via structural changes that enlarge the putative openings for genome egress. Together, we describe an enterovirus that can bypass PLA2G16 and identify additional virion destabilization as a potential mechanism to circumvent PLA2G16.


Asunto(s)
Enterovirus Humano D/crecimiento & desarrollo , Glicosaminoglicanos/metabolismo , Fosfolipasas A2 Calcio-Independiente/metabolismo , Receptores Virales/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Internalización del Virus , Desencapsidación Viral/fisiología , Línea Celular Tumoral , Microscopía por Crioelectrón , Enterovirus Humano D/genética , Infecciones por Enterovirus/patología , Genoma Viral/genética , Células HEK293 , Células HeLa , Humanos , Ácido N-Acetilneuramínico/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(51): 13087-13092, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30514821

RESUMEN

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. SVV mediates cell entry by attachment to the receptor anthrax toxin receptor 1 (ANTXR1). Here we determine atomic structures of mature SVV particles alone and in complex with ANTXR1 in both neutral and acidic conditions, as well as empty "spent" particles in complex with ANTXR1 in acidic conditions by cryoelectron microscopy. SVV engages ANTXR1 mainly by the VP2 DF and VP1 CD loops, leading to structural changes in the VP1 GH loop and VP3 GH loop, which attenuate interprotomer interactions and destabilize the capsid assembly. Despite lying on the edge of the attachment site, VP2 D146 interacts with the metal ion in ANTXR1 and is required for cell entry. Though the individual substitution of most interacting residues abolishes receptor binding and virus propagation, a serine-to-alanine mutation at VP2 S177 significantly increases SVV proliferation. Acidification of the SVV-ANTXR1 complex results in a major reconfiguration of the pentameric capsid assemblies, which rotate ∼20° around the icosahedral fivefold axes to form a previously uncharacterized spent particle resembling a potential uncoating intermediate with remarkable perforations at both two- and threefold axes. These structures provide high-resolution snapshots of SVV entry, highlighting opportunities for anticancer therapeutic optimization.


Asunto(s)
Proteínas de la Cápside/metabolismo , Proteínas de Neoplasias/metabolismo , Picornaviridae/fisiología , Receptores de Superficie Celular/metabolismo , Desencapsidación Viral/fisiología , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Proteínas de Microfilamentos , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Unión Proteica , Conformación Proteica , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
5.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878069

RESUMEN

Since the discovery of mimivirus, its unusual structural and genomic features have raised great interest in the study of its biology; however, many aspects concerning its replication cycle remain uncertain. In this study, extensive analyses of electron microscope images, as well as biological assay results, shed light on unclear points concerning the mimivirus replication cycle. We found that treatment with cytochalasin, a phagocytosis inhibitor, negatively impacted the incorporation of mimivirus particles by Acanthamoeba castellanii, causing a negative effect on viral growth in amoeba monolayers. Treatment of amoebas with bafilomicin significantly impacted mimivirus uncoating and replication. In conjunction with microscopic analyses, these data suggest that mimiviruses indeed depend on phagocytosis for entry into amoebas, and particle uncoating (and stargate opening) appears to be dependent on phagosome acidification. In-depth analyses of particle morphogenesis suggest that the mimivirus capsids are assembled from growing lamellar structures. Despite proposals from previous studies that genome acquisition occurs before the acquisition of fibrils, our results clearly demonstrate that the genome and fibrils can be acquired simultaneously. Our data suggest the existence of a specific area surrounding the core of the viral factory where particles acquire the surface fibrils. Furthermore, we reinforce the concept that defective particles can be formed even in the absence of virophages. Our work provides new information about unexplored steps in the life cycle of mimivirus.IMPORTANCE Investigating the viral life cycle is essential to a better understanding of virus biology. The combination of biological assays and microscopic images allows a clear view of the biological features of viruses. Since the discovery of mimivirus, many studies have been conducted to characterize its replication cycle, but many knowledge gaps remain to be filled. In this study, we conducted a new examination of the replication cycle of mimivirus and provide new evidence concerning some stages of the cycle which were previously unclear, mainly entry, uncoating, and morphogenesis. Furthermore, we demonstrate that atypical virion morphologies can occur even in the absence of virophages. Our results, along with previous data, allow us to present an ultimate model for the mimivirus replication cycle.


Asunto(s)
Acanthamoeba castellanii/virología , Mimiviridae/fisiología , Internalización del Virus , Replicación Viral/fisiología , Desencapsidación Viral/fisiología , Acanthamoeba castellanii/metabolismo , Fagocitosis
6.
Virus Res ; 231: 1-9, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-27984059

RESUMEN

The non-enveloped human papillomaviruses (HPVs) specifically target epithelial cells of the skin and mucosa. Successful infection requires a lesion in the stratified tissue for access to the basal cells. Herein, we discuss our recent progress in understanding binding, internalization, uncoating, and intracellular trafficking of HPV particles. Our focus will be on HPV type 16, which is the most common HPV type associated with various anogenital and oropharyngeal carcinomas. The study of HPV entry has revealed a number of novel cellular pathways utilized during infection. These include but are not restricted to the following: a previously uncharacterized form of endocytosis, membrane penetration by a capsid protein, the use of retromer complexes for trafficking to the trans-Golgi network, the requirement for nuclear envelope breakdown and microtubule-mediated transport during mitosis for nuclear entry, the existence of membrane-bound intranuclear vesicles harboring HPV genome, and the requirement of PML protein for efficient transcription of incoming viral genome. The continued study of these pathways may reveal new roles in basic biological cellular processes.


Asunto(s)
Células Epiteliales/metabolismo , Interacciones Huésped-Patógeno , Membrana Nuclear/metabolismo , Papillomaviridae/genética , Infecciones por Papillomavirus/virología , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Endocitosis , Células Epiteliales/virología , Regulación de la Expresión Génica , Humanos , Mitosis , Membrana Nuclear/virología , Papillomaviridae/crecimiento & desarrollo , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Proteína de la Leucemia Promielocítica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Piel/metabolismo , Piel/virología , Virión/genética , Virión/crecimiento & desarrollo , Virión/patogenicidad , Acoplamiento Viral , Internalización del Virus , Desencapsidación Viral/fisiología , Red trans-Golgi/metabolismo , Red trans-Golgi/virología
7.
PLoS Pathog ; 12(4): e1005595, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27110717

RESUMEN

African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.


Asunto(s)
Virus de la Fiebre Porcina Africana/patogenicidad , Fiebre Porcina Africana/virología , Internalización del Virus , Desencapsidación Viral/fisiología , Animales , Western Blotting , Cápside/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Endocitosis , Endosomas/ultraestructura , Endosomas/virología , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Microscopía Electrónica , Microscopía Fluorescente , Cuerpos Multivesiculares/metabolismo , Cuerpos Multivesiculares/ultraestructura , Porcinos , Proteínas del Envoltorio Viral/metabolismo
8.
Nat Commun ; 4: 1929, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23728514

RESUMEN

It remains largely mysterious how the genomes of non-enveloped eukaryotic viruses are transferred across a membrane into the host cell. Picornaviruses are simple models for such viruses, and initiate this uncoating process through particle expansion, which reveals channels through which internal capsid proteins and the viral genome presumably exit the particle, although this has not been clearly seen until now. Here we present the atomic structure of an uncoating intermediate for the major human picornavirus pathogen CAV16, which reveals VP1 partly extruded from the capsid, poised to embed in the host membrane. Together with previous low-resolution results, we are able to propose a detailed hypothesis for the ordered egress of the internal proteins, using two distinct sets of channels through the capsid, and suggest a structural link to the condensed RNA within the particle, which may be involved in triggering RNA release.


Asunto(s)
Picornaviridae/química , Picornaviridae/fisiología , Desencapsidación Viral/fisiología , Animales , Chlorocebus aethiops , Cristalografía por Rayos X , Enterovirus , Humanos , Modelos Moleculares , Conformación Molecular , Células Vero , Proteínas Estructurales Virales/química , Virión/metabolismo , Internalización del Virus
9.
J Virol ; 87(7): 3943-51, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365426

RESUMEN

Coxsackievirus A9 (CVA9) is an important pathogen of the Picornaviridae family. It utilizes cellular receptors from the integrin αv family for binding to its host cells prior to entry and genome release. Among the integrins tested, it has the highest affinity for αvß6, which recognizes the arginine-glycine-aspartic acid (RGD) loop present on the C terminus of viral capsid protein, VP1. As the atomic model of CVA9 lacks the RGD loop, we used surface plasmon resonance, electron cryo-microscopy, and image reconstruction to characterize the capsid-integrin interactions and the conformational changes on genome release. We show that the integrin binds to the capsid with nanomolar affinity and that the binding of integrin to the virion does not induce uncoating, thereby implying that further steps are required for release of the genome. Electron cryo-tomography and single-particle image reconstruction revealed variation in the number and conformation of the integrins bound to the capsid, with the integrin footprint mapping close to the predicted site for the exposed RGD loop on VP1. Comparison of empty and RNA-filled capsid reconstructions showed that the capsid undergoes conformational changes when the genome is released, so that the RNA-capsid interactions in the N termini of VP1 and VP4 are lost, VP4 is removed, and the capsid becomes more porous, as has been reported for poliovirus 1, human rhinovirus 2, enterovirus 71, and coxsackievirus A7. These results are important for understanding the structural basis of integrin binding to CVA9 and the molecular events leading to CVA9 cell entry and uncoating.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas de la Cápside/metabolismo , Enterovirus Humano B/fisiología , Integrinas/metabolismo , Modelos Moleculares , Acoplamiento Viral , Desencapsidación Viral/fisiología , Antígenos de Neoplasias/química , Microscopía por Crioelectrón , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Integrinas/química , Unión Proteica , Conformación Proteica , Resonancia por Plasmón de Superficie , Desencapsidación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA