Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
mBio ; 10(4)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289190

RESUMEN

Mannitol-1-phosphate dehydrogenase (M1PDH) is a key enzyme in Staphylococcus aureus mannitol metabolism, but its roles in pathophysiological settings have not been established. We performed comprehensive structure-function analysis of M1PDH from S. aureus USA300, a strain of community-associated methicillin-resistant S. aureus, to evaluate its roles in cell viability and virulence under pathophysiological conditions. On the basis of our results, we propose M1PDH as a potential antibacterial target. In vitro cell viability assessment of ΔmtlD knockout and complemented strains confirmed that M1PDH is essential to endure pH, high-salt, and oxidative stress and thus that M1PDH is required for preventing osmotic burst by regulating pressure potential imposed by mannitol. The mouse infection model also verified that M1PDH is essential for bacterial survival during infection. To further support the use of M1PDH as an antibacterial target, we identified dihydrocelastrol (DHCL) as a competitive inhibitor of S. aureus M1PDH (SaM1PDH) and confirmed that DHCL effectively reduces bacterial cell viability during host infection. To explain physiological functions of SaM1PDH at the atomic level, the crystal structure of SaM1PDH was determined at 1.7-Å resolution. Structure-based mutation analyses and DHCL molecular docking to the SaM1PDH active site followed by functional assay identified key residues in the active site and provided the action mechanism of DHCL. Collectively, we propose SaM1PDH as a target for antibiotic development based on its physiological roles with the goals of expanding the repertory of antibiotic targets to fight antimicrobial resistance and providing essential knowledge for developing potent inhibitors of SaM1PDH based on structure-function studies.IMPORTANCE Due to the shortage of effective antibiotics against drug-resistant Staphylococcus aureus, new targets are urgently required to develop next-generation antibiotics. We investigated mannitol-1-phosphate dehydrogenase of S. aureus USA300 (SaM1PDH), a key enzyme regulating intracellular mannitol levels, and explored the possibility of using SaM1PDH as a target for developing antibiotic. Since mannitol is necessary for maintaining the cellular redox and osmotic potential, the homeostatic imbalance caused by treatment with a SaM1PDH inhibitor or knockout of the gene encoding SaM1PDH results in bacterial cell death through oxidative and/or mannitol-dependent cytolysis. We elucidated the molecular mechanism of SaM1PDH and the structural basis of substrate and inhibitor recognition by enzymatic and structural analyses of SaM1PDH. Our results strongly support the concept that targeting of SaM1PDH represents an alternative strategy for developing a new class of antibiotics that cause bacterial cell death not by blocking key cellular machinery but by inducing cytolysis and reducing stress tolerance through inhibition of the mannitol pathway.


Asunto(s)
Antibacterianos/farmacología , Manitol/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Animales , Femenino , Macrófagos/microbiología , Masculino , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Mutación , Células RAW 264.7 , Infecciones Estafilocócicas/microbiología , Deshidrogenasas del Alcohol de Azúcar/genética , Virulencia
2.
Sci Rep ; 6: 24163, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27053034

RESUMEN

In this study, a novel, simple and generally applicable strategy for multimeric oxidoreductase immobilization with multi-levels interactions was developed and involved activity and stability enhancements. Linear polyethyleneimines (PEIs) are flexible cationic polymers with molecular weights that span a wide range and are suitable biomimic polypeptides for biocompatible frameworks for enzyme immobilization. Metal ion-chelated linear PEIs were applied as a heterofunctional framework for glycerol dehydrogenase (GDH) immobilization by hydrogen bonds, electrostatic forces and coordination bonds interactions. Nanoparticles with diameters from 250-650 nm were prepared that exhibited a 1.4-fold enhancement catalytic efficiency. Importantly, the half-life of the immobilized GDH was enhanced by 5.6-folds in aqueous phase at 85 °C. A mechanistic illustration of the formation of multi-level interactions in the PEI-metal-GDH complex was proposed based on morphological and functional studies of the immobilized enzyme. This generally applicable strategy offers a potential technique for multimeric enzyme immobilization with the advantages of low cost, easy operation, high activity reservation and high stability.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas Inmovilizadas/metabolismo , Polietileneimina/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis/efectos de los fármacos , Rastreo Diferencial de Calorimetría , Quelantes/química , Quelantes/metabolismo , Quelantes/farmacología , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Semivida , Concentración de Iones de Hidrógeno , Cinética , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Metales/metabolismo , Nanopartículas/química , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Polietileneimina/metabolismo , Polietileneimina/farmacología , Multimerización de Proteína , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Temperatura
3.
Biosens Bioelectron ; 78: 477-482, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657591

RESUMEN

When redox enzymes are wired to electrodes outside a living cell (ex vivo), their ability to produce a sufficiently powerful electrical current diminishes significantly due to the thermodynamic and kinetic limitations associated with the wiring systems. Therefore, we are yet to harness the full potential of redox enzymes for the development of self-powering bioelectronics devices (such as sensors and fuel cells). Interestingly, nature uses iron-sulfur complexes ([Fe-S]), to circumvent these issues in vivo. Yet, we have not been able to utilize [Fe-S]-based chains ex vivo, primarily due to their instability in aqueous media. Here, a simple technique to attach iron (II) sulfide (FeS) to a gold surface in ethanol media and then complete the attachment of the enzyme in aqueous media is reported. Cyclic voltammetry and spectroscopy techniques confirmed the concatenation of FeS and glycerol-dehydrogenase/nicotinamide-adenine-dinucleotide (GlDH-NAD(+)) apoenzyme-coenzyme molecular wiring system on the base gold electrode. The resultant FeS-based enzyme electrode reached an open circuit voltage closer to its standard potential under a wide range of glycerol concentrations (0.001-1M). When probed under constant potential conditions, the FeS-based electrode was able to amplify current by over 10 fold as compared to electrodes fabricated with the conventional pyrroloquinoline quinone-based composite molecular wiring system. These improvements in current/voltage responses open up a wide range of possibilities for fabricating self-powering, bio-electronic devices.


Asunto(s)
Fuentes de Energía Bioeléctrica , Hierro/química , Nanotecnología , Sulfuros/química , Técnicas Biosensibles/instrumentación , Oro/química , NAD/química , Oxidación-Reducción , Deshidrogenasas del Alcohol de Azúcar/química
4.
Int J Biochem Cell Biol ; 45(11): 2563-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23988570

RESUMEN

Dicarbonyl/L-xylulose reductase (DCXR) is a highly conserved and phylogenetically widespread enzyme converting L-xylulose into xylitol. It also reduces highly reactive α-dicarbonyl compounds, thus performing a dual role in carbohydrate metabolism and detoxification. Enzymatic properties of DCXR from yeast, fungi and mammalian tissue extracts are extensively studied. Deficiency of the DCXR gene causes a human clinical condition called pentosuria and low DCXR activity is implicated in age-related diseases including cancers, diabetes, and human male infertility. While mice provide a model to study clinical condition of these diseases, it is necessary to adopt a physiologically tractable model in which genetic manipulations can be readily achieved to allow the fast genetic analysis of an enzyme with multiple biological roles. Caenorhabditis elegans has been successfully utilized as a model to study DCXR. Here, we discuss the biochemical properties and significance of DCXR activity in various human diseases, and the utility of C. elegans as a research platform to investigate the molecular and cellular mechanism of the DCXR biology.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/enzimología , Deshidrogenasas del Alcohol de Azúcar/deficiencia , Secuencia de Aminoácidos , Animales , Errores Innatos del Metabolismo de los Carbohidratos/patología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Xilulosa
5.
Appl Microbiol Biotechnol ; 87(1): 205-14, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20127234

RESUMEN

Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to D-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be approximately 28 kDa by sodium dodecyl sulfate-polyacrylamide gel and approximately 58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65 degrees C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k(cat) of 4.83 s(-1) for NADH (k(cat)/K(m) = 27.3 s(-1) mM(-1)) and k(cat) of 2.79 s(-1) for NADPH (k(cat)/K(m) = 10.8 s(-1) mM(-1)). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Zymomonas/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Cinética , Datos de Secuencia Molecular , Peso Molecular , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Zymomonas/química , Zymomonas/genética
6.
Carbohydr Res ; 345(1): 50-4, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-19896118

RESUMEN

A long-chain mannitol-1-phosphate dehydrogenase (MPD) was characterized for the first time from fungal entomopathogen Beauveria bassiana by gene cloning, heterogeneous expression and activity analysis. The cloned gene BbMPD consisted of a 1334-bp open reading frame (ORF) with a 158-bp intron and the 935-bp upstream and 780-bp downstream regions. The ORF-encoded 391-aa protein (42kDa) showed less than 75% sequence identity to 17 fungal MPDs documented and shared two conserved domains with the fungal MPD family at the N- and C-terminus, respectively. The new enzyme was expressed well in the Luria-Bertani culture of engineered Escherichia coli BL21 by 16-h induction of 0.5 mM isopropyl 1-thio-beta-d-galactopyranoside at 20 degrees C after 5-h growth at 37 degrees C. The purified BbMPD exhibited a high catalytic efficiency (k(cat)/K(m)) of 1.31 x 10(4) mM(-1)s(-1) in the reduction of the highly specific substrate d-fructose-6-phosphate to d-mannitol-1-phosphate. Its activity was maximal at the reaction regime of 37 degrees C and pH 7.0 and was much more sensitive to Cu(2+) and Zn(2+) than to Li(+) and Mn(2+). The results indicate a crucial role of BbMPD in the mannitol biosynthesis of B. bassiana.


Asunto(s)
Beauveria/genética , Biocatálisis , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Fructosafosfatos/metabolismo , Indicadores y Reactivos/farmacología , Manitol Fosfatos/metabolismo , Datos de Secuencia Molecular , Ingeniería de Proteínas , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
7.
Langmuir ; 25(20): 12380-6, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19778027

RESUMEN

Galactitol dehydrogenase (GatDH) from Rhodobacter sphaeroides is a multifunctional enzyme that catalyzes in the presence of oxidized beta-nicotinamide adenine dinucleotide (NAD(+)) the interconversion of various multivalent aliphatic alcohols to the corresponding ketones. The recombinant GatDH was provided with an N-terminal His(6)-tag to which distally up to three cysteine residues were attached. This protein construct maintained nearly full enzymatic activity, and it could be covalently immobilized via thiol bonds onto the surface of a gold electrode. Binding of GatDH onto the gold electrode was verified by SPR measurements, and residual enzyme activity was measured by cyclic voltammetry using 1,2-hexanediol as substrate, the cofactor NAD(+) and the redox mediator CTFM (4-carboxy-2,5,7-trinitrofluorenyliden-malonnitrile) in solute form. The results demonstrate the possibility of a directed functional immobilization of proteins on gold surfaces, which represents a proof-of-concept for the development of reactors for electrochemical synthon preparation using dehydrogenases.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Oro/química , Polímeros/química , Rhodobacter sphaeroides/enzimología , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Cloruro de Calcio/metabolismo , Dominio Catalítico , Cisteína/metabolismo , Electroquímica , Electrodos , Transporte de Electrón , Enzimas Inmovilizadas/aislamiento & purificación , Enzimas Inmovilizadas/metabolismo , Mutación , NAD/metabolismo , Ingeniería de Proteínas , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
8.
Biol Chem ; 390(10): 1057-61, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19558331

RESUMEN

We identified a molten globule-like intermediate of 2,5-diketo-D-gluconate reductase A (DKGR) at pH 2.5, which has a prominent beta-sheet structure. The molten globule state of the protein shows amyloidogenic property >50 microm protein concentration. Interestingly, a 1:1 molar ratio of curcumin prevents amyloid formation as shown by the Thioflavin-T assay and atomic force microscopy. To the best of our knowledge, this is the first report on amyloid formation by an (alpha/beta)(8)-barrel protein. The results presented here indicate that the molten globule state has an important role in amyloid formation and potential application of curcumin in protein biotechnology as well as therapeutics against amyloid diseases.


Asunto(s)
Amiloide/antagonistas & inhibidores , Amiloide/metabolismo , Curcumina/farmacología , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Amiloide/química , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Benzotiazoles , Bioensayo , Dicroismo Circular , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Pliegue de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Tiazoles/metabolismo , Factores de Tiempo
9.
Cell Mol Life Sci ; 66(9): 1570-9, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19337691

RESUMEN

L-xylulose reductase (XR) is involved in water re-absorption and cellular osmoregulation. The crystal structure of human XR complemented with site-directed mutagenesis (Cys138Ala) indicated that the disulfide bond in the active site between Cys138 and Cys150 is unstable and may affect the reactivity of the enzyme. The effects of reducing agents on the activities of the wild-type and mutant enzymes indicated the reversibility of disulfide-bond formation, which resulted in three-fold decrease in catalytic efficiency. Furthermore, the addition of cysteine (>2 mM) inactivated human XR and was accompanied by a 10-fold decrease in catalytic efficiency. TOF-MS analysis of the inactivated enzyme showed the S-cysteinylation of Cys138 in the wild-type and Cys150 in the mutant enzymes. Thus, the action of human XR may be regulated by cellular redox conditions through reversible disulfide-bond formation and by S-cysteinylation.


Asunto(s)
Deshidrogenasas del Alcohol de Azúcar/química , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/fisiología
10.
Mol Microbiol ; 70(6): 1358-67, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19019146

RESUMEN

D-fucofuranose (D-Fucf) is a component of Escherichia coli O52 O antigen. This uncommon sugar is also the sugar moiety of the anticancer drug--gilvocarcin V produced by many streptomycetes. In E. coli O52, rmlA, rmlB, fcf1 and fcf2 were proposed in a previous study by our group to encode the enzymes of the dTDP-D-Fucf (the nucleotide-activated form of D-Fucf) biosynthetic pathway. In this study, Fcf1 and Fcf2 from E. coli O52 were expressed, purified and assayed for their respective activities. Novel product peaks from enzyme-substrate reactions were detected by capillary electrophoresis and the structures of the product compounds were elucidated by electro-spray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. Fcf1 was confirmed to be a dTDP-6-deoxy-D-xylo-hex-4-ulopyranose reductase for the conversion of dTDP-6-deoxy-D-xylo-hex-4-ulopyranose to dTDP-D-fucopyranose (dTDP-D-Fucp), and Fcf2 a dTDP-D-Fucp mutase for the conversion of dTDP-D-Fucp to dTDP-D-Fucf. The K(m) of Fcf1 for dTDP-6-deoxy-D-xylo-hex-4-ulopyranose was determined to be 0.38 mM, and of Fcf2 for dTDP-D-Fucp to be 3.43 mM. The functional role of fcf1 and fcf2 in the biosynthesis of E. coli O52 O antigen were confirmed by mutation and complementation tests. This is the first time that the biosynthetic pathway of dTDP-D-Fucf has been fully characterized.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Azúcares de Nucleósido Difosfato/biosíntesis , Antígenos O/biosíntesis , Clonación Molecular , Escherichia coli/genética , Prueba de Complementación Genética , Mutación , Antígenos O/genética , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo
11.
J Mol Biol ; 373(1): 48-64, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17765262

RESUMEN

We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Nucleótido Desaminasas/química , Nucleótido Desaminasas/metabolismo , Estructura Terciaria de Proteína , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Escherichia coli/genética , Modelos Moleculares , Estructura Molecular , NADP/química , NADP/metabolismo , Nucleótido Desaminasas/genética , Oxidación-Reducción , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Deshidrogenasas del Alcohol de Azúcar/genética
12.
J Biosci Bioeng ; 102(6): 545-51, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17270720

RESUMEN

Optically active alcohol is an important building block as a versatile chiral synthon for the asymmetric synthesis of pharmaceuticals and agrochemicals. We purified and characterized glycerol dehydrogenase from Hansenula ofunaensis and prepared optically active 1,2-octanediol using a recombinant Escherichia coli harboring the glycerol dehydrogenase gene. The deduced amino acid sequence was investigated for identities with those of other alcohol dehydrogenases in the NCBI databank. The identification of the unknown product of a resting-cell reaction was performed by GC-MS. In the deduced amino acid sequence composed of 376 residues, the NAD(H) binding pattern and cysteine residues that correspond to the cysteine ligands at the zinc atom were conserved as they are in alcohol dehydrogenases from other origins. Glycerol dehydrogenase from Hansenula polymorpha DL-1 (Pichia angusta, DDBJ/EMBL/GenBank accession no. BAD32688) had the highest identity to our enzyme, showing 73% identity. Our glycerol dehydrogenase catalyzed the NAD(+)-dependent oxidation of long-chain secondary alcohols such as 1,2-pentanediol, 1,2-hexanediol, 1,2-heptanediol, and 1,2-octanediol. Activities toward 2,4-pentanediol and 2,5-hexanediol were hardly detected. From these results, it was confirmed that our enzyme requires two hydroxyl groups on adjacent carbon atoms for oxidation. 2,3-Pentanedione, 2,3-hexanedione, and 3,4-hexanedione were significantly reduced. The transformants oxidized only (R)-1,2-octanediol in 50 mM racemate (R:S=52:48), and produced (S)-1,2-octanediol (24 mM, <99.9% e.e.) after 24 h of incubation. The reaction product was suggested to be 1-hydroxy-2-octanone by GC-MS, which showed secondary hydroxyl groups oxidized. Glycerol dehydrogenase from H. ofunaensis could be useful for the production of long-chain optically active secondary alcohols.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/genética , Clonación Molecular/métodos , Glicoles/síntesis química , Ingeniería de Proteínas/métodos , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Secuencia de Aminoácidos , Activación Enzimática , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Isomerismo , Datos de Secuencia Molecular , Oxidación-Reducción , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación
13.
Proteins ; 60(3): 424-32, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15906319

RESUMEN

L-Xylulose reductase (XR) is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. In this study we report the structure of the biological tetramer of human XR in complex with NADP(+) and a competitive inhibitor solved at 2.3 A resolution. A single subunit of human XR is formed by a centrally positioned, seven-stranded, parallel beta-sheet surrounded on either side by two arrays of three alpha-helices. Two helices located away from the main body of the protein form the variable substrate-binding cleft, while the dinucleotide coenzyme-binding motif is formed by a classical Rossmann fold. The tetrameric structure of XR, which is held together via salt bridges formed by the guanidino group of Arg203 from one monomer and the carboxylate group of the C-terminal residue Cys244 from the neighboring monomer, explains the ability of human XR to prevent the cold inactivation seen in the rodent forms of the enzyme. The orientations of Arg203 and Cys244 are maintained by a network of hydrogen bonds and main-chain interactions of Gln137, Glu238, Phe241, and Trp242. These interactions are similar to those defining the quaternary structure of the closely related carbonyl reductase from mouse lung. Molecular modeling and site-directed mutagenesis identified the active site residues His146 and Trp191 as forming essential contacts with inhibitors of XR. These results could provide a structural basis in the design of potent and specific inhibitors for human XR.


Asunto(s)
Proteómica/métodos , Deshidrogenasas del Alcohol de Azúcar/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Arginina/química , Sitios de Unión , Catálisis , Biología Computacional , Cisteína/química , Dimerización , Inhibidores Enzimáticos/farmacología , Humanos , Enlace de Hidrógeno , Pulmón/metabolismo , Ratones , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , NADP/química , Oxidorreductasas/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Ratas , Estereoisomerismo
14.
J Biol Chem ; 280(11): 10340-9, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15623532

RESUMEN

Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).


Asunto(s)
Pichia/enzimología , Deshidrogenasas del Alcohol de Azúcar/química , Zinc/química , Secuencia de Aminoácidos , Western Blotting , Catálisis , Clonación Molecular , Cisteína/química , D-Xilulosa Reductasa , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Etanol/química , Fermentación , Histidina/química , Calor , Immunoblotting , Cinética , Ligandos , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , NAD/química , NADP/química , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Espectrofotometría , Especificidad por Sustrato , Temperatura , Factores de Tiempo , Xilosa/química
15.
J Biol Chem ; 279(13): 13148-55, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-14718529

RESUMEN

Escherichia coli YiaK catalyzes the reduction of 2,3-diketo-L-gulonate in the presence of NADH. It belongs to a large family of oxidoreductases that is conserved in archaea, bacteria, and eukaryotes but shows no sequence homology to other proteins. We report here the crystal structures at up to 2.0-A resolution of YiaK alone and in complex with NAD-tartrate. YiaK has a new polypeptide backbone fold and a novel mode of recognizing the NAD cofactor. In addition, NAD is bound in an unusual conformation, at the interface of a dimer of the enzyme. The crystallographic analysis unexpectedly revealed the binding of tartrate in the active site. Enzyme kinetics studies confirm that tartrate and the related D-malate are inhibitors of YiaK. In contrast to most other enzymes where substrate binding produces a more closed conformation, the binding of NAD-tartrate to YiaK produces a more open active site. The free enzyme conformation is incompatible with NAD binding. His(44) is likely the catalytic residue of the enzyme.


Asunto(s)
Proteínas de Escherichia coli/química , NAD/química , Azúcares Ácidos/química , Deshidrogenasas del Alcohol de Azúcar/química , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Dimerización , Electrones , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Tartratos/química
16.
J Enzyme Inhib Med Chem ; 17(1): 49-53, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12365461

RESUMEN

Enterobacter aerogenes glycerol dehydrogenase (G1DH EC 1.1.1.6), a tetrameric NAD+ specific enzyme catalysing the interconversion of glycerol and dihydroxyacetone, was inactivated on reaction with pyridoxal 5-phosphate (PLP) and o-phthalaldehyde (OPA). Fluorescence spectra of PLP-modified, sodium borohydride-reduced G1DH indicated the specific modification of epsilon-amino groups of lysine residues. The extent of inhibition was concentration and time dependent. NAD+ and NADH provided complete protection against enzyme inactivation by PLP, indicating the reactive lysine is at or near the coenzyme binding site. Modification of G1DH by the bifunctional reagent OPA, which reacts specifically with proximal epsilon-NH2 group of lysines and -SH group of cysteines to form thioisoindole derivatives, inactivated the enzyme. Molecular weight determinations of the modified enzyme indicated the formation of intramolecular thioisoindole formation. Glycerol partially protected the enzyme against OPA inactivation, whereas NAD+ was ineffective. These results show that the lysine involved in the OPA reaction is different from the PLP-reactive lysine, which is at or near the coenzyme binding site. DTNB titration showed the presence of only a single cysteine residue per monomer of G1DH. This could be participating with a proximal lysine residue to form a thioisoindole derivative observed as a result of OPA modification.


Asunto(s)
Aminoácidos/química , Enterobacter aerogenes/enzimología , Deshidrogenasas del Alcohol de Azúcar/química , Aminoácidos/análisis , Sitios de Unión , Inhibidores Enzimáticos , Glicerol/farmacología , NAD/farmacología , Fosfato de Piridoxal , o-Ftalaldehído
17.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 5): 867-9, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11976506

RESUMEN

The NAD(+)-dependent glycerol dehydrogenase (EC 1.1.1.6) from the extremely thermophilic bacterium Thermotoga maritima has been crystallized in the presence of glycerol by the hanging-drop vapour-diffusion method using 2-methyl-2,4-pentanediol (MPD) as the precipitating agent. Crystals of the enzyme complexed with NAD(+) have also been obtained. The crystals belong to the tetragonal system with space group I422 and unit-cell parameters a = 105.3, c = 134.5 A. They diffract to a maximum resolution of 1.4 A using synchrotron radiation (lambda = 0.838 A). Crystals of the enzyme-NAD(+) complex diffract to 2.5 A resolution using in-house Cu Kalpha radiation.


Asunto(s)
Deshidrogenasas del Alcohol de Azúcar/química , Thermotoga maritima/enzimología , Cristalografía por Rayos X , Conformación Proteica , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo
18.
J Biol Chem ; 277(20): 17883-91, 2002 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-11882650

RESUMEN

In this report, we first cloned a cDNA for a protein that is highly expressed in mouse kidney and then isolated its counterparts in human, rat hamster, and guinea pig by polymerase chain reaction-based cloning. The cDNAs of the five species encoded polypeptides of 244 amino acids, which shared more than 85% identity with each other and showed high identity with a human sperm 34-kDa protein, P34H, as well as a murine lung-specific carbonyl reductase of the short-chain dehydrogenase/reductase superfamily. In particular, the human protein is identical to P34H, except for one amino acid substitution. The purified recombinant proteins of the five species were about 100-kDa homotetramers with NADPH-linked reductase activity for alpha-dicarbonyl compounds, catalyzed the oxidoreduction between xylitol and l-xylulose, and were inhibited competitively by n-butyric acid. Therefore, the proteins are designated as dicarbonyl/l-xylulose reductases (DCXRs). The substrate specificity and kinetic constants of DCXRs for dicarbonyl compounds and sugars are similar to those of mammalian diacetyl reductase and l-xylulose reductase, respectively, and the identity of the DCXRs with these two enzymes was demonstrated by their co-purification from hamster and guinea pig livers and by protein sequencing of the hepatic enzymes. Both DCXR and its mRNA are highly expressed in kidney and liver of human and rodent tissues, and the protein was localized primarily to the inner membranes of the proximal renal tubules in murine kidneys. The results imply that P34H and diacetyl reductase (EC ) are identical to l-xylulose reductase (EC ), which is involved in the uronate cycle of glucose metabolism, and the unique localization of the enzyme in kidney suggests that it has a role other than in general carbohydrate metabolism.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Riñón/enzimología , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Acetoina Deshidrogenasa/metabolismo , Oxidorreductasas de Alcohol/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Clonación Molecular , Cricetinae , Electroforesis en Gel de Poliacrilamida , Cobayas , Humanos , Datos de Secuencia Molecular , Ratas , Alineación de Secuencia , Deshidrogenasas del Alcohol de Azúcar/química
19.
Free Radic Res ; 34(4): 427-35, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11328678

RESUMEN

We compared the influence of docosahexaenoic acid (DHA) supplementation on oxidative DNA damage in bone marrow between young and aged rats. As a marker of oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG) in DNA was analyzed. Young (5-week-old) and aged (100-week-old) female Wistar rats were given DHA (300mg/kg body weight/day) or vehicle (control) orally for 12 weeks. The 8-OHdG in the bone marrow in the aged DHA group was significantly higher than that in the other groups. Vitamin E concentrations, however, did not differ among the groups regardless of the DHA supplementation. Vitamin C (ascorbic acid) concentrations in the aged control group were approximately 1/2 those in the young control group. The concentrations of vitamin C tended to be higher in the young DHA group and lower in the aged DHA group when compared to their respective control groups. Changes in the concentrations of vitamin C and vitamin E in plasma were similar to those in the bone marrow. The activity of hepatic l-gulono- gamma -lactone oxidase, an enzyme responsible for vitamin C synthesis, corresponded well to the concentrations of vitamin C in the bone marrow and the plasma. These results suggest that in aged rats, but not young rats, excess supplementation of DHA induces oxidative DNA damage in bone marrow and that the decrease in vitamin C synthesis in aged rats is involved in the mechanisms of DNA damage.


Asunto(s)
Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Médula Ósea/metabolismo , Daño del ADN/efectos de los fármacos , ADN/metabolismo , Desoxiguanosina/metabolismo , Suplementos Dietéticos/efectos adversos , Ácidos Docosahexaenoicos/farmacología , Estrés Oxidativo/efectos de los fármacos , Vitamina E/farmacología , 8-Hidroxi-2'-Desoxicoguanosina , Envejecimiento , Animales , Antioxidantes/metabolismo , Ácido Ascórbico/análisis , Ácido Ascórbico/sangre , Médula Ósea/anatomía & histología , Médula Ósea/química , Colesterol/análisis , Colesterol/sangre , Cromatografía Líquida de Alta Presión , ADN/análisis , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análisis , Ácidos Docosahexaenoicos/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Grasos/análisis , Ácidos Grasos/sangre , Femenino , L-Gulonolactona Oxidasa , Peróxidos Lipídicos/análisis , Peróxidos Lipídicos/metabolismo , Hígado/metabolismo , Ratas , Ratas Wistar , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico , Triglicéridos/análisis , Triglicéridos/sangre , Vitamina E/análisis , Vitamina E/sangre
20.
Microbiology (Reading) ; 146 ( Pt 10): 2705-2713, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11021946

RESUMEN

Cryptococcus neoformans, the causative agent of cryptococcosis, produces large amounts of mannitol in culture and in infected mammalian hosts. Although there is considerable indirect evidence that mannitol synthesis may be required for wild-type stress tolerance and virulence in C. neoformans, this hypothesis has not been tested directly. It has been proposed that mannitol-1-phosphate dehydrogenase (MPD) is required for fungal mannitol synthesis, but no MPD-deficient fungal mutants or cDNAs or genes encoding fungal MPDs have been described. Therefore, C. neoformans was purified from a 148 kDa homotetramer of 36 kDa subunits that catalysed the reaction mannitol1-phosphate+NAD--><--fructose 6-phosphate+NADH. Partial peptide sequences were used to isolate the corresponding cDNA and gene, and the deduced MPD protein was found to be homologous to the zinc-containing long-chain alcohol/polyol dehydrogenases. Lysates of Saccharomyces cerevisiae transformed with the cDNA of interest (but not vector-transformed controls) contained MPD catalytic activity. Lastly, Northern analyses demonstrated MPD mRNA in glucose- and mannitol-grown C. neoformans cells. Thus, MPD has been purified and characterized from C. neoformans, and the corresponding cDNA and gene (MPD1) cloned and sequenced. Availability of C. neoformans MPD1 should permit direct testing of the hypotheses that (i) MPD is required for mannitol biosynthesis and (ii) the ability to synthesize mannitol is essential for wild-type stress tolerance and virulence.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Cryptococcus neoformans/enzimología , L-Iditol 2-Deshidrogenasa/genética , Deshidrogenasas del Alcohol de Azúcar/genética , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Clonación Molecular , Cryptococcus neoformans/genética , ADN Complementario , Genes Fúngicos , L-Iditol 2-Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/aislamiento & purificación , Deshidrogenasas del Alcohol de Azúcar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA