Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.127
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 19(10): e0311274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39352895

RESUMEN

Since the COVID-19 pandemic, there has been persistent emphasis on the importance of indoor air disinfection and ventilation in isolation units in the hospital environment. Nevertheless, no optimal and concrete disinfection protocol has been proposed to inactivate the viruses as quickly as possible. In this study, we experimentally evaluated various ventilation and disinfection protocols based on the combination of negative-pressure ventilation, ultraviolet (UV) light illumination, and Hypochlorous acid (HOCl) spray against three active virus species in a 3.5 cubic meters isolation unit. This small-size unit has gained attention during the pandemic due to the high demand for compact mobile laboratory systems capable of rapid disease diagnosis. In accordance with the WHO laboratory biosafety guidance, which states that all enclosed units where diagnostic work is conducted must ensure proper ventilation and disinfection activities, we aim to propose virus removal protocols for units compact enough to be installed within a van or deployed outdoor. The results confirmed the superiority (in terms of virus removal rate and time required) of the virus removal methods in the order of UV light, ventilation, and HOCl spray. Ultimately, we propose two optimal protocols: (i) UV light alone for three minutes, and (ii) UV light with ventilation for three minutes, followed by one-minute ventilation only. The time span of three minutes in the latter protocol is based on the clinical practice such that the medical staffs have a sufficient time to process the samples taken in transition to next patient to care.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Desinfección , Rayos Ultravioleta , Ventilación , Desinfección/métodos , Desinfección/instrumentación , Ventilación/métodos , Humanos , COVID-19/prevención & control , COVID-19/transmisión , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , SARS-CoV-2 , Microbiología del Aire , Ácido Hipocloroso , Inactivación de Virus/efectos de la radiación
2.
Chemosphere ; 364: 143256, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39233290

RESUMEN

Ultraviolet (UV) light is widely used for disinfection in indoor environments. Some wavelengths of UV light can produce high concentration of O3. UV irradiation combined with O3 may have great potential for nitration of allergens in the presence of NO2 in the air. In this study, the effects of UV irradiation on the nitration of three major indoor allergens including group Ⅰ allergens of house dust mite (Der p 1 and Der f 1) and group Ⅰ allergen of dog (Can f 1) in the presence of NO2 and O3 were investigated by analysis of the protein quantity, tyrosine, peptides, and nitration degree. The results showed that UV irradiation induced a significant increase in the quantity of 3-nitrotyrosine in the allergens from 0.4 ± 0.4 ng to 4.0 ± 0.8 ng. After 12 h of UV-O3 co-exposure, the total nitration degrees of the three allergens ranged from 0.1% to 0.5%, which were significantly higher than those after only O3 exposure (p < 0.05). The analysis of peptides revealed that the nitration of tyrosine was site-specific. The tyrosine Y231, which was adjacent to aspartic acid, posed the highest nitration degree of 41.1 ± 24.0% in Der p 1. The nitration degree of tyrosine Y162 was the highest (1.7 ± 0.1%) in Der f 1. Overall, this study demonstrated that UV irradiation enhanced the O3-related nitration of allergens in the air, which provides an experimental basis for the impact of daily disinfection behavior on allergens.


Asunto(s)
Alérgenos , Antígenos Dermatofagoides , Tirosina , Rayos Ultravioleta , Animales , Tirosina/química , Tirosina/análogos & derivados , Antígenos Dermatofagoides/química , Ozono/química , Cisteína Endopeptidasas/metabolismo , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Dióxido de Nitrógeno/química , Contaminación del Aire Interior/prevención & control , Perros , Desinfección/métodos
3.
Sci Rep ; 14(1): 21443, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271750

RESUMEN

Selenium nanoparticles (SeNPs) are used in several sectors as antitumor, antimicrobial, and environmental adsorbents. Thus, the present research objective was the production of bacterial-SeNPs as an active and environmentally-friendly antibacterial and adsorbent agents and application into novel nanocomposite filter. From a total of 25 samples (soil, wastewater, and water) obtained from different locations in Egypt, 60 selenium-resistant bacterial isolates were obtained (on a mineral salt medium supplemented with selenium ions). After screening (based on the conversion of selenium from ionic form to nanoform), a superior bacterial isolate for SeNPs formation was obtained and molecular identified as Bacillus pumilus isolate OR431753. The high yield of SeNPs was noted after optimization (glucose as carbon source, pH 9 at 30 °C). The produced SeNPs were characterized as approximately 15 nm-diameter spherical nanoparticles, in addition to the presence of organic substances around these particles like polysaccharides and aromatic amines (protein residues). Also, they have antibacterial activity increased after formation of nanocomposite with nano-chitosan (SeNPs/NCh) against several pathogens. The antibacterial activity (expressed as a diameter of the inhibitory zone) averaged between 2.1 and 4.3, 2.7 and 4.8 cm for SeNPs and SeNPs/NCh, respectively compared with 1.1 to 1.8 cm for Amoxicillin. The produced nanoselenium/chitosan was used as a biofilter to remove mercury (Hg) and AgNPs as model chemicals with serious toxicity and potential pollutant for water bodies in many industries. The new SeNPs/NCh biofilter has proven highly effective in individually removing mercury and AgNPs from their synthetic wastewaters, with an efficiency of up to 99%. Moreover, the removal efficiency of AgNPs stabilized at 99% after treating them with the syringe filter-Se nanocomposite for 4 cycles of treatment (5 min each).


Asunto(s)
Biodegradación Ambiental , Mercurio , Nanocompuestos , Selenio , Plata , Aguas Residuales , Purificación del Agua , Aguas Residuales/química , Nanocompuestos/química , Selenio/química , Mercurio/química , Mercurio/aislamiento & purificación , Purificación del Agua/métodos , Plata/química , Contaminantes Químicos del Agua/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Desinfección/métodos , Filtración/métodos , Bacillus/metabolismo , Bacillus/efectos de los fármacos , Quitosano/química , Quitosano/farmacología
4.
J Hosp Infect ; 152: 66-72, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134223

RESUMEN

BACKGROUND: The need to monitor manual cleaning of high-risk endoscopes is recommended or more so required by the current endoscope reprocessing guidelines. The objective of this study was to establish the optimal extraction volume for colonoscopes and bronchoscopes and demonstrate the extraction efficacy for the ChannelCheck™ rapid test. METHODS: The test soil utilized as a positive control was ATS2015 containing 20% defibrinated bovine blood. The extraction from the instrument channel of a colonoscope and bronchoscope was evaluated to establish the optimal extraction volume and the extraction efficacy for protein, carbohydrate and haemoglobin. RESULTS: Of the extraction volumes tested, 10 mL was optimal for both colonoscopes and bronchoscopes. The extraction efficacy was 91% for carbohydrate, 83.7% for haemoglobin and 82.4% for protein. CONCLUSIONS: The limit of detection for these analytes by the ChannelCheck rapid test meet or exceed the established levels that correlate with adequate manual cleaning of flexible endoscopes.


Asunto(s)
Endoscopios , Humanos , Endoscopios/microbiología , Proteínas/análisis , Carbohidratos/análisis , Descontaminación/métodos , Hemoglobinas/análisis , Contaminación de Equipos/prevención & control , Desinfección/métodos , Desinfección/normas
6.
World J Gastroenterol ; 30(31): 3680-3688, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39192996

RESUMEN

BACKGROUND: Commonly used cleaning brushes in the reprocessing of flexible endoscopes often cause damage within the working channels. AIM: To develop a spray flushing system to achieving effective cleaning of the working channels while minimizing damage. METHODS: This prospective study included 60 used endoscopes and 60 Teflon tubes randomly divided into a control group (n = 30) and an experimental group (n = 30). The material of Teflon tubes was the same as that of the endoscope working channel. Endoscopes in the control group were manually cleaned using traditional cleaning brushes, while those in the experimental group were cleaned using the newly developed spray flushing system. ATP levels, cleanliness, and microbiological testing of the working channels were measured. Additionally, Teflon tubes in the control group underwent 500 passes with a cleaning brush, while those in the experimental group were subjected to the spray flushing system, and channel damage was evaluated. RESULTS: The ATP levels (RLU) in the two groups were 32.5 (13-66) and 26 (16-40), respectively (P > 0.05). Cleanliness scores were 1.5 (1-2) and 1 (1-2), respectively (P > 0.05). Debris was found in 73.3% of the control group, which was significantly higher than 46.7% in the experimental group (P < 0.05). Microbiological tests for both groups yielded negative results. Teflon tube damage in the control group was rated at 4 (4-5.25), which was significantly higher than in the experimental group 4 (3-4) (P < 0.01). CONCLUSION: The spray flushing system demonstrated superior efficacy in removing debris and resulted in less damage to the endoscope working channels compared with traditional cleaning brushes.


Asunto(s)
Adenosina Trifosfato , Desinfección , Endoscopios , Contaminación de Equipos , Estudios Prospectivos , Desinfección/métodos , Contaminación de Equipos/prevención & control , Humanos , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Endoscopios/microbiología , Equipo Reutilizado/normas , Politetrafluoroetileno , Endoscopios Gastrointestinales/microbiología , Diseño de Equipo , Infección Hospitalaria/prevención & control
7.
Animal ; 18(9): 101244, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39213912

RESUMEN

Alternative water disinfectants to chlorination need to be identified because its effectiveness is limited by water pH and potentially carcinogen by-products resulted from chlorination and organic compound reaction. The first study aimed to evaluate the effect of different drinking water chemical disinfection treatments on water quality, its potential hazard effects on animal health, water and feed consumption, and apparent total tract digestibility in dairy beef bulls fed high-concentrate diets. For 224 days, 24 Holstein bulls (176 ± 16.3 kg BW, and 149 ± 5.8 days of age) were individually assigned to one of four treatments with different drinking water chemical disinfectants: without disinfection (CTR); acidification and chlorination (ACCHL; 0.65 mL/L H3PO4 and 0.14 mL/L NaClO 15%); hydrogen peroxide (PER; 0.15 mL/L); and chlorine dioxide (DIO; 2.50 mL/L). Data were analysed with a mixed-effects model. Treatments affected the chemical characteristics of the water: in ACCHL, pH was 6.60 and free residual chlorine was 0.75 mg/L; in PER, H2O2 was 10.6 mg/L; and in DIO, ClO2 was 0.52 mg/L. Water physicochemical quality parameters in all treatments were below maximal thresholds established for safe water consumption by the Water Safety Royal Decree (RD 140/2003). In addition, the total coliform count of treated waters was reduced (P = 0.01) compared with CTR; moreover, ACCHL and DIO treatments were more effective in reducing total coliform count than PER. Dry matter intake tended (P = 0.07) to increase in DIO compared with CTR. Treatments did not affect blood parameters nor apparent total tract digestibility. The second study aimed to evaluate the potential benefit on animal performance of two drinking water disinfectants under commercial conditions in dairy beef crossbred Holstein bulls fed high-concentrate diets. Ninety-six animals (307 ± 4.4 kg BW, and 224 ± 1.8 days of age) were allocated to six pens for 140 days and assigned to one of two treatments: ACCHL, most common water disinfectant, and DIO. Data were analysed with a mixed-effects model. Water total coliform count and water consumption were similar between treatments. Concentrate intake was greater (P = 0.02) in ACCHL for the last 14 study days. Growth performance and carcass quality were similar between treatments. In summary, acidification and chlorination, H2O2, and ClO2 as drinking water disinfectants in dairy beef bulls had good disinfecting activity without detrimental effects on health and nutrient digestibility, and performance.


Asunto(s)
Compuestos de Cloro , Desinfectantes , Desinfección , Agua Potable , Óxidos , Animales , Bovinos , Masculino , Compuestos de Cloro/farmacología , Agua Potable/química , Desinfectantes/farmacología , Desinfección/métodos , Óxidos/farmacología , Concentración de Iones de Hidrógeno , Halogenación , Purificación del Agua/métodos , Peróxido de Hidrógeno , Calidad del Agua , Industria Lechera
8.
J Air Waste Manag Assoc ; 74(10): 743-752, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116420

RESUMEN

Human-generated waste, including infectious healthcare waste, poses significant risks to public health and the environment. The COVID-19 pandemic has increased the global production of infectious waste, emphasizing the need for safe and sustainable waste management practices. While autoclaves are commonly used for on-site disposal, alternative methods like ozone gas and UV-C radiation offer environmentally friendly options that effectively eliminate pathogens without leaving toxic residues. Inadequate waste management can contribute to disease transmission, while open burning releases harmful pollutants. This study investigated the effectiveness of different disinfection agents - ozone gas and UV-C radiation - on infectious solid waste contaminated with bacteria. The bacterial indicators examined were Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa. The experimental methods included operating each ozone and UV-C radiation individually and simultaneously using ozone gas and UV-C radiation. The study also investigated exposure times and various concentrations of ozone gas. The findings demonstrated that the simultaneous application of ozone gas and UV-C radiation was the most effective method for decontaminating infectious solid waste and targeting the selected bacteria. The concentration of ozone gas ranged from 165 to 5000 ppm, depending on generation time and treatment chamber volume, while exposure times varied from 1 to 180 minutes. In applying UV-C rays, complete elimination of S. aureus was observed after 60 minutes up to 6-log, while the reduction of B. subtilis and P. aeruginosa were 2-log and 3-log, respectively. Ozone gas had the ability to inactivate all strains, but when ozone gas and UV-C rays were used simultaneously, this process was accelerated and improved. The total reduction in the bacterial load was 8-log. Considering the increase in population and the subsequent increase in waste generation, adopting an environmentally friendly waste management method can be very advantageous.Implications: This study highlights the effectiveness of simultaneously applying ozone gas and UV-C radiation for decontaminating infectious solid waste, offering an environmentally friendly alternative to traditional thermal treatments like autoclave and incineration. By optimizing ozone concentrations and exposure times, this method reduces disease transmission risks and minimizes environmental impact. These findings are crucial, especially during outbreaks such as the COVID-19 pandemic, providing scalable, sustainable waste management solutions for healthcare facilities. Implementing these techniques can protect public health and the environment, setting a new standard for safe infectious waste disposal worldwide, mitigating hazardous pollutants, and reduce the exposure risk of bio-hazardous residues.


Asunto(s)
Descontaminación , Ozono , Rayos Ultravioleta , Descontaminación/métodos , Residuos Sanitarios , Eliminación de Residuos Sanitarios/métodos , Desinfección/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/efectos de la radiación , COVID-19/prevención & control , Bacillus subtilis/efectos de la radiación , Bacillus subtilis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/efectos de la radiación , Humanos
9.
Transpl Int ; 37: 12947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119064

RESUMEN

More than 13 million children are born preterm annually. Prematurity-related mortality accounts for 0.9 million deaths worldwide. The majority of those affected are Extremely Preterm Infants (gestational age less than 28 weeks). Immaturity causes organ failure and specific morbidities like germinal matrix hemorrhage, bronchopulmonary dysplasia, and necrotizing enterocolitis. Artificial womb and placenta technologies address these issues. As a bridge-to-life technology, they provide a liquid environment to allow organ maturation under more physiological conditions. The proposed artificial womb can adapt to fetal growth. Volume adjustment is achieved by removing fluid from the interspace between an inner and outer chamber. Results of the in vitro tests showed a temperature constancy of 36.8°C ± 0.3°C without pressure loss over 7 days. The volume of the inner sac was variable between 3.6 and 7.0 L. We designed a filtration and disinfection system for this particular purpose. This system has proven strong disinfection capabilities, effective filtering of metabolic waste, and the ability to avoid phospholipid washout. The presented artificial womb has sufficient volume variability to adapt to the physiologic growth of an extremely preterm neonate over a 4-week period. We regard this as an important step in the development of this bridge-to-life technology.


Asunto(s)
Órganos Artificiales , Recien Nacido Extremadamente Prematuro , Humanos , Recién Nacido , Femenino , Embarazo , Desinfección , Edad Gestacional
10.
Water Res ; 264: 122216, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146850

RESUMEN

In light of increasingly diverse greywater reuse applications, this study proposes risk-based log-removal targets (LRTs) to aid the selection of treatment trains for greywater recycling at different collection scales, including appliance-scale reuse of individual greywater streams. An epidemiology-based model was used to simulate the concentrations of prevalent and treatment-resistant reference pathogens (protozoa: Giardia and Cryptosporidium spp., bacteria: Salmonella and Campylobacter spp., viruses: rotavirus, norovirus, adenovirus, and Coxsackievirus B5) in the greywater streams for collection scales of 5-, 100-, and a 1000-people. Using quantitative microbial risk assessment (QMRA), we calculated LRTs to meet a health benchmark of 10-4 infections per person per year over 10'000 Monte Carlo iterations. LRTs were highest for norovirus at the 5-people scale and for adenovirus at the 100- and 1000-people scales. Example treatment trains were designed to meet the 95 % quantiles of LRTs. Treatment trains consisted of an aerated membrane bioreactor, chlorination, and, if required, UV disinfection. In most cases, rotavirus, norovirus, adenovirus and Cryptosporidium spp. determined the overall treatment train requirements. Norovirus was most often critical to dimension the chlorination (concentration × time values) and adenovirus determined the required UV dose. Smaller collection scales did not generally allow for simpler treatment trains due to the high LRTs associated with viruses, with the exception of recirculating washing machines and handwashing stations. Similarly, treating greywater sources individually resulted in lower LRTs, but the lower required LRTs nevertheless did not generally allow for simpler treatment trains. For instance, LRTs for a recirculating washing machine were around 3-log units lower compared to LRTs for indoor reuse of combined greywater (1000-people scale), but both scenarios necessitated treatment with a membrane bioreactor, chlorination and UV disinfection. However, simpler treatment trains may be feasible for small-scale and application-scale reuse if: (i) less conservative health benchmarks are used for household-based systems, considering the reduced relative importance of treated greywater in pathogen transmission in households, and (ii) higher log-removal values (LRVs) can be validated for unit processes, enabling simpler treatment trains for a larger number of appliance-scale reuse systems.


Asunto(s)
Reciclaje , Purificación del Agua , Microbiología del Agua , Eliminación de Residuos Líquidos/métodos , Cryptosporidium/aislamiento & purificación , Giardia/aislamiento & purificación , Desinfección/métodos
11.
Environ Sci Technol ; 58(35): 15816-15826, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39166926

RESUMEN

Recently, seven dihalohydroxybenzonitriles (diHHBNs) have been determined as concerning nitrogenous aromatic disinfection byproducts (DBPs) in drinking water. Herein, eight new monohalohydroxybenzonitriles (monoHHBNs), including 3-chloro-2-hydroxybenzonitrile, 5-chloro-2-hydroxybenzonitrile, 3-chloro-4-hydroxybenzonitrile, 3-bromo-2-hydroxybenzonitrile, 5-bromo-2-hydroxybenzonitrile, 3-bromo-4-hydroxybenzonitrile, 5-iodo-2-hydroxybenzonitrile, and 3-iodo-4-hydroxybenzonitrile, were detected and identified in drinking water for the first time. Thereafter, the relative concentration-cytotoxicity contribution of each HHBN was calculated based on the acquired occurrence level and cytotoxicity data in this study, the genome-scale cytotoxicity mechanism was explored, and a quantitative structure-activity relationship (QSAR) model was developed. Results indicated that new monoHHBNs were present in drinking water at concentrations of 0.04-1.83 ng/L and exhibited higher cytotoxicity than some other monohalogenated aromatic DBPs. Notably, monoHHBNs showed concentration-cytotoxicity contribution comparable to diHHBNs, which have been previously identified as potential toxicity drivers in drinking water. Transcriptomic analysis revealed immunotoxicity and genotoxicity as dominant cytotoxicity mechanisms for HHBNs in Chinese hamster ovary (CHO-K1) cells, with potential carcinogenic effects. The QSAR model suggested oxidative stress and cellular uptake efficiency as important factors for their cytotoxicity, highlighting the importance of potential iodinated HHBNs in drinking water, such as 3,5-diiodo-2-hydroxybenzonitrile, for future studies. These findings are meaningful for better understanding the health risk and toxicological significance of HHBNs in drinking water.


Asunto(s)
Desinfección , Agua Potable , Agua Potable/química , Animales , Contaminantes Químicos del Agua/toxicidad , Cricetulus , Células CHO , Desinfectantes/toxicidad , Nitrilos/toxicidad , Relación Estructura-Actividad Cuantitativa , Purificación del Agua
12.
J Hazard Mater ; 478: 135518, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154474

RESUMEN

The solid culture method for measuring the efficiency of ultraviolet (UV) disinfection of airborne bacteria is time-consuming, typically taking 12-48 h. To expedite such experiments, this study proposed a liquid culture method assisted by adenosine triphosphate (ATP) analysis, as a liquid culture is faster than a solid culture, and measurement of ATP does not require waiting for visible colonies to form. Escherichia coli (E. coli) was used as the experimental bacterium. This study first compared the log reduction of bacteria in liquid as measured by the proposed method and by the traditional solid culture method. The minimum liquid culture time was determined for different bacterial concentration ranges. Finally, the feasibility of the proposed method was validated by UV disinfection experiments on airborne bacteria. The results indicated that the proposed method measured a similar log reduction to that of the solid culture method in liquid experiments. The minimum liquid culture time for E. coli in 105-106 colony forming units (CFU)/mL was 2 h. The validation experiments demonstrated that the proposed method is capable of measuring the UV disinfection efficiency of airborne bacteria. The proposed method can accelerate laboratory experiments on UV disinfection of airborne bacteria, which in turn can support the effective design and utilization of UV disinfection in real life.


Asunto(s)
Adenosina Trifosfato , Microbiología del Aire , Desinfección , Escherichia coli , Rayos Ultravioleta , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/análisis , Desinfección/métodos , Escherichia coli/efectos de la radiación , Escherichia coli/crecimiento & desarrollo
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 857-861, 2024 Jun 06.
Artículo en Chino | MEDLINE | ID: mdl-38955733

RESUMEN

Objective: To evaluate the disinfection effect of high-energy pulse ultraviolet disinfection equipment in medical institution settings. Methods: The disinfection effect was evaluated through field tests and laboratory tests. Among them, 135 high-frequency contact points were selected from nine departments in the field test. Samples were collected before and after disinfection, and the disinfection effects of 75% alcohol wipes wiping disinfection, high-energy pulse ultraviolet disinfection robot disinfection and high-energy pulse ultraviolet handheld disinfection instrument were compared. In the laboratory test, 30 infected areas of the simulated test table were exposed to vertical ultraviolet irradiation and the bacterial-killing rate before and after disinfection was calculated. Results: In the field test, the bacteria-killing rates of 75% alcohol wipes, high-energy pulse ultraviolet disinfection robot and high-energy pulse ultraviolet handheld disinfection instrument were 94.99%, 91.53% and 95.94%, respectively, and the difference was statistically significant. The disinfection effect of the high-energy pulse ultraviolet handheld disinfection instrument was better than that of the high-energy pulse ultraviolet disinfection robot (P values <0.05). In the laboratory test, the killing log value of Staphylococcus aureus and Escherichia coli on the carrier were both greater than 3.00. In the simulated field test, the killing log value of Staphylococcus aureus on the surface samples were 4.99. Conclusion: Both the high-energy pulse ultraviolet handheld disinfection instrument and the high-energy pulse ultraviolet disinfection robot have good disinfection effects, which are similar to the disinfection effects of conventional 75% alcohol wipes.


Asunto(s)
Desinfección , Rayos Ultravioleta , Desinfección/métodos , Infección Hospitalaria/prevención & control
14.
Sci Rep ; 14(1): 15963, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987323

RESUMEN

The recent COVID-19 pandemic has raised interest in efficient air disinfection solutions. The application of germicidal ultraviolet (GUV) irradiation is an excellent contender to prevent airborne transmission of COVID-19, as well as other existing and future infectious airborne diseases. While GUV has already been proven effective in inactivating SARS-CoV-2, quantitative data on UV susceptibility and dose requirements, needed to predict and optimize the performance of GUV solutions, is still limited. In this study, the UV susceptibility of aerosolized SARS-CoV-2 to 254 nm ultraviolet (UV) irradiation is investigated. This is done by employing 3D computational fluid dynamics based simulations of SARS-CoV-2 inactivation in a test chamber equipped with an upper-room UV-C luminaire and comparing the results to previously published measurements performed in the same test chamber. The UV susceptibility found in this study is (0.6 ± 0.2) m2/J, which is equivalent to a D90 dose between 3 and 6 J/m2. These values are in the same range as previous estimations based on other corona viruses and inactivation data reported in literature.


Asunto(s)
COVID-19 , Desinfección , SARS-CoV-2 , Rayos Ultravioleta , SARS-CoV-2/efectos de la radiación , Desinfección/métodos , COVID-19/prevención & control , COVID-19/virología , COVID-19/transmisión , Humanos , Aerosoles , Hidrodinámica , Simulación por Computador , Inactivación de Virus/efectos de la radiación
15.
J Hazard Mater ; 477: 135338, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084008

RESUMEN

The contaminated liquid mixture containing mucosalivary fluid and blood would be aerosolized during medical procedures, resulting in higher-risk exposures. The novelty of this research is integrating laser visualization and numerical characterization to assess the propagation and evaporation of contaminated droplets, and the interactive effects of humidity and temperature on exposure risks will be numerically evaluated in surgery environments. The numerical model evidenced by experiments can predict the mass balance of ejection droplets, the minimum required fallow time (FT) between appointments, and the disinfection region of greatest concern. Around 98.4 % of the ejection droplet mass will be removed after the cessation of ultrasonic scaling, while the initial droplet size smaller than 72.6µm will dehydrate and become airborne. The FT recommendation of 30 min is not over-cautious, and the extended FT (range of 28-37 min) should be instituted for low temperature (20.5 °C) and high humidity levels (60 %RH). The variation of the temperature and humidity in the range for human thermal comfort has little influence on the area of the disinfection region (0.15m2) and the cut-off size (72.6µm) of droplet deposition and suspension. This research can provide scientific evidence for the guidelines of environmental conditions in surgery rooms.


Asunto(s)
Humedad , Humanos , Quirófanos , Rayos Láser , Temperatura , Aerosoles/análisis , Modelos Teóricos , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Desinfección/métodos
16.
Environ Sci Pollut Res Int ; 31(35): 48073-48084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39017868

RESUMEN

Recent advancements in membrane technologies and disinfection methods have enhanced drinking water quality significantly. However, microorganisms, including free-living amoebae (FLA), persist and pose potential threats to humans. FLA are linked to severe neuro-ophthalmic infections and serve as hosts of pathogenic bacteria. This study examined FLA presence in chlorinated and ultrafiltration drinking water and evaluated chlorine's disinfectant. Of 115 water samples, 21 tested positive for Acanthamoeba sp., Allovahlkampfia sp., and Vermamoeba vermiformis, originating from chlorinated sources. FLA trophozoites withstand temperatures up to 37 °C, while the cysts tolerate heat shocks of 60-70 °C. Trophozoites are susceptible to 5 mg L-1 chlorine, but cysts remain viable at concentrations up to 10 mg L-1. FLAs' survival in chlorinated waters is attributed to high cyst tolerance and lower residual chlorine concentrations. These findings highlight the need for ultrafiltration or enhanced chlorination protocols to ensure safer drinking water.


Asunto(s)
Amoeba , Agua Potable , Halogenación , Amoeba/efectos de los fármacos , Agua Potable/química , Cloro/farmacología , Desinfección/métodos , Desinfectantes , Purificación del Agua/métodos
17.
Environ Pollut ; 359: 124607, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053802

RESUMEN

Biochar coupled with peroxymonosulfate (PMS) to produce sulfate radicals and its application to urban wastewater disinfection has been rarely investigated and no information is available about microplastics (MPs) interference on the disinfection process. In this study, FeCl3-activated biochar (Fe-BC) was coupled to PMS to evaluate the inactivation of Escherichia coli (E. coli) in real secondary treated urban wastewater. Surface morphology of Fe-BC sample, characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), showed a rough texture with uniform distribution of iron particles over the entire surface area. E. coli inactivation improved (∼3.8 log units, detection limit = 1 CFU/100 mL) as Fe-BC concentration was decreased (from 1.0 g/L to 0.5 g/L), at a constant PMS dose (300 mg/L). Besides, removal efficiency of E. coli was negatively affected by the presence of small (30-50 µm) polyethylene MPs (PE MPs) (200 mg/L), which could be attributed to the adsorption of MPs on Fe-BC surface, according to SEM images of post-treated Fe-BC. The low disinfection efficiency of Fe-BC/PMS system in presence MPs could be due to blocking of Fe-BC sites for PMS activation and/or radicals scavenging during treatment. These results allowed to unveil the mechanisms of MPs interference on E. coli inactivation by Fe-BC/PMS, as well as the potential of this process to make the effluent in compliance with the stringent limit for agricultural reuse.


Asunto(s)
Carbón Orgánico , Desinfección , Escherichia coli , Compuestos Férricos , Microplásticos , Aguas Residuales , Escherichia coli/efectos de los fármacos , Aguas Residuales/química , Carbón Orgánico/química , Desinfección/métodos , Compuestos Férricos/química , Cloruros/química , Cloruros/farmacología , Peróxidos/química , Eliminación de Residuos Líquidos/métodos
18.
J Microorg Control ; 29(2): 91-97, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880621

RESUMEN

Campylobacter jejuni causes gastroenteritis in humans and is a major concern in food safety. Commercially prepared chicken meats are frequently contaminated with C. jejuni, which is closely associated with the diffusion of intestinal contents in poultry processing plants. Sodium hypochlorite (NaClO) is commonly used during chicken processing to prevent food poisoning; however, its antimicrobial activity is not effective in the organic-rich solutions. In this study, we investigated the potential of a new photo-disinfection system, UVA-LED, for the disinfection of C. jejuni-contaminated chicken surfaces. The data indicated that UVA irradiation significantly killed C. jejuni and that its killing ability was significantly facilitated in NaClO-treated chickens. Effective inactivation of C. jejuni was achieved using a combination of UVA and NaClO, even in the organic-rich condition. The results of this study show that synergistic disinfection using a combination of UVA and NaClO has potential beneficial effects in chicken processing systems.


Asunto(s)
Campylobacter jejuni , Pollos , Desinfección , Carne , Hipoclorito de Sodio , Rayos Ultravioleta , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/efectos de la radiación , Animales , Hipoclorito de Sodio/farmacología , Rayos Ultravioleta/efectos adversos , Desinfección/métodos , Carne/microbiología , Desinfectantes/farmacología , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Microbiología de Alimentos , Contaminación de Alimentos/prevención & control
19.
BMC Vet Res ; 20(1): 261, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890626

RESUMEN

BACKGROUND: Digital dermatitis (DD) is a contagious bovine foot disease causing reduced animal welfare and negative economic consequences for the farmer. Treponema spp. are the most important causative agents. Studies indicate that trimming equipment can transfer DD-associated treponemes between cows. The aim of this observational study in 22 DD-positive Norwegian dairy herds was to investigate the risk of transferring Treponema spp. with trimming equipment and chutes after claw trimming, and after washing and disinfection. Swabs from the trimming equipment and chutes were collected from nine different locations, at five different time points. Bacterial DNA was extracted from 647 swabs and analysed by qPCR for Treponema spp. In addition, 172 swabs taken immediately after trimming, were analysed by a multiplex qPCR targeting T. phagedenis, T. pedis and T. medium/vincentii. Biopsy sampling from DD lesions was performed on cows in the same herds during trimming. Altogether 109 biopsies were analysed by FISH for confirmation of the DD diagnosis and identification of Treponema phylotypes (PTs). RESULTS: High numbers of Treponema spp. were detected from all nine locations on the trimming equipment and chutes immediately after trimming, and T. phagedenis was detected on two or more locations in all but two herds, 1 and 19. There was a decline in the amount of Treponema spp. after washing and disinfection. The belly belt, the cuff, and the footrest on the chute had the highest proportion of positive samples after disinfection. The belly belt had the highest copy numbers of all nine locations (median = 7.9, max = 545.1). No Treponema spp. was detected on the hoof knives after disinfection. Treponema phagedenis, T. pedis, and Treponema phylotype 3 (T. refringens) were detected by FISH analysis of the biopsies. Treponema phagedenis was detected in biopsies from all herds except 1 and 19. CONCLUSION: This study shows that DD-associated Treponema spp. were present on the trimming equipment and chutes after trimming cows in DD-positive herds. Washing and disinfection reduced the load of Treponema spp. However, large differences in Treponema spp. between different locations were documented. High copy numbers on the grinder and the chute after disinfection, indicates that sufficient cleaning and disinfection of these locations is difficult, and that passive transfer of DD-associated treponemes (viable or not) is possible.


Asunto(s)
Enfermedades de los Bovinos , Dermatitis Digital , Desinfección , Treponema , Infecciones por Treponema , Animales , Bovinos , Treponema/aislamiento & purificación , Dermatitis Digital/microbiología , Infecciones por Treponema/veterinaria , Infecciones por Treponema/microbiología , Enfermedades de los Bovinos/microbiología , Desinfección/métodos , Femenino , Noruega , Pezuñas y Garras/microbiología , ADN Bacteriano/análisis , Crianza de Animales Domésticos/métodos , Crianza de Animales Domésticos/instrumentación
20.
J Water Health ; 22(6): 1102-1110, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935460

RESUMEN

Ferrate (Fe(VI): HFeO4- /FeO42-), a potent oxidant, has been investigated as an alternative chemical disinfectant in water treatment due to its reduced production of disinfection by-products. In this study, we assessed the disinfecting ability of potassium ferrate against a variety of microorganisms, including waterborne pathogens, under varying pH and water temperature conditions. We presented CT values, a metric of ferrate concentrations (C) and contact time (T), to quantify microbial inactivation rates. Among the tested microorganisms, human adenovirus was the least resistant to ferrate, followed by waterborne bacteria such as Escherichia coli and Vibrio cholerae, and finally, the protozoan parasite Giardia duodenalis. We further investigated the impact of two pH values (7 and 8) and two temperatures (5 and 25 °C) on microbial inactivation rates, observing that inactivation rates increased with lower pH and higher temperature. In addition to showcasing ferrate's capacity to effectively inactivate a range of the tested microorganisms, we offer a ferrate CT table to facilitate the comparison of the effectiveness of various disinfection methods.


Asunto(s)
Desinfectantes , Giardia lamblia , Temperatura , Concentración de Iones de Hidrógeno , Desinfectantes/farmacología , Giardia lamblia/efectos de los fármacos , Adenovirus Humanos/efectos de los fármacos , Compuestos de Potasio/farmacología , Compuestos de Potasio/química , Microbiología del Agua , Desinfección/métodos , Purificación del Agua/métodos , Compuestos de Hierro/farmacología , Compuestos de Hierro/química , Humanos , Escherichia coli/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA