Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.176
Filtrar
1.
Redox Rep ; 29(1): 2382943, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39092597

RESUMEN

OBJECTIVES: Diabetes is closely linked to hearing loss, yet the exact mechanisms remain unclear. Cochlear stria vascularis and pericytes (PCs) are crucial for hearing. This study investigates whether high glucose induces apoptosis in the cochlear stria vascularis and pericytes via elevated ROS levels due to oxidative stress, impacting hearing loss. METHODS: We established a type II diabetes model in C57BL/6J mice and used auditory brainstem response (ABR), Evans blue staining, HE staining, immunohistochemistry, and immunofluorescence to observe changes in hearing, blood-labyrinth barrier (BLB) permeability, stria vascularis morphology, and apoptosis protein expression. Primary cultured stria vascularis pericytes were subjected to high glucose, and apoptosis levels were assessed using flow cytometry, Annexin V-FITC, Hoechst 33342 staining, Western blot, Mitosox, and JC-1 probes. RESULTS: Diabetic mice showed decreased hearing thresholds, reduced stria vascularis density, increased oxidative stress, cell apoptosis, and decreased antioxidant levels. High glucose exposure increased apoptosis and ROS content in pericytes, while mitochondrial membrane potential decreased, with AIF and cytochrome C (CytC) released from mitochondria to the cytoplasm. Adding oxidative scavengers reduced AIF and CytC release, decreasing pericyte apoptosis. DISCUSSION: Hyperglycemia may induce mitochondrial apoptosis of cochlear stria vascularis pericytes through oxidative stress.


Asunto(s)
Factor Inductor de la Apoptosis , Apoptosis , Citocromos c , Hiperglucemia , Ratones Endogámicos C57BL , Mitocondrias , Estrés Oxidativo , Pericitos , Proteínas Proto-Oncogénicas c-bcl-2 , Especies Reactivas de Oxígeno , Estría Vascular , Animales , Pericitos/metabolismo , Pericitos/efectos de los fármacos , Pericitos/patología , Estría Vascular/metabolismo , Estría Vascular/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Citocromos c/metabolismo , Factor Inductor de la Apoptosis/metabolismo , Hiperglucemia/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Cóclea/metabolismo , Cóclea/patología
2.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 79-84, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39097892

RESUMEN

The main objective of this work was to investigate the mechanism of Astragalus aqueous extract ulcer healing in diabetic foot model rats through the hypoxia-inducible factor 1-alpha (HIF-1ɑ)/vascular endothelial growth factor (VEGF) signalling pathway. Fifty specific-pathogen-free male Sprague Dawley rats were divided into blank (A), model control (B), Astragalus extract (C) and mupirocin (D) treatment groups. Group A received a regular diet, whereas the other groups received a high-fat/high-sugar diet and intraperitoneal streptozotocin injections to induce diabetes. Diabetic foot ulcers were created via skin excision. Subsequently, ulcers were debrided daily. Groups B, C and D received wet saline gauze, wet gauze with Astragalus extract and gauze with mupirocin, respectively, on the affected area. Group A received no treatment. After 14 days, the rats were assessed for ulcer healing and general condition. Immunohistochemistry was used to detect HIF-1ɑ and VEGF levels in the dorsalis pedis artery, and ELISA was used to determine serum IL-6 and CRP levels. The results revealed that Groups C and D had significantly faster ulcer healing compared with Group B (p < 0.01), and ulcer healing was faster in Group C than in Group D (p < 0.01). Group C exhibited notably higher HIF-1ɑ and VEGF protein expression levels compared with Groups B and D (p < 0.01). IL-6 and CRP expression levels in Groups C and D were significantly lower than those in Group B (p < 0.01). In summary, Astragalus aqueous extract effectively treats diabetic foot ulcers by up-regulating HIF-1ɑ and VEGF expression, activating the HIF-1ɑ/VEGF pathway, improving local tissue ischaemia and hypoxia, promoting collateral circulation and enhancing dorsalis pedis artery formation, thereby accelerating ulcer repair in diabetic rats.


Asunto(s)
Planta del Astrágalo , Pie Diabético , Subunidad alfa del Factor 1 Inducible por Hipoxia , Extractos Vegetales , Ratas Sprague-Dawley , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Cicatrización de Heridas , Animales , Pie Diabético/tratamiento farmacológico , Pie Diabético/metabolismo , Masculino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transducción de Señal/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Planta del Astrágalo/química , Cicatrización de Heridas/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Ratas , Interleucina-6/metabolismo , Interleucina-6/sangre , Proteína C-Reactiva/metabolismo
3.
BMC Cardiovasc Disord ; 24(1): 351, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987672

RESUMEN

Diabetic cardiomyopathy (DCM) is a chronic disease caused by diabetes mellitus, which is recognized as a worldwide challenging disease. This study aimed to investigate the role and the potential mechanism of knocking down the NACHT-, LRR- and PYD domains-containing protein 3 (NLRP3), an inflammasome associated with onset and progression of various diseases, on high glucose or diabetes -induced cardiac cells pyroptosis and ferroptosis, two regulated non-necrosis cell death modalities discovered recent years. In the present study, both in vivo and in vitro studies were conducted simultaneously. Diabetic rats were induced by 55 mg/kg intraperitoneal injection of streptozotocin (STZ). Following the intraperitoneal injection of MCC950 (10 mg/kg), On the other hand, the DCM model in H9C2 cardiac cells was simulated with 35 mmol/L glucose and a short hairpin RNA vector of NLRP3 were transfected to cells. The results showed that in vivo study, myocardial fibers were loosely arranged and showed inflammatory cell infiltration, mitochondrial cristae were broken and the GSDMD-NT expression was found notably increased in the DM group, while the protein expressions of xCT and GPX4 was significantly decreased, both of which were reversed by MCC950. High glucose reduced the cell viability and ATP level in vitro, accompanied by an increase in LDH release. All of the above indicators were reversed after NLRP3 knockdown compared with the HG treated alone. Moreover, the protein expressions of pyroptosis- and ferroptosis-related fators were significantly decreased or increased, consistent with the results shown by immunofluorescence. Furthermore, the protective effects of NLRP3 knockdown against HG were reversed following the mtROS agonist rotenone (ROT) treatment. In conclusion, inhibition of NLRP3 suppressed DM-induced myocardial injury. Promotion of mitochondrial ROS abolished the protective effect of knockdown NLRP3, and induced the happening of pyroptosis and ferroptosis. These findings may present a novel therapeutic underlying mechanism for clinical diabetes-induced myocardial injury treatment.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ferroptosis , Técnicas de Silenciamiento del Gen , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Ferroptosis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Línea Celular , Ratas Sprague-Dawley , Ratas , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Inflamasomas/metabolismo , Sulfonamidas/farmacología , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Gasderminas
4.
Eur J Pharmacol ; 978: 176793, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38960061

RESUMEN

In recent years, a common-used antidiabetic drug, liraglutide, was identified with extra effects on lipid metabolism. Its effects against excessive lipid deposition in bone marrow were gained much attention but not well established. Our aim in the present study is to explore the interaction of miRNAs-mRNAs altered by liraglutide administration during bone marrow adipogenesis in diabetes. To establish the diabetic animal model, rats were treated with high fat diet (HFD) and STZ injection. We then identified the lowering effect of liraglutide on lipids metabolism in the diabetes. During this process, high-throughput sequencing and bioinformatics analyses on miRNAs extracted from bone marrow mesenchymal stem cells (BMSCs) were conducted after liraglutide administration. We then identified five differentially expressed miRNAs (miRNA-150-5p, miRNA-129-5p, miRNA-201-3p, miRNA-201-5p, and miRNA-214-5p). The expressions of the DE miRNAs were verified as temporal specific expression patterns in Day 3 and in Day 7. Among them, miRNA-150-5p expression was more stable and consistent with the sequencing data. Of interest, miR-150-5p overexpression facilitated adipogenesis of BMSCs. But this promotion was alleviated by liraglutide. The predicted target gene of miR-150-5p, GDF11, was validated to be involved in liraglutide alleviated BMSCs' lipid accumulation in diabetes. In vitro, liraglutide increased the GDF11 expression, rescued its down-expression by siGDF11 and inhibit the adipogenesis of BMSCs cultured in high glucose medium. In vivo, liraglutide reversed the HFD-STZ induced excessive lipid droplets by up-regulation of GDF11 expression, which was discounted by agomiR-150-5p injection. Above all, liraglutide might alleviate bone marrow fat accumulation via inactivating miR-150-5p/GDF11 axis in diabetes.


Asunto(s)
Adipogénesis , Diabetes Mellitus Experimental , Liraglutida , Células Madre Mesenquimatosas , MicroARNs , Ratas Sprague-Dawley , Animales , MicroARNs/genética , MicroARNs/metabolismo , Liraglutida/farmacología , Liraglutida/uso terapéutico , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Ratas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Dieta Alta en Grasa/efectos adversos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1236-1242, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39051069

RESUMEN

OBJECTIVE: To explore the mechanism of 3-methyladenine (3-MA) for alleviating early diabetic renal injury. METHODS: Mouse models of streptozotocin (STZ) -induced diabetes mellitus were randomized into model group and 3-MA treatment group for daily treatments with normal saline and 10 mg/kg 3-MA by gavage for 6 weeks, respectively. Body weight and fasting blood glucose of the mice were recorded every week. After the treatments, the kidneys of the mice were collected for measurement kidney/body weight ratio, examination of glomerular size with PAS staining, and detection of α-SMA and PCNA expressions using Western blotting and immunohistochemistry. SV40 MES 13 cells cultured in normal glucose (5.6 mmol/L) and high glucose (30 mmol/L) were treated with 24.4 mmol/L mannitol and 5 mmol/L 3-MA for 24 h, respectively, and the changes in cell viability and PCNA expression were examined using CCK8 assay and Western blotting. Bioinformatics analysis of the intersecting gene targets of diabetic kidney disease (DKD) and 3-MA was performed, and the results were verified by Western blotting both in vivo and in vitro. RESULTS: In the diabetic mice, treatment with 3-MA produced a short-term hypoglycemic effect, reduced the kidney/body weight ratio and glomerular hypertrophy, and decreased the expressions of α­SMA and PCNA in the renal cortex. In the in vitro study, 3-MA significantly lowered the viability and reduced PCNA expression in SV40 MES 13 cells exposed to high glucose. The results of bioinformatic analysis identified AKT1 as the key gene in the therapeutic mechanism of 3-MA for DKD. Western blotting confirmed that 3-MA inhibited the phosphorylation of AKT and S6 in both the renal cortex of diabetic mice and high glucose-treated SV40 MES 13 cells. CONCLUSION: 3-MA suppresses mesangial cell proliferation and alleviates early diabetic renal injury in mice possibly by inhibiting AKT signaling.


Asunto(s)
Adenina , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Adenina/análogos & derivados , Adenina/farmacología , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Masculino , Glucemia/metabolismo , Proliferación Celular/efectos de los fármacos
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(7): 1306-1314, 2024 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-39051076

RESUMEN

OBJECTIVE: To explore the therapeutic mechanism of compound Yuye Decoction against diabetic cardiomyopathy (DCM). METHODS: Drugbank, Gene Cards, OMIM and PharmGKb databases were used to obtain DCM-related targets, and the core targets were identified and functionally annotated by protein-protein interaction network analysis followed by GO and KEGG enrichment analysis. The "Traditional Chinese Medicine-Key Component-Key Target-Key Pathway" network was constructed using Cytoscape 3.9.1, and molecular docking was carried out for the key components and the core targets. In the animal experiment, Wistar rat models of DCM were treated with normal saline or Yuye Decoction by gavage at low (0.29 g/kg) and high (1.15 g/kg) doses for 8 weeks, and the changes in cardiac electrophysiology and histopathology were evaluated. The changes in serum levels of LDH, CK, and CK-MB were examined, and myocardial expressions of PI3K, P-PI3K, Akt, P-AKT, BAX, IL-6, and TNF-α were detected using Western blotting. RESULTS: We identified 61 active compounds in Yuye Decoction with 1057 targets, 3682 DCM-related disease targets, and 551 common targets between them. Enrichment of the core targets suggested that apoptosis, inflammation and the PI3K/Akt pathways were the key signaling pathways for DCM treatment. Molecular docking studies showed that the active components in Yuye Decoction including gold amidohydroxyethyl ester and kaempferol had strong binding activities with AKT1 and PIK3R1. In DCM rat models, treatment with Yuye Decoction significantly alleviated myocardial pathologies, reduced serum levels of LDH, CK and CK-MB, lowered myocardial expressions of BAX, IL-6 and TNF-α, and increased the expressions of P-PI3K and P-AKT. CONCLUSION: The therapeutic effect of compound Yuye Decoction against DCM is mediated by its multiple active components that act on multiple targets and pathways to inhibit cardiomyocyte apoptosis and inflammatory response by regulating the PI3K/Akt signaling pathway.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Medicamentos Herbarios Chinos , Inflamación , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Wistar , Transducción de Señal , Animales , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Inflamación/metabolismo , Miocardio/metabolismo , Miocardio/patología , Masculino , Interleucina-6/metabolismo
7.
Int J Nanomedicine ; 19: 6643-6658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979532

RESUMEN

Purpose: Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods: Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results: H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion: These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Metabolismo de los Lípidos , Hígado , Células Madre Mesenquimatosas , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Hep G2 , Glucosa/metabolismo , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Curcumina/farmacología , Curcumina/química , Curcumina/administración & dosificación , Resistencia a la Insulina , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Diabetes Mellitus Experimental/metabolismo
8.
Cells ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38994961

RESUMEN

Cytokine-induced ß-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect ß-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on ß-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected ß-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced ß-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in ß-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for ß-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting ß-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving ß-cell functional mass in T1D.


Asunto(s)
Apoptosis , Citocinas , Células Secretoras de Insulina , FN-kappa B , Transducción de Señal , Animales , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , FN-kappa B/metabolismo , Ratones , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Proteína Forkhead Box O1/metabolismo , Ratones Endogámicos NOD , Masculino , Ratones Endogámicos C57BL
9.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000117

RESUMEN

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Asunto(s)
Canagliflozina , Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratones Endogámicos C57BL , Mitofagia , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Mitofagia/efectos de los fármacos , Masculino , Ratones , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ratas , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular , Transducción de Señal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos
10.
Biol Pharm Bull ; 47(7): 1288-1295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39010214

RESUMEN

The active form of discoidin domain receptors (DDRs) is expressed in cell surface and regulated post-translationally by glucose. The DDR2 and DDR1 transfected in HEK293 cells were expressed mainly in their active forms with sizes of 130 and 120 kDa, respectively. DDRs were observed predominantly as 100 kDa proteins in glucose-depleted culture conditions. However, transfection of endothelial growth factor receptor (EGFR) in HEK293 cells resulted in the expression of only one form regardless of glucose concentration. Vascular smooth muscle cells, HT1080s, and MDA-MB-231 cancer cells expressed DDRs in their active forms in high glucose concentrations, which did not occur with EGFR. In diabetic rats, DDRs were expressed at high levels in arterial tissue but EGFR was not highly expressed. Taken together, these results suggest that DDRs expression depends on glucose concentration it may cooperate in the development of atherosclerosis and kidney fibroblasts, promoting nephropathy in diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Glucosa , Animales , Humanos , Glucosa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Masculino , Diabetes Mellitus Experimental/metabolismo , Células HEK293 , Ratas , Arterias/metabolismo , Arterias/patología , Receptores ErbB/metabolismo , Receptores ErbB/genética , Línea Celular Tumoral , Receptor con Dominio Discoidina 2/metabolismo , Receptor con Dominio Discoidina 2/genética , Músculo Liso Vascular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Ratas Wistar
11.
J Neuroimmune Pharmacol ; 19(1): 36, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042202

RESUMEN

Newly conducted research suggests that metabolic disorders, like diabetes and obesity, play a significant role as risk factors for psychiatric disorders. This connection presents a potential avenue for creating novel antidepressant medications by repurposing drugs originally developed to address antidiabetic conditions. Earlier investigations have shown that GLP-1 (Glucagon-like Peptide-1) analogs exhibit neuroprotective qualities in various models of neurological diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, and stroke. Moreover, GLP-1 analogs have demonstrated the capability to enhance neurogenesis, a process recognized for its significance in memory formation and the cognitive and emotional aspects of information processing. Nonetheless, whether semaglutide holds efficacy as both an antidepressant and anxiolytic agent remains uncertain. To address this, our study focused on a mouse model of depression linked to type 2 diabetes induced by a High Fat Diet (HFD). In this model, we administered semaglutide (0.05 mg/Kg intraperitoneally) on a weekly basis to evaluate its potential as a therapeutic option for depression and anxiety. Diabetic mice had higher blood glucose, lipidic profile, and insulin resistance. Moreover, mice fed HFD showed higher serum interleukin (IL)-1ß and lipopolysaccharide (LPS) associated with impaired humor and cognition. The analysis of behavioral responses revealed that the administration of semaglutide effectively mitigated depressive- and anxiety-like behaviors, concurrently demonstrating an enhancement in cognitive function. Additionally, semaglutide treatment protected synaptic plasticity and reversed the hippocampal neuroinflammation induced by HFD fed, improving activation of the insulin pathway, demonstrating the protective effects of semaglutide. We also found that semaglutide treatment decreased astrogliosis and microgliosis in the dentate gyrus region of the hippocampus. In addition, semaglutide prevented the DM2-induced impairments of pro-opiomelanocortin (POMC), and G-protein-coupled receptor 43 (GPR43) and simultaneously increased the NeuN + and Glucagon-like Peptide-1 receptor (GLP-1R+) neurons in the hippocampus. Our data also showed that semaglutide increased the serotonin (5-HT) and serotonin transporter (5-HTT) and glutamatergic receptors in the hippocampus. At last, semaglutide changed the gut microbiota profile (increasing Bacterioidetes, Bacteroides acidifaciens, and Blautia coccoides) and decreased leaky gut, improving the gut-brain axis. Taken together, semaglutide has the potential to act as a therapeutic tool for depression and anxiety.


Asunto(s)
Ansiedad , Eje Cerebro-Intestino , Disfunción Cognitiva , Depresión , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Péptidos Similares al Glucagón , Ratones Endogámicos C57BL , Animales , Péptidos Similares al Glucagón/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/psicología , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Depresión/tratamiento farmacológico , Depresión/psicología , Depresión/metabolismo , Masculino , Ansiedad/tratamiento farmacológico , Ansiedad/psicología , Ansiedad/etiología , Microbioma Gastrointestinal/efectos de los fármacos , Eje Cerebro-Intestino/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/psicología , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
12.
Biochem Biophys Res Commun ; 727: 150316, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959732

RESUMEN

Type 2 diabetes (T2D) is on a notable rise worldwide, which leads to unfavorable outcomes during implant treatments. Surface modification of implants and exosome treatment have been utilized to enhance osseointegration. However, there has been insufficient approach to improve adverse osseointegration in T2D conditions. In this study, we successfully loaded TNF-α-treated mesenchymal stem cell (MSC)-derived exosomes onto micro/nano-network titanium (Ti) surfaces. TNF-α-licensed exosome-integrated titanium (TNF-exo-Ti) effectively enhanced M2 macrophage polarization in hyperglycemic conditions, with increased secretion of anti-inflammatory cytokines and decreased secretion of pro-inflammatory cytokines. In addition, TNF-exo-Ti pretreated macrophage further enhanced angiogenesis and osteogenesis of endothelial cells and bone marrow MSCs. More importantly, TNF-exo-Ti markedly promoted osseointegration in T2D mice. Mechanistically, TNF-exo-Ti activated macrophage autophagy to promote M2 polarization through inhibition of the PI3K/AKT/mTOR pathway, which could be abolished by PI3K agonist. Thus, this study established TNF-α-licensed exosome-immobilized titanium surfaces that could rectify macrophage immune states and accelerate osseointegration in T2D conditions.


Asunto(s)
Autofagia , Diabetes Mellitus Tipo 2 , Exosomas , Macrófagos , Ratones Endogámicos C57BL , Oseointegración , Titanio , Factor de Necrosis Tumoral alfa , Titanio/química , Titanio/farmacología , Animales , Exosomas/metabolismo , Autofagia/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Oseointegración/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Polaridad Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo
13.
Anal Chem ; 96(29): 11890-11896, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38987697

RESUMEN

Dipeptidyl peptidase 4 (DPP4) plays a key role in glucose metabolism, which has been a close target for diabetes pathology and treatment. It is significant for the evaluation of cellular DPP4 activity in various biological systems. Fluorescence imaging technology is currently a popular method for detecting enzymes in living cells due to its advantages of high selectivity, high sensitivity, high spatiotemporal resolution, and real-time visualization. Herein, a near-infrared (NIR)-emissive probe NEDP with a large Stokes shift (153 nm) was developed for the assay of DPP4 activity. Upon addition of DPP4, NEDP can emit a significant turn-on NIR fluorescence signal (673 nm) with high sensitivity and specificity. Moreover, NEDP can successfully be used for imaging of intracellular DPP4, confirming the regulation of DPP4 expression in hyperglucose and its treatment in living cells. Most importantly, NEDP can not only monitor the changes of DPP4 in vivo but also show that DPP4 in diabetes is mainly up-regulated in the liver, and the level of DPP4 is positively correlated with the pathological damage of the liver. In addition, NEDP can identify the serum of diabetic patients from healthy people through the fluorescence response to DPP4. These results demonstrated that the designed probe NEDP provides a prospective visual tool to explore the relationship between DPP4 and diabetes and would be applied for detecting serum of diabetes in the clinic.


Asunto(s)
Diabetes Mellitus Experimental , Dipeptidil Peptidasa 4 , Colorantes Fluorescentes , Hígado , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/sangre , Animales , Humanos , Ratones , Hígado/metabolismo , Hígado/patología , Colorantes Fluorescentes/química , Diabetes Mellitus Experimental/metabolismo , Imagen Óptica , Rayos Infrarrojos , Masculino
14.
Gen Physiol Biophys ; 43(4): 335-346, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953575

RESUMEN

Diabetic osteoporosis is a common health problem that is associated with a disruption in bone metabolism. A2A adenosine receptor (A2AAR) signaling seems to play a critical role in bone homeostasis. This study aimed to evaluate the effect of A2AAR stimulation on the treatment of diabetic-induced osteoporosis versus insulin treatment. Forty adult male rats were allocated into control (C), untreated diabetic-induced osteoporosis (DIO), insulin-treated DIO (I-DIO), and A2AAR agonist-treated DIO (A-DIO) groups. Both insulin and A2AAR agonist treatments significantly increased serum insulin level, glutathione peroxidase (GPx) activity, bone expression of osteoprotegerin (Opg) and ß-catenin (Ctnnb1), and cortical and trabecular bone thickness, whereas they decreased serum fasting glucose, malondialdehyde (MDA), tumor necrosis factor α (TNF-α), bone expression of receptor activator of nuclear factor kappa-B ligand (Rankl), runt-related transcription factor-2 (Runx2), and sclerostin (Sost) versus the untreated DIO groups. A2AAR agonist treatment was more effective than insulin in ameliorating diabetic osteoporosis. This might be attributed to the upregulation of ß-catenin gene expression, enhancing its anabolic effect on bone, in addition to the A2AAR agonist's anti-oxidative, anti-inflammatory, and anti-diabetic effects.


Asunto(s)
Diabetes Mellitus Experimental , Osteoporosis , Animales , Masculino , Ratas , Agonistas del Receptor de Adenosina A2/farmacología , Agonistas del Receptor de Adenosina A2/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Insulina/metabolismo , Osteoporosis/metabolismo , Osteoporosis/etiología , Osteoporosis/tratamiento farmacológico , Ratas Wistar , Receptor de Adenosina A2A/metabolismo , Resultado del Tratamiento
15.
Circ Res ; 135(3): 416-433, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38946541

RESUMEN

BACKGROUND: Exercise intolerance is an independent predictor of poor prognosis in diabetes. The underlying mechanism of the association between hyperglycemia and exercise intolerance remains undefined. We recently demonstrated that the interaction between ARRDC4 (arrestin domain-containing protein 4) and GLUT1 (glucose transporter 1) regulates cardiac metabolism. METHODS: To determine whether this mechanism broadly impacts diabetic complications, we investigated the role of ARRDC4 in the pathogenesis of diabetic cardiac/skeletal myopathy using cellular and animal models. RESULTS: High glucose promoted translocation of MondoA into the nucleus, which upregulated Arrdc4 transcriptional expression, increased lysosomal GLUT1 trafficking, and blocked glucose transport in cardiomyocytes, forming a feedback mechanism. This role of ARRDC4 was confirmed in human muscular cells from type 2 diabetic patients. Prolonged hyperglycemia upregulated myocardial Arrdc4 expression in multiple types of mouse models of diabetes. We analyzed hyperglycemia-induced cardiac and skeletal muscle abnormalities in insulin-deficient mice. Hyperglycemia increased advanced glycation end-products and elicited oxidative and endoplasmic reticulum stress leading to apoptosis in the heart and peripheral muscle. Deletion of Arrdc4 augmented tissue glucose transport and mitochondrial respiration, protecting the heart and muscle from tissue damage. Stress hemodynamic analysis and treadmill exhaustion test uncovered that Arrdc4-knockout mice had greater cardiac inotropic/chronotropic reserve with higher exercise endurance than wild-type animals under diabetes. While multiple organs were involved in the mechanism, cardiac-specific overexpression using an adenoassociated virus suggests that high levels of myocardial ARRDC4 have the potential to contribute to exercise intolerance by interfering with cardiac metabolism through its interaction with GLUT1 in diabetes. Importantly, the ARRDC4 mutation mouse line exhibited greater exercise tolerance, showing the potential therapeutic impact on diabetic cardiomyopathy by disrupting the interaction between ARRDC4 and GLUT1. CONCLUSIONS: ARRDC4 regulates hyperglycemia-induced toxicities toward cardiac and skeletal muscle, revealing a new molecular framework that connects hyperglycemia to cardiac/skeletal myopathy to exercise intolerance.


Asunto(s)
Tolerancia al Ejercicio , Transportador de Glucosa de Tipo 1 , Ratones Noqueados , Animales , Ratones , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Masculino , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Músculo Esquelético/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/genética , Células Cultivadas
16.
Mol Med ; 30(1): 100, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992588

RESUMEN

BACKGROUND: Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined. METHODS: A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay. RESULTS: Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling. CONCLUSION: BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Clusterina , Metilación de ADN , Diabetes Mellitus Experimental , Ferroptosis , Regiones Promotoras Genéticas , Transducción de Señal , Testículo , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular , Clusterina/genética , Clusterina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicaciones , ADN Metiltransferasa 3A/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Ferroptosis/genética , Ratones Endogámicos C57BL , Testículo/metabolismo , Testículo/patología
17.
Cell Biol Toxicol ; 40(1): 52, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967699

RESUMEN

Diabetic osteoporosis (DO) presents significant clinical challenges. This study aimed to investigate the potential of magnetic nanoparticle-enhanced extracellular vesicles (GMNPE-EVs) derived from bone marrow mesenchymal stem cells (BMSCs) to deliver miR-15b-5p, thereby targeting and downregulating glial fibrillary acidic protein (GFAP) expression in rat DO models. Data was sourced from DO-related RNA-seq datasets combined with GEO and GeneCards databases. Rat primary BMSCs, bone marrow-derived macrophages (BMMs), and osteoclasts were isolated and cultured. EVs were separated, and GMNPE targeting EVs were synthesized. Bioinformatic analysis revealed a high GFAP expression in DO-related RNA-seq and GSE26168 datasets for disease models. Experimental results confirmed elevated GFAP in rat DO bone tissues, promoting osteoclast differentiation. miR-15b-5p was identified as a GFAP inhibitor, but was significantly downregulated in DO and enriched in BMSC-derived EVs. In vitro experiments showed that GMNPE-EVs could transfer miR-15b-5p to osteoclasts, downregulating GFAP and inhibiting osteoclast differentiation. In vivo tests confirmed the therapeutic potential of this approach in alleviating rat DO. Collectively, GMNPE-EVs can effectively deliver miR-15b-5p to osteoclasts, downregulating GFAP expression, and hence, offering a therapeutic strategy for rat DO.


Asunto(s)
Vesículas Extracelulares , Proteína Ácida Fibrilar de la Glía , Células Madre Mesenquimatosas , MicroARNs , Osteoclastos , Osteoporosis , Ratas Sprague-Dawley , Animales , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Osteoporosis/metabolismo , Osteoporosis/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Ratas , Osteoclastos/metabolismo , Masculino , Diferenciación Celular , Nanopartículas de Magnetita , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/genética
18.
Biol Res ; 57(1): 47, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033184

RESUMEN

BACKGROUND: MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS: Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1ß) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS: 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1ß, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION: 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.


Asunto(s)
Catecoles , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Dieta Alta en Grasa , Alcoholes Grasos , Inflamasomas , Metformina , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , Receptor Toll-Like 4 , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Alcoholes Grasos/farmacología , Masculino , Ratas , MicroARNs/metabolismo , MicroARNs/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptor Toll-Like 4/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Metformina/farmacología , Metformina/administración & dosificación , Catecoles/farmacología , Diabetes Mellitus Experimental/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estreptozocina , Hipoglucemiantes/farmacología , Ratas Sprague-Dawley , Quimioterapia Combinada , Transducción de Señal/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología
19.
Biomed Pharmacother ; 177: 116964, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959607

RESUMEN

BACKGROUND: The administration of mesenchymal stem cells (MSCs) through intracavernous injection is a potential therapeutic approach for managing diabetes mellitus-induced erectile dysfunction (DMED). However, pulmonary embolism and tumorigenicity are fatal adverse events that limit the clinical application of MSCs. In this study, we examined the therapeutic efficacy and potential mechanism of MSC-derived extracellular vesicles (MSC-EVs). METHODS: In this study, forty 8-week-old male SpragueDawley (SD) rats were utilised. In the control group, ten rats were administered an intraperitoneal injection of PBS. STZ (60 mg/kg) was intraperitoneally injected into the remaining rats to establish a diabetes mellitus (DM) model. Afterwards, the diabetic rats were divided into three groups at random: the DM group (intracavernosal injection of PBS), the EVs group (intracavernosal injection of MSC-EVs), and the EVs-200a group (intracavernosal injection of miR-200a-3p-enriched extracellular vesicles). Erectile function was determined by measuring intracavernous pressure in real time and utilising electrical stimulation of the cavernous nerves. The smooth muscle content was evaluated through the investigation of penile tissue using immunofluorescence staining, Masson's trichrome staining, and western blotting after euthanasia. Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels in the corpus cavernosum were measured via ELISA. In vitro, hydrogen peroxide (H2O2) was used to induce oxidative stress. The viability of corpus cavernosum smooth muscle cells (ccSMCs) incubated with or without H2O2 was measured using a CCK8 assay. Flow cytometry was used to assess the levels of reactive oxygen species (ROS) and apoptosis in ccSMCs. Furthermore, a dual-luciferase reporter assay was performed to validate the relationship between miR-200a-3p and Keap1. RESULTS: Reversal of erectile function was observed in the EVs groups, especially in the EVs-200a group. DM increased the MDA level and decreased the SOD and GSH levels. In the DM group, the expression of alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) was decreased, and the expression of osteopontin (OPN) was increased. Western blotting revealed decreased Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase3 expression in the cavernous tissue. miR-200a-3p-enriched extracellular vesicles (EVs-200a) reversed these changes and inhibited the loss of smooth muscle content and cavernous fibrosis. In vitro, H2O2 induced high ROS levels in ccSMCs and increased apoptosis, and these effects reversed by EVs-200a. H2O2 reduced Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase-3 expression, and these effects were reversed by MSC-EVs, especially EVs-200a. The of dual-luciferase reporter assay results indicated that miR-200a-3p directly targeted Keap1 in a negative manner. CONCLUSION: MSC-EVs, especially EVs-200a, alleviated erectile dysfunction in diabetic rats through the regulation of phenotypic switching, apoptosis and fibrosis. Mechanistically, miR-200a-3p targeted the Keap1/Nrf2 pathway to attenuate oxidative stress in diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Vesículas Extracelulares , Proteína 1 Asociada A ECH Tipo Kelch , Células Madre Mesenquimatosas , MicroARNs , Ratas Sprague-Dawley , Animales , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Disfunción Eréctil/terapia , Disfunción Eréctil/etiología , Disfunción Eréctil/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Ratas , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo , Erección Peniana , Trasplante de Células Madre Mesenquimatosas/métodos
20.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062939

RESUMEN

Recently, we compared an interplay of the adenosine system and nitric oxide (NO) in the regulation of renal function between male normoglycaemic (NG) and streptozotocin-induced diabetic rats (DM). Considering the between-sex functional differences, e.g., in the NO status, we present similar studies performed in female rats. We examined if the theophylline effects (non-selective adenosine antagonist) in NG and DM females with or without active NO synthases differed from the earlier findings. In anaesthetised female Sprague Dawley rats, both NG and DM, untreated or after NO synthesis blockade with L-NAME, theophylline effects, on blood pressure, renal hemodynamics and excretion, and renal tissue NO were investigated. Renal artery blood flow (Transonic probe), cortical, outer-, and inner-medullary flows (laser-Doppler technique), and renal tissue NO signal (selective electrode) were measured. In contrast to males, in female NG and DM rats, theophylline induced renal vasodilation. In NO-deficient females, theophylline induced comparable renal vasodilatation, confirming the vasoconstrictor influence of the renal adenosine. In NG and DM females with intact NO synthesis, adenosine inhibition diminished kidney tissue NO, contrasting with an increase reported in males. Lowered baseline renal excretion in DM females suggested stimulation of renal tubular reabsorption due to the prevalence of antinatriuretic over natriuretic tubular action of adenosine receptors. An opposite inter-receptor balance pattern emerged previously from male studies. The study exposed between-sex functional differences in the interrelation of adenosine and NO in rats with normoglycaemia and streptozotocin diabetes. The findings also suggest that in diabetes mellitus, the abundance of individual receptor types can distinctly differ between females and males.


Asunto(s)
Adenosina , Diabetes Mellitus Experimental , Hemodinámica , Riñón , Óxido Nítrico , Ratas Sprague-Dawley , Teofilina , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Femenino , Óxido Nítrico/metabolismo , Masculino , Adenosina/metabolismo , Ratas , Riñón/metabolismo , Teofilina/farmacología , Estreptozocina , Caracteres Sexuales , NG-Nitroarginina Metil Éster/farmacología , Presión Sanguínea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA