Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.133
Filtrar
1.
Biochem Biophys Res Commun ; 725: 150254, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901223

RESUMEN

Decreased pancreatic ß-cell volume is a serious problem in patients with type 2 diabetes mellitus, and there is a need to establish appropriate treatments. Increasingly, sodium/glucose cotransporter 2 (SGLT2) inhibitors, which have a protective effect on pancreatic ß-cells, are being prescribed to treat diabetes; however, the underlying mechanism is not well understood. We previously administered SGLT2 inhibitor dapagliflozin to a mouse model of type 2 diabetes and found significant changes in gene expression in the early-treated group, which led us to hypothesize that epigenetic regulation was a possible mechanism of these changes. Therefore, we performed comprehensive DNA methylation analysis by methylated DNA immunoprecipitation using isolated pancreatic islets after dapagliflozin administration to diabetic model mice. As a result, we identified 31 genes with changes in expression due to DNA methylation changes. Upon immunostaining, cystic fibrosis transmembrane conductance regulator and cadherin 24 were found to be upregulated in islets in the dapagliflozin-treated group. These molecules may contribute to the maintenance of islet morphology and insulin secretory capacity, suggesting that SGLT2 inhibitors' protective effect on pancreatic ß-cells is accompanied by DNA methylation changes, and that the effect is long-term and not temporary. In future diabetes care, SGLT2 inhibitors may be expected to have positive therapeutic effects, including pancreatic ß-cell protection.


Asunto(s)
Compuestos de Bencidrilo , Metilación de ADN , Diabetes Mellitus Tipo 2 , Glucósidos , Islotes Pancreáticos , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Metilación de ADN/efectos de los fármacos , Glucósidos/farmacología , Glucósidos/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Ratones , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/patología , Masculino , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Epigénesis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Cadherinas/metabolismo , Cadherinas/genética
2.
FASEB J ; 38(11): e23729, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38847786

RESUMEN

Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.


Asunto(s)
Nefropatías Diabéticas , Células Madre Mesenquimatosas , Proteína Smad2 , Proteína smad3 , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Animales , Células Madre Mesenquimatosas/metabolismo , Proteína Smad2/metabolismo , Ratones , Humanos , Proteína smad3/metabolismo , Masculino , Ratones Endogámicos C57BL , Adenosina/metabolismo , Adenosina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Transducción de Señal , Metiltransferasas/metabolismo , Metiltransferasas/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular
3.
Cell Mol Life Sci ; 81(1): 265, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880863

RESUMEN

Heterotopic ossification (HO) occurs as a common complication after injury, while its risk factor and mechanism remain unclear, which restricts the development of pharmacological treatment. Clinical research suggests that diabetes mellitus (DM) patients are prone to developing HO in the tendon, but solid evidence and mechanical research are still needed. Here, we combined the clinical samples and the DM mice model to identify that disordered glycolipid metabolism aggravates the senescence of tendon-derived stem cells (TSCs) and promotes osteogenic differentiation. Then, combining the RNA-seq results of the aging tendon, we detected the abnormally activated autocrine CXCL13-CXCR5 axis in TSCs cultured in a high fat, high glucose (HFHG) environment and also in the aged tendon. Genetic inhibition of CXCL13 successfully alleviated HO formation in DM mice, providing a potential therapeutic target for suppressing HO formation in DM patients after trauma or surgery.


Asunto(s)
Quimiocina CXCL13 , Glucolípidos , Osificación Heterotópica , Osteogénesis , Receptores CXCR5 , Animales , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Osificación Heterotópica/genética , Ratones , Humanos , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Glucolípidos/metabolismo , Receptores CXCR5/metabolismo , Receptores CXCR5/genética , Células Madre/metabolismo , Tendones/metabolismo , Tendones/patología , Masculino , Ratones Endogámicos C57BL , Diferenciación Celular , Senescencia Celular , Transducción de Señal , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología
4.
IET Nanobiotechnol ; 2024: 5702517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863972

RESUMEN

Background: Diabetic nephropathy (DN) is the leading cause of chronic kidney disease, and the activation and infiltration of phagocytes are critical steps of DN. This study aimed to explore the mechanism of exosomes in macrophages and diabetes nephropathy and the role of miRNA-34a, which might provide a new path for treating DN. Materials and Methods: The DN model was established, and the success of the model establishment was confirmed by detecting general indicators, HE staining, and immunohistochemistry. Electron microscopy and NanoSight Tracking Analysis (NTA) were used to see the morphology and size of exosomes. MiRNA-34a inhibitor, miRNA-34a mimics, pc-PPARGC1A, and controls were transfected in macrophages with or without kidney exosomal. A dual-luciferase reporter gene experiment verifies the targeting relationship between miRNA-34a and PPARGC1A. After exosomal culture, macrophages are co-cultured with normal renal tubular cells to detect renal tubular cell fibrosis. Q-PCR and western blot were undertaken to detect related RNA and proteins. Results: An animal model of diabetic nephropathy was successfully constructed. Macrophages could phagocytose exosomes. After ingesting model exosomes, M1 macrophages were activated, while M2 macrophages were weakened, indicating the model mice's kidney exosomes caused the polarization. MiRNA-34a inhibitor increased PPARGC1A expression. MiRNA-34a expressed higher in diabetic nephropathy Model-Exo. MiRNA-34a negatively regulated PPARGC1A. PPARGC1A rescued macrophage polarization and renal tubular cell fibrosis. Conclusion: Exosomal miRNA-34a of tubular epithelial cells promoted M1 macrophage activation in diabetic nephropathy via negatively regulating PPARGC1A expression, which may provide a new direction for further exploration of DN treatment.


Asunto(s)
Nefropatías Diabéticas , Exosomas , Fibrosis , Macrófagos , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Animales , Exosomas/metabolismo , Exosomas/genética , Ratones , Macrófagos/metabolismo , Masculino , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología
5.
Tissue Cell ; 88: 102426, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833941

RESUMEN

Diabetes mellitus (DM) is a well-known hyperglycemic metabolic condition identified by oxidative stress and biological function disruption. Kiwifruit is a valuable source of polyphenols and vitamin C with great antioxidant, nutritional, and health-promoting effects. Therefore, this study was initiated to explore the antioxidant and anti-hyperglycemic effects of kiwifruit aqueous extract (KFE) against oxidative injury and testis dysfunction in rats with diabetes. Twenty-four male Wistar Albino rats (160-170 g) were divided into four groups: Group 1 served as the control, Group 2 supplemented orally with kiwifruit extract (KFE; 1 g/kg/day) for one month, Group 3 was treated with a single streptozotocin dose (STZ; 50 mg/kg ip), and Group 4 where the diabetic rats were administered with KFE, respectively. According to the results, the GC-MS analysis of KFE revealed several main components with strong antioxidant properties. In diabetic rats, lipid peroxidation and hyperglycemia were accompanied by perturbations in hormone levels and sperm characteristics. Antioxidant enzymes, glutathione content, aminotransferase, phosphatase activities, and protein content were decreased. Furthermore, histology, immunohistochemical PCNA expression, and histochemical analysis of collagen, DNA, RNA, and total protein. were altered in rat testis sections, supporting the changes in biochemistry. Furthermore, diabetic rats supplemented with KFE manifested considerable amendment in all the tested parameters besides improved tissue structure and gene expressions (NF-kB, p53, IL-1ß, Bax, IL-10, and Bcl2) relative to the diabetic group. In conclusion, KFE has beneficial effects as it can improve glucose levels and testis function, so it might be used as a complementary therapy in DM.


Asunto(s)
Actinidia , Apoptosis , Diabetes Mellitus Experimental , Hiperglucemia , Inflamación , Estrés Oxidativo , Extractos Vegetales , Ratas Wistar , Testículo , Animales , Masculino , Actinidia/química , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Apoptosis/efectos de los fármacos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Estreptozocina , Antioxidantes/farmacología
6.
Cell Metab ; 36(7): 1521-1533.e5, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38718792

RESUMEN

Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1ß induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.


Asunto(s)
Ceramidas , Retinopatía Diabética , Inmunoterapia , Ceramidas/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Retinopatía Diabética/inmunología , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Masculino , Retina/metabolismo , Retina/patología , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Ratas , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Cuerpo Vítreo/metabolismo , Femenino , Ratones Noqueados
7.
Gen Physiol Biophys ; 43(3): 185-196, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774919

RESUMEN

Ampelopsin (AMP) had a wound-healing effect in rat skin wounds with or without purulent infection. However, the role of AMP in diabetic wound healing remains poorly defined. Wounds were created on the dorsal skin of type 2 diabetic mouse model, and the histological features of wounds were examined by hematoxylin and eosin (HE) staining. Caspase-1 activity and the secretion of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability and migration were examined through cell counting kit-8 (CCK-8) and wound healing assays, respectively. AMP facilitated wound healing in vivo. AMP notably facilitated platelet endothelial cell adhesion molecule-31 (CD31), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA), and inhibited matrix metallopeptidase 9 (MMP9) and cyclooxygenase 2 (Cox2) expression in diabetic wounds. The inflammasome pathway was implicated in skin injury. AMP inhibited pro-inflammatory factor secretions and NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in diabetic wounds and high glucose-treated THP-1 macrophages. AMP-mediated NLRP3 inflammasome inhibition in THP-1 macrophages increased cell viability and migratory capacity in HaCaT cells. AMP facilitated diabetic wound healing and increased keratinocyte cell viability and migratory ability by inhibiting the NLRP3 inflammasome pathway in macrophages.


Asunto(s)
Inflamasomas , Queratinocitos , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Cicatrización de Heridas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Ratones , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células THP-1 , Células HaCaT , Flavonoides
8.
Acta Biomater ; 182: 245-259, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729545

RESUMEN

Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.


Asunto(s)
Glucosa Oxidasa , Estructuras Metalorgánicas , Óxido Nítrico , Cicatrización de Heridas , Zinc , Cicatrización de Heridas/efectos de los fármacos , Animales , Zinc/química , Zinc/farmacología , Óxido Nítrico/metabolismo , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Glucosa Oxidasa/farmacología , Glucosa Oxidasa/metabolismo , Diabetes Mellitus Experimental/patología , Microambiente Celular/efectos de los fármacos , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Staphylococcus aureus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Arginina/farmacología , Arginina/química
9.
Colloids Surf B Biointerfaces ; 240: 113991, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815311

RESUMEN

Diabetes mellitus is a chronic metabolic disease with prolonged low-grade inflammation and impaired cellular function, leading to poor wound healing. The treatment of diabetic wounds remains challenging due to the complex wound microenvironment. In view of the prominence of fish scales in traditional Chinese medicine and their wide application in modern medicine, we isolated the intercellular components in the scales of sea bass, obtained a natural composite hydrogel, fish scales gel (FSG), and applied it to diabetic chronic wounds. FSG was rich in collagen-like proteins, and possessed low-temperature gelation properties. In vitro, FSG was biocompatible and promoted fibroblast proliferation by approximately 40 %, endothelial cell migration by approximately 20 % and activated the M1 macrophages. In addition, FSG restored the function of fibroblasts and vascular endothelial cells damaged by high glucose. Importantly, FSG normalized the acute inflammatory response to impaired macrophages in a high-glucose microenvironment. Transcriptome analysis implies that this mechanism may involve enhanced cell signaling and cellular communication, improved sensitivity to cytokines, and activation of the TNF signaling pathway. Animal experiments confirmed that FSG significantly improved wound closure by approximately 15 % in diabetic rats, showing similar effects to acute wounds. In conclusion, the regulation of multiple cellular functions by FSG, especially the counterintuitive ability to induce acute inflammation, promoted diabetic wound healing and provides a novel therapeutic strategy for wound repair in diabetic patients.


Asunto(s)
Diabetes Mellitus Experimental , Hidrogeles , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Ratas , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Escamas de Animales/química , Ratas Sprague-Dawley , Proliferación Celular/efectos de los fármacos , Masculino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Movimiento Celular/efectos de los fármacos , Ratones , Peces
10.
Cell Commun Signal ; 22(1): 275, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755602

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS: We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS: We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION: In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.


Asunto(s)
Proteína 61 Rica en Cisteína , Retinopatía Diabética , Trampas Extracelulares , Ratones Endogámicos C57BL , Neutrófilos , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Trampas Extracelulares/metabolismo , Animales , Neutrófilos/metabolismo , Humanos , Proteína 61 Rica en Cisteína/metabolismo , Proteína 61 Rica en Cisteína/genética , Ratones , Masculino , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Retina/patología , Retina/metabolismo , Femenino , Persona de Mediana Edad
11.
Biochem Biophys Res Commun ; 716: 150002, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38697011

RESUMEN

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Péptidos Similares al Glucagón , Glucosa , Fragmentos Fc de Inmunoglobulinas , Dinámicas Mitocondriales , Proteínas Recombinantes de Fusión , Sirtuina 1 , Animales , Fragmentos Fc de Inmunoglobulinas/farmacología , Péptidos Similares al Glucagón/análogos & derivados , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/uso terapéutico , Sirtuina 1/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Masculino , Ratones , Glucosa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Ratones Endogámicos C57BL , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Hipoglucemiantes/farmacología , Humanos , Isquemia/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/patología
12.
J Appl Biomater Funct Mater ; 22: 22808000241245298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38733215

RESUMEN

In the current study, Cnicus benedictus extract was loaded into electrospun gelatin scaffolds for diabetic wound healing applications. Scaffolds were characterized in vitro by mechanical testing, cell culture assays, electron microscopy, cell migration assay, and antibacterial assay. In vivo wound healing study was performed in a rat model of diabetic wound. In vitro studies revealed fibrous architecture of our developed dressings and their anti-inflammatory properties. In addition, Cnicus benedictus extract-loaded wound dressings prevented bacterial penetration. In vivo study showed that wound size reduction, collagen deposition, and epithelial thickness were significantly greater in Cnicus benedictus extract-loaded scaffolds than other groups. Gene expression studies showed that the produced wound dressings significantly upregulated VEGF and IGF genes expression in diabetic wounds.


Asunto(s)
Vendajes , Diabetes Mellitus Experimental , Gelatina , Cicatrización de Heridas , Animales , Gelatina/química , Cicatrización de Heridas/efectos de los fármacos , Ratas , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/patología , Masculino , Humanos , Ratas Sprague-Dawley , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Andamios del Tejido/química
13.
Cells ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786068

RESUMEN

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Asunto(s)
Adhesión Celular , Diabetes Mellitus Experimental , Proteína-Tirosina Quinasas de Adhesión Focal , Podocitos , Proteinuria , Receptor de Adenosina A2B , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Podocitos/patología , Animales , Humanos , Proteinuria/metabolismo , Ratas , Receptor de Adenosina A2B/metabolismo , Adhesión Celular/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Masculino , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/tratamiento farmacológico , Antagonistas del Receptor de Adenosina A2/farmacología , Adenosina/metabolismo , Adenosina/farmacología , Movimiento Celular/efectos de los fármacos , Fosforilación/efectos de los fármacos , Cadenas Ligeras de Miosina/metabolismo
14.
Sci Rep ; 14(1): 12556, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821986

RESUMEN

Diabetic patients are at high risk of developing lacrimal gland dysfunction, and the antimalarial drug artesunate (ART) was recently used to induce experimental-induced diabetes mellitus. This study's objective is to investigate the lacrimal gland alteration and the effect of ART on experimentally induced diabetes rat models and its related mechanisms. Forty rats were divided into five groups (8 rats/group): healthy control group (HC), diabetic group (DM), 50 mg/kg ART intervention diabetic group [DM + ART (50 mg/kg)], 100 mg/kg ART intervention diabetic group [DM + ART (100 mg/kg)] and 6 U/kg Insulin intervention diabetic group (DM + INS). The morphology of the eyeball and lacrimal gland tissues was determined using hematoxylin and eosin staining. In addition, external lacrimal glands were harvested for electronic microscopic examination, NFκB1, and TNF-α protein expression evaluation by immunohistochemistry and mRNA expression analysis by RT-PCR. Histopathological and ultrastructural changes suggest ART intervention has an improved structural effect. Protein expression of NFκB1 in the DM + ART (100 mg/kg) group was decreased. TNF-α significantly decreased in the DM + ART (50 mg/kg) and insulin groups. We concluded that ART improves structural changes in a lacrimal gland in diabetic rats. The present study provides further evidence of the therapeutic effect of ART on the lacrimal gland of diabetic rats by decreasing the expression of NFκB1 and TNF-α.


Asunto(s)
Artesunato , Diabetes Mellitus Experimental , Aparato Lagrimal , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Aparato Lagrimal/efectos de los fármacos , Aparato Lagrimal/metabolismo , Aparato Lagrimal/patología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Ratas , Masculino , Factor de Necrosis Tumoral alfa/metabolismo , Artemisininas/farmacología , Artemisininas/uso terapéutico
15.
FASEB J ; 38(9): e23638, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713098

RESUMEN

Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.


Asunto(s)
Barrera Hematorretinal , Diabetes Mellitus Experimental , Retinopatía Diabética , Interleucina-10 , Macrófagos , Animales , Humanos , Masculino , Ratones , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/patología , Polaridad Celular/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Estreptozocina
16.
Cell Stress Chaperones ; 29(3): 440-455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653383

RESUMEN

This study aimed to investigate the changes in oxidative stress, adenosine monophosphate-activated protein kinase (AMPK), connexin43 (Cx43), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) expression, and extracellular matrix (ECM) in the gastric smooth muscle tissues of rats with diabetic gastroparesis (DGP) and high glucose-cultured gastric smooth muscle cells, determine the existence of oxidative stress-AMPK-Cx43-NLRP3 pathway under high glucose condition, and the involvement of this pathway in ECM remodeling in DGP rats. The results showed that with increasing duration of diabetes, oxidation stress levels gradually increased, the AMPK activity decreased first and then increased, NLRP3, CX43 expression, and membrane/cytoplasm ratio of Cx43 expression were increased in the gastric smooth muscle tissues of diabetic rats. Changes in ECM of gastric smooth muscle cells were observed in DGP rats. The DGP group showed higher collagen type I content, increased expression of Caspase-1, transforming growth factor-beta 3 (TGF-ß3), and matrix metalloproteinase-2 (MMP-2), decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) expression, and higher interleukin-1 beta content when compared with the control group. For gastric smooth muscle cells cultured under higher glucose, the MMP-2 and TGF-ß3 expression was decreased, TGF-ß1 and TIMP-1 expression was increased, the interleukin-1 beta content was decreased in cells after inhibition of NLRP3 expression; the NLRP3 and Caspase-1 expression was decreased, and adenosine triphosphate content was lower after inhibition of Cx43; the expression of NLRP3, Caspase-1, P2X7, and the membrane/cytoplasm ratio of CX43 expression was decreased in cells after inhibition of AMPK and oxidative stress, the phospho-AMPK expression was also decreased after suppressing oxidative stress. Our findings suggest that high glucose induced the activation of the AMPK-Cx43-NLRP3 pathway through oxidative stress, and this pathway was involved in the ECM remodeling of gastric smooth muscles in DGP rats by regulating the biological functions of TGF-ß3, TGF-ß1, MMP-2, and TIMP-1.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Conexina 43 , Diabetes Mellitus Experimental , Matriz Extracelular , Gastroparesia , Miocitos del Músculo Liso , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Transducción de Señal , Animales , Masculino , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Conexina 43/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Matriz Extracelular/metabolismo , Gastroparesia/metabolismo , Gastroparesia/patología , Glucosa/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas Sprague-Dawley , Estómago/patología
17.
Free Radic Biol Med ; 219: 76-87, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604315

RESUMEN

Diabetic retinopathy (DR) is a highly hazardous and widespread complication of diabetes mellitus (DM). The accumulated reactive oxygen species (ROS) play a central role in DR development. The aim of this research was to examine the impact and mechanisms of mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEV) on regulating ROS and retinal damage in DR. Intravitreal injection of sEV inhibited Cullin3 neddylation, stabilized Nrf2, decreased ROS, reduced retinal inflammation, suppressed Müller gliosis, and mitigated DR. Based on MSC-sEV miRNA sequencing, bioinformatics software, and dual-luciferase reporter assay, miR-143-3p was identified to be the key effector for MSC-sEV's role in regulating neural precursor cell expressed developmentally down-regulated 8 (NEDD8)-mediated neddylation. sEV were able to be internalized by Müller cells. Compared to advanced glycation end-products (AGEs)-induced Müller cells, sEV coculture decreased Cullin3 neddylation, activated Nrf2 signal pathway to combat ROS-induced inflammation. The barrier function of endothelial cells was impaired when endothelial cells were treated with the supernatant of AGEs-induced Müller cells, but was restored when treated with supernatant of AGEs-induced Müller cells cocultured with sEV. The protective effect of sEV was, however, compromised when miR-143-3p was inhibited in sEV. Moreover, the protective efficacy of sEV was diminished when NEDD8 was overexpressed in Müller cells. These findings showed MSC-sEV delivered miR-143-3p to inhibit Cullin3 neddylation, stabilizing Nrf2 to counteract ROS-induced inflammation and reducing vascular leakage. Our findings suggest that MSC-sEV may be a potential nanotherapeutic agent for DR, and that Cullin3 neddylation could be a new target for DR therapy.


Asunto(s)
Retinopatía Diabética , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Proteína NEDD8 , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Animales , Humanos , Ratones , Proteínas Cullin/metabolismo , Proteínas Cullin/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Retinopatía Diabética/patología , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Productos Finales de Glicación Avanzada/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
18.
Exp Neurol ; 377: 114797, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670252

RESUMEN

Diabetic is a major contributor to the unfavorable prognosis of ischemic stroke. However, intensive hypoglycemic strategies do not improve stroke outcomes, implying that diabetes may affect stroke outcomes through other ways. Ferroptosis is a novel programmed cell death pathway associated with the development of diabetes and ischemic stroke. This study aimed to investigate the effect of streptozotocin (STZ)-induced diabetes on ferroptosis after stroke from the immune cell perspective, and to provide a theoretical foundation for the clinical management of ischemic stroke in patients with diabetes. The results revealed that STZ-induced diabetes not only facilitates the infiltration of neutrophils into the brain after stroke, but also upregulates the expression of lipocalin 2 (LCN2) in neutrophils. LCN2 promotes lipid peroxide accumulation by increasing intracellular ferrous ions, which intensify ferroptosis in major brain cell populations, especially neurons. Our findings suggest that STZ-induced diabetes aggravates ischemic stroke partially by mediating ferroptosis through neutrophil-derived LCN2. These data contribute to improved understanding of post-stroke immune regulation in diabetes, and offer a potentially novel therapeutic target for the management of acute-stage ischemic stroke complicated with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Ferroptosis , Accidente Cerebrovascular Isquémico , Lipocalina 2 , Ratones Endogámicos C57BL , Neuronas , Neutrófilos , Regulación hacia Arriba , Lipocalina 2/metabolismo , Animales , Ferroptosis/fisiología , Ferroptosis/efectos de los fármacos , Neutrófilos/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Ratones
19.
Acta Biomater ; 181: 333-346, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38643814

RESUMEN

Bacterial infection and immune imbalance are the primary culprits behind chronic wounds in individuals with diabetes, impeding the progression of damaged tissues towards normal healing. To achieve a harmonious balance between pro- and anti-inflammation within these infected areas, herein, we propose a one-two punch strategy for on-demand therapy of diabetes-infected wounds, utilizing an azithromycin (AZM)-hybrid nanocomposite termed GOx@FexSy/AZM. During the infective stage, the nanocomposite facilitates the production of ROS, coupled with the burst release of AZM and H2S gas, effectively dismantling biofilms and achieving rapid sterilization. Subsequently, the hyperinflammatory response induced by antibiosis is significantly mitigated through the synergistic action of tissue H2S and the prolonged half-life of AZM. These components inhibit the activity of pro-inflammatory transcription factors (AP-1 and NF-κB) within macrophages, thereby promoting the polarization of macrophages towards a reparative M2 phenotype and facilitating tissue remodeling. By catering to the diverse requirements of wound healing at different stages, this nanocomposite accelerates a sensible transition from inflammation to the reparative phase. In summary, this one-two punch strategy gives an instructive instance for procedural treatment of diabetes wound infection. STATEMENT OF SIGNIFICANCE: The treatment of diabetic wound infection presents two major challenges: the diminished antibacterial efficacy arising from biofilm formation and bacterial resistance, as well as the inadequate transition of the wound microenvironment from pro-inflammatory to anti-inflammatory states after bacterial clearance. In this work, a biomineralized iron sulfide nanocomposite was prepared to mediate cascade catalytic (ROS storm) / antibiotic (AZM) / gas (H2S) triple-synergetic antibacterial therapy during the initial stage of bacterial infection, achieving the goal of rapid bactericidal effect; Subsequently, the residual H2S and long half-life AZM would inhibit the key pro-inflammatory transcription factors and promote the macrophages polarization to reparative M2, which effectively mediated tissue repair after hyperinflammatory reactions, leading to orderly treatment of hyperglycemic infected wounds.


Asunto(s)
Antibacterianos , Cicatrización de Heridas , Antibacterianos/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Ratones , Células RAW 264.7 , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Compuestos Ferrosos/farmacología , Compuestos Ferrosos/química , Masculino , Nanopartículas/química , Biopelículas/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Humanos
20.
Acta Biomater ; 181: 161-175, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38679405

RESUMEN

Diabetic wound management remains a significant challenge in clinical care due to bacterial infections, excessive inflammation, presence of excessive reactive oxygen species (ROS), and impaired angiogenesis. The use of multifunctional wound dressings has several advantages in diabetic wound healing. Moreover, the balance of macrophage polarization plays a crucial role in promoting skin regeneration. However, few studies have focused on the development of multifunctional wound dressings that can regulate the inflammatory microenvironment and promote diabetic wound healing. In this study, an extracellular matrix-inspired glycopeptide hydrogel composed of glucomannan and polypeptide was proposed for regulating the local microenvironment of diabetic wound sites. The hydrogel network, which was formed via Schiff base and hydrogen bonding interactions, effectively inhibited inflammation and promoted angiogenesis during wound healing. The hydrogels exhibited sufficient self-healing ability and had the potential to scavenge ROS and to activate the mannose receptor (MR), thereby inducing macrophage polarization toward the M2 phenotype. The experimental results confirm that the glycopeptide hydrogel is an effective tool for managing diabetic wounds by showing antibacterial, ROS scavenging, and anti-inflammatory effects, and promoting angiogenesis to facilitate wound repair and skin regeneration in vivo. STATEMENT OF SIGNIFICANCE: •The designed wound dressing combines the advantage of natural polysaccharide and polypeptide. •The hydrogel promotes M2-polarized macrophages, antibacterial, scavenges ROS, and angiogenesis. •The multifunctional glycopeptide hydrogel dressing could accelerating diabetic wound healing in vivo.


Asunto(s)
Glicopéptidos , Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Nanofibras , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Nanofibras/química , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Glicopéptidos/farmacología , Glicopéptidos/química , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Células RAW 264.7 , Masculino , Mananos/química , Mananos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratas Sprague-Dawley , Complicaciones de la Diabetes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA