Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.621
Filtrar
1.
Nat Commun ; 15(1): 3744, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702321

RESUMEN

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs for atlas-scale datasets like Human Pancreas Analysis Program (HPAP), we develop AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX shows the higher performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulates known islet pathobiology and shows differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.


Asunto(s)
Algoritmos , Diabetes Mellitus Tipo 1 , Páncreas , Proteómica , Humanos , Proteómica/métodos , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/metabolismo , Páncreas/citología , Páncreas/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/citología , Análisis de la Célula Individual/métodos , Redes Neurales de la Computación , Linfocitos T CD8-positivos/metabolismo , Citometría de Imagen/métodos
2.
Front Endocrinol (Lausanne) ; 15: 1287591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774224

RESUMEN

Purpose: To determine whether there are alterations in marrow fat content in individuals first-time diagnosed with type 1 diabetes mellitus (T1DM) and to explore the associations between marrow fat fraction and MRI-based findings in trabecular bone microarchitecture. Method: A case-control study was conducted, involving adults with first-time diagnosed T1DM (n=35) and age- and sex-matched healthy adults (n=46). Dual-energy X-ray absorptiometry and 3 Tesla-MRI of the proximal tibia were performed to assess trabecular microarchitecture and vertebral marrow fat fraction. Multiple linear regression analysis was used to test the associations of marrow fat fraction with trabecular microarchitecture and bone density while adjusting for potential confounding factors. Results: In individuals first-time diagnosed with T1DM, the marrow fat fraction was significantly higher (p < 0.001) compared to healthy controls. T1DM patients also exhibited higher trabecular separation [median (IQR): 2.19 (1.70, 2.68) vs 1.81 (1.62, 2.10), p < 0.001], lower trabecular volume [0.45 (0.30, 0.56) vs 0.53 (0.38, 0.60), p = 0.013], and lower trabecular number [0.37 (0.26, 0.44) vs 0.41 (0.32, 0.47), p = 0.020] compared to controls. However, bone density was similar between the two groups (p = 0.815). In individuals with T1DM, there was an inverse association between marrow fat fraction and trabecular volume (r = -0.69, p < 0.001) as well as trabecular number (r = -0.55, p < 0.001), and a positive association with trabecular separation (r = 0.75, p < 0.001). Marrow fat fraction was independently associated with total trabecular volume (standardized ß = -0.21), trabecular number (ß = -0.12), and trabecular separation (ß = 0.57) of the proximal tibia after adjusting for various factors including age, gender, body mass index, physical activity, smoking status, alcohol consumption, blood glucose, plasma glycated hemoglobin, lipid profile, and bone turnover biomarkers. Conclusions: Individuals first-time diagnosed with T1DM experience expansion of marrow adiposity, and elevated marrow fat content is associated with MRI-based trabecular microstructure.


Asunto(s)
Densidad Ósea , Médula Ósea , Hueso Esponjoso , Diabetes Mellitus Tipo 1 , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Diabetes Mellitus Tipo 1/diagnóstico por imagen , Diabetes Mellitus Tipo 1/patología , Imagen por Resonancia Magnética/métodos , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Adulto , Estudios de Casos y Controles , Médula Ósea/diagnóstico por imagen , Médula Ósea/patología , Absorciometría de Fotón , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Persona de Mediana Edad , Adulto Joven
3.
Reprod Biomed Online ; 48(4): 103727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402677

RESUMEN

RESEARCH QUESTION: Does type 1 diabetes mellitus (T1DM) affect reproductive health of female patients? What is the potential mechanism of reproductive dysfunction in female patients caused by T1DM? DESIGN: Preliminary assessment of serum levels of female hormones in women with or without T1DM. Then histological and immunological examinations were carried out on the pancreas, ovaries and uteri at different stages in non-obese diabetic (NOD) and Institute of Cancer Research (ICR) mice, as well as assessment of their fertility. A protein array was carried out to detect the changes in serum inflammatory cytokines. Furthermore, RNA-sequencing was used to identify the key abnormal genes/pathways in ovarian and uterine tissues of female NOD mice, which were further verified at the protein level. RESULTS: Testosterone levels were significantly increased (P = 0.0036) in female mice with T1DM. Increasing age in female NOD mice was accompanied by obvious lymphocyte infiltration in the pancreatic islets. Moreover, the levels of serum inflammatory factors in NOD mice were sharply increased with increasing age. The fertility of female NOD mice declined markedly, and most were capable of conceiving only once. Furthermore, ovarian and uterine morphology and function were severely impaired in NOD female mice. Additionally, ovarian and uterine tissues revealed that the differentially expressed genes were primarily enriched in metabolism, cytokine-receptor interactions and chemokine signalling pathways. CONCLUSION: T1DM exerts a substantial impairment on female reproductive health, leading to diminished fertility, potentially associated with immune disorders and alterations in energy metabolism.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Femenino , Animales , Ratones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Ratones Endogámicos NOD , Páncreas/metabolismo , Páncreas/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Citocinas/metabolismo , Inflamación/metabolismo
4.
J Cell Physiol ; 239(5): e31212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308646

RESUMEN

C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.


Asunto(s)
Péptido C , Humanos , Péptido C/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Transducción de Señal
5.
BMJ Open Diabetes Res Care ; 12(1)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413173

RESUMEN

INTRODUCTION: The rate of progression to complete insulin deficiency varies greatly in type 1 diabetes. This constitutes a challenge, especially when randomizing patients in intervention trials aiming to preserve beta cell function. This study aimed to identify biomarkers predictive of either a rapid or slow disease progression in children with new-onset type 1 diabetes. RESEARCH DESIGN AND METHODS: A retrospective, longitudinal cohort study of children (<18 years) with type 1 diabetes (N=46) was included at diagnosis and followed until complete insulinopenia (C-peptide <0.03 nmol/L). Children were grouped into rapid progressors (n=20, loss within 30 months) and slow progressors (n=26). A sex-matched control group of healthy children (N=45) of similar age was included for comparison. Multiple biomarkers were assessed by proximity extension assay (PEA) at baseline and follow-up. RESULTS: At baseline, rapid progressors had lower C-peptide and higher autoantibody levels than slow. Three biomarkers were higher in the rapid group: carbonic anhydrase 9, corticosteroid 11-beta-dehydrogenase isozyme 1, and tumor necrosis factor receptor superfamily member 21. In a linear mixed model, 25 proteins changed over time, irrespective of group. One protein, a coxsackievirus B-adenovirus receptor (CAR) increased over time in rapid progressors. Eighty-one proteins differed between type 1 diabetes and healthy controls. Principal component analysis could not distinguish between rapid, slow, and healthy controls. CONCLUSIONS: Despite differences in individual proteins, the combination of multiple biomarkers analyzed by PEA could not distinguish the rate of progression in children with new-onset type 1 diabetes. Only one marker was altered significantly when considering both time and group effects, namely CAR, which increased significantly over time in the rapid group. Nevertheless, we did find some markers that may be useful in predicting the decline of the C-peptide. Moreover, these could potentially be important for understanding type 1 diabetes pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Niño , Humanos , Diabetes Mellitus Tipo 1/patología , Insulina/metabolismo , Estudios Longitudinales , Estudios Retrospectivos , Péptido C , Autoanticuerpos , Insulina Regular Humana , Biomarcadores
6.
Pediatr Nephrol ; 39(6): 1865-1873, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38123711

RESUMEN

BACKGROUND: Diabetic nephropathy may begin in childhood, but clinical kidney disease ascribable to this is uncommon in children with type 1 (insulin dependent) diabetes mellitus. METHODS: We reviewed our experience of kidney biopsies in children with type 1 diabetes mellitus. RESULTS: Between 1995 and 2022, there were biopsies in 17 children, with various clinical indications for kidney biopsy, making this the largest series of biopsies in diabetic children with clinical kidney abnormalities. Four biopsies showed diabetic nephropathy, three showed the combination of diabetic nephropathy and IgA nephropathy, and ten showed a variety of conditions other than diabetic nephropathy: minimal change disease (2), membranous nephropathy (2), thin glomerular basement membrane lesion (2), non-glomerular chronic damage in Wolcott-Rallison syndrome (2), acute pauciimmune necrotizing crescentic glomerulonephritis (1) and IgA nephropathy (1). Clinical clues of something other than diabetic nephropathy included acute kidney injury, microscopic haematuria or chronic kidney impairment with little or no proteinuria and the nephrotic syndrome after a short duration of diabetes. CONCLUSIONS: We confirm that changes better known in adults with either type 1 or type 2 diabetes mellitus can occur in children with type 1 diabetes mellitus: overt diabetic nephropathy either on its own or combined with other conditions and kidney disorders other than diabetic nephropathy.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Glomerulonefritis por IGA , Enfermedades Renales , Adulto , Niño , Humanos , Nefropatías Diabéticas/patología , Diabetes Mellitus Tipo 1/patología , Glomerulonefritis por IGA/patología , Riñón/patología , Enfermedades Renales/patología , Proteinuria/patología , Biopsia
7.
Cell Biochem Funct ; 41(7): 833-844, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37814478

RESUMEN

Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic ß cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate ß cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of ß cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and ß cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of ßcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Naftoquinonas , Ratas , Humanos , Animales , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Insulina/metabolismo , Hipoglucemiantes/farmacología
8.
Ophthalmic Surg Lasers Imaging Retina ; 54(10): 603-606, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37847164

RESUMEN

We report the case of a 28-year-old man with X-linked retinoschisis (XLRS) and type I diabetes mellitus. The patient had bilateral foveoschisis with a tractional retinal fold in the right eye. Optical coherence tomography (OCT) revealed hyperreflective material within the inner nuclear and outer plexiform layers, photoreceptor atrophy, and retinal pigment epithelium irregularities in both eyes. Fluorescein angiography showed hyperfluorescent foveal spots corresponding to the hyperreflective material observed on OCT. This is a unique presentation of XLRS, with concurrent foveoschisis and photoreceptor atrophy in both eyes. The hyperreflective material on OCT serves as a distinctive feature of XLRS. [Ophthalmic Surg Lasers Imaging Retina 2023;54:603-606.].


Asunto(s)
Diabetes Mellitus Tipo 1 , Retinosquisis , Masculino , Humanos , Adulto , Retinosquisis/diagnóstico , Retinosquisis/etiología , Retinosquisis/patología , Diabetes Mellitus Tipo 1/patología , Retina/patología , Fóvea Central/patología , Tomografía de Coherencia Óptica/métodos , Atrofia/patología
9.
Sci Rep ; 13(1): 9417, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296126

RESUMEN

Human schistosomiasis is one of the most prevalent parasitic diseases worldwide. Various host factors can affect the host-parasite interactions. Therefore, the aim of the present work was to determine the parasitological, histopathological, biochemical, and immunological status of Schistosoma mansoni-infected hosts with metabolic disorders to identify the underlying possible mechanisms of these comorbidities. The study animals were divided into four groups. Group I represented the control groups, namely, the normal control group, the S. mansoni-infected control group, and the noninfected type 1 diabetes (T1DM), type 2 diabetes (T2DM), and obesity groups. The mice of the other three groups underwent induction of T1DM (Group II), T2DM (Group III) and obesity (Group IV) before being infected with S. mansoni. All mice were subjected to body weight measurement, blood glucose and insulin assessment, parasitological evaluation of adult worm count, tissue egg count and intestinal oogram. Histopathological and immunohistochemical study using anti-glial fibrillary acidic protein (GFAP) in hepatic stellate cells (HSCs) and image analysis of Masson's trichrome-stained liver sections using ImageJ (Fiji) software were carried out. Additionally, immunological analysis of tumour necrosis factor (TNF) beta, interleukin-5 (IL-5), IL-10, Forkhead box P3 (FOXP3) and pentraxin 3 (PTX3) levels besides biochemical study of total lipid profile were evaluated. The present study revealed a significant increase in the adult worm count and tissue egg output in the obesity group compared to the infected control group. The oogram of counted eggs showed prevalence of immature eggs in T1DM group, while T2DM and obese groups showed prevalence of mature eggs. The fibrosis area percentage showed significant increase in T2DM and obese groups while it was decreased in T1DM group in comparison to infected control group. Our data also showed significant increase in the levels of TNF-ß, IL-5, PTX3 in T1DM, T2DM and obesity groups in comparison to infected control group, whilst the levels of FOXP3 and IL-10 were increased in the infected groups in comparison to their noninfected controls. Moreover, infected T1DM, T2DM and obesity groups showed higher blood glucose and lipid profile in comparison to the infected control group. However, these parameters were improved in comparison to their noninfected controls. In sum, induction of T2DM and obesity increased tissue egg counts, mature egg percentage, and fibrosis density, while schistosome infection induced changes in the lipid profile and blood glucose levels in infected diabetic and obese groups and impacted favorably insulin levels in obese mice. By better understanding the complexities of host-parasite interactions, efforts to reduce the burden of these debilitating diseases can be improved.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insulinas , Esquistosomiasis mansoni , Humanos , Animales , Ratones , Esquistosomiasis mansoni/parasitología , Interleucina-10 , Interleucina-5 , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/patología , Glucemia , Hígado/patología , Schistosoma mansoni , Cirrosis Hepática/patología , Obesidad/complicaciones , Obesidad/patología , Lípidos , Factores de Transcripción Forkhead , Recuento de Huevos de Parásitos
10.
Eur J Radiol ; 162: 110748, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905715

RESUMEN

PURPOSE: This study aimed to explore the value of pre-/post-contrast-enhanced T1 mapping and readout segmentation of long variable echo-train diffusion-weighted imaging (RESOLVE-DWI) for the differential diagnosis of parotid gland tumors. METHODS: A total of 128 patients with histopathologically confirmed parotid gland tumors [86 benign tumors (BTs) and 42 malignant tumors (MTs)] were retrospectively recruited. BTs were further divided into pleomorphic adenomas (PAs, n = 57) and Warthin's tumors (WTs, n = 15). MRI examinations were performed before and after contrast injection to measure the longitudinal relaxation time (T1) value (T1p and T1e, respectively) and the apparent diffusion coefficient (ADC) value of the parotid gland tumors. The reduction in T1 (T1d) values and the percentage of T1 reduction (T1d%) were calculated. RESULTS: The T1d and ADC values of the BTs were considerably higher than those of the MTs (all P <.05). The area under the curve (AUC) of the T1d and ADC values for differentiating between BTs and MTs of the parotid was 0.618 and 0.804, respectively (all P <.05). The AUC of the T1p, T1d, T1d%, and ADC values for differentiating between PAs and WTs was 0.926, 0.945, 0.925, and 0.996, respectively (all P >.05). The ADC and T1d% + ADC values performed better in differentiating between PAs and MTs than the T1p, T1d, and T1d% (AUC values: 0.902, 0.909, 0.660, 0.726, and 0.736, respectively). The T1p, T1d, T1d%, and T1d% + T1p values all had high diagnosis efficacy in differentiating WTs from MTs (AUC values: 0.865, 0.890, 0.852, and 0.897, respectively, all P >.05). CONCLUSION: T1 mapping and RESOLVE-DWI can be used to differentiate parotid gland tumors quantitatively and can be complementary to each other.


Asunto(s)
Diabetes Mellitus Tipo 1 , Neoplasias de la Parótida , Humanos , Glándula Parótida/diagnóstico por imagen , Glándula Parótida/patología , Estudios Retrospectivos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/patología , Neoplasias de la Parótida/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Diagnóstico Diferencial
11.
Elife ; 122023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705564

RESUMEN

Regulatory T cells (Tregs) are indispensable for maintaining self-tolerance by suppressing conventional T cells. On the other hand, Tregs promote tumor growth by inhibiting anticancer immunity. In this study, we identified that Tregs increase the quorum of self-reactive CD8+ T cells required for the induction of experimental autoimmune diabetes in mice. Their major suppression mechanism is limiting available IL-2, an essential T-cell cytokine. Specifically, Tregs inhibit the formation of a previously uncharacterized subset of antigen-stimulated KLRK1+ IL-7R+ (KILR) CD8+ effector T cells, which are distinct from conventional effector CD8+ T cells. KILR CD8+ T cells show superior cell-killing abilities in vivo. The administration of agonistic IL-2 immunocomplexes phenocopies the absence of Tregs, i.e., it induces KILR CD8+ T cells, promotes autoimmunity, and enhances antitumor responses in mice. Counterparts of KILR CD8+ T cells were found in the human blood, revealing them as a potential target for immunotherapy.


As well as protecting us from invading pathogens, like bacteria or viruses, our immune system can also identify dangerous cells of our own that may cause the body harm, such as cancer cells. Once detected, a population of immune cells called cytotoxic T cells launch into action to kill the potentially harmful cell. However, sometimes the immune system makes mistakes and attacks healthy cells which it misidentifies as being dangerous, leading to autoimmune diseases. Special immune cells called T regulatory lymphocytes, or 'Tregs', can suppress the activity of cytotoxic T cells, preventing them from hurting the body's own cells. While this can have a positive impact and reduce the effects of autoimmunity, Tregs can also make the immune system less responsive to cancer cells and allow tumors to grow. But how Tregs alter the behavior of cytotoxic T cells during autoimmune diseases and cancer is poorly understood. While multiple mechanisms have been proposed, none of these have been tested in living animal models of these diseases. To address this, Tsyklauri et al. studied Tregs in laboratory mice which had been modified to have autoimmune diabetes, which is when the body attacks the cells responsible for producing insulin. The experiments revealed that Tregs take up a critical signaling molecule called IL-2 which cytotoxic T cells need to survive and multiply. As a result, there is less IL-2 molecules available in the environment, inhibiting the cytotoxic T cells' activity. Furthermore, if Tregs are absent and there is an excess of IL-2, this causes cytotoxic T cells to transition into a previously unknown subset of T cells with superior killing abilities. Tsyklauri et al. were able to replicate these findings in two different groups of laboratory mice which had been modified to have cancer. This suggests that Tregs suppress the immune response to cancer cells and prevent autoimmunity using the same mechanism. In the future, this work could help researchers to develop therapies that alter the behavior of cytotoxic T cells and/or Tregs to either counteract autoimmune diseases, or help the body fight off cancer.


Asunto(s)
Diabetes Mellitus Tipo 1 , Linfocitos T Reguladores , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1/patología , Tolerancia Inmunológica , Interleucina-2 , Subfamilia K de Receptores Similares a Lectina de Células NK , Receptores de Interleucina-7
12.
J Adv Res ; 51: 161-179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36334887

RESUMEN

INTRODUCTION: Meteorin-like hormone (Metrnl) is ubiquitously expressed in skeletal muscle, heart, and adipose with beneficial roles in obesity, insulin resistance, and inflammation. Metrnl is found to protect against cardiac hypertrophy and doxorubicin-induced cardiotoxicity. However, its role in diabetic cardiomyopathy (DCM) is undefined. OBJECTIVES: We aimed to elucidate the potential roles of Metrnl in DCM. METHODS: Gain- andloss-of-function experimentswere utilized to determine the roles of Metrnl in the pathological processes of DCM. RESULTS: We found that plasma Metrnl levels, myocardial Metrnl protein and mRNA expressions were significantly downregulated in both streptozotocin (STZ)-induced (T1D) mice and leptin receptor deficiency (db/db) (T2D) mice. Cardiac-specific overexpression (OE) of Metrnl markedly ameliorated cardiac injury and dysfunction in both T1D and T2D mice. In sharp contrast, specific deletion of Metrnl in the heart had the opposite phenotypes. In parallel, Metrnl OE ameliorated, whereas Metrnl downregulation exacerbated high glucose (HG)-elicited hypertrophy, apoptosis and oxidative damage in primary neonatal rat cardiomyocytes. Antibody-induced blockade of Metrnl eliminated the effects of benefits of Metrnl in vitro and in vivo. Mechanistically, Metrnl activated the autophagy pathway and inhibited the cGAS/STING signaling in a LKB1/AMPK/ULK1-dependent mechanism in cardiomyocytes. Besides, Metrnl-induced ULK1 phosphorylation facilitated the dephosphorylation and mitochondrial translocation of STING where it interacted with tumor necrosis factor receptor-associated factor 2 (TRAF2), a scaffold protein and E3 ubiquitin ligase that was responsible for ubiquitination and degradation of STING, rendering cardiomyocytes sensitive to autophagy activation. CONCLUSION: Thus, Metrnl may be an attractive therapeutic target or regimen for treating DCM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Animales , Ratones , Ratas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Miocitos Cardíacos , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/farmacología
13.
Pancreas ; 51(7): 830-833, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395410

RESUMEN

ABSTRACT: Pancreatic myoepithelial hamartoma is a rare, benign solid and cystic lesion of the pancreas. We present the first case of an adult with a giant myoepithelial hamartoma extending throughout the pancreas in a patient with diabetes in 4 immediate family members. The patient is a 46-year-old man presented with recurrent acute pancreatitis. Computed tomographic imaging showed that the head and body of the pancreas were replaced by a solid-cystic mass with focal calcification. Medical history includes insulin-dependent diabetes mellitus (IDDM) diagnosed at age 30. Endoscopic ultrasound-guided fine-needle aspiration showed pancreatic acinar tissue and smooth muscle without evidence of malignancy. Total pancreatectomy was performed because of the diffuse nature of the cystic disease and preexisting IDDM. The histopathologic diagnosis was consistent with myoepithelial hamartoma. In addition, there was a family history of IDDM and hamartomatous cyst resection in the paternal grandmother. We report the first case of diffuse pancreatic myoepithelial hamartoma with near total replacement of the entire pancreatic parenchyma, and the first reported case associated with a family history of heritable IDDM. Improved knowledge of the genetics, development, and malignant potential of such rare diseases is critical to determine appropriate management for patients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hamartoma , Neoplasias Pancreáticas , Pancreatitis , Masculino , Adulto , Humanos , Persona de Mediana Edad , Diabetes Mellitus Tipo 1/patología , Enfermedad Aguda , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Páncreas/diagnóstico por imagen , Páncreas/cirugía , Páncreas/patología , Hamartoma/diagnóstico por imagen , Hamartoma/genética
14.
Molecules ; 27(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36144807

RESUMEN

BACKGROUND: Type-one diabetes (T1D), a chronic autoimmune disease with marked inflammatory responses, is associated with infertility complications and implications. Based on the anti-diabetic, antioxidant, and anti-hyperlipidemic potential of Portulaca oleracea (PO), this study aimed to evaluate the protective effect of this plant extract on streptozotocin-induced type-I-diabetes-associated reproductive system dysfunction and inflammation. METHODS: Male rats were randomly divided into four experimental groups: control, diabetic, and treatment/s (PO extract at 100 or 300 mg/kg/daily). Then food and water consumption, body, testis and epididymis weights, histopathological evaluation, seminiferous tubules diameter, sperm count and motility, glucose levels, sex hormones, and inflammatory and oxidative stress markers were evaluated. RESULTS: Our results showed that streptozotocin-induced diabetes significantly increased food and water consumption; increased glucose, MDA, TGF-ß1, and TNF-α levels; and decreased the seminiferous tubules diameter, sperm count and motility, levels of LH, testosterone, total thiol, VEGF, and SOD activity. Interestingly, PO extract (phytochemically characterized by using liquid chromatography-mass spectrometry to detect bioactive molecules) significantly ameliorated these parameters and histopathological indexes' damage in rats. CONCLUSION: Even if more preclinical assessments are needed to better characterize the mechanism/s of action, the results of this study will pave the way for the rational use of PO on diabetic-associated clinical complications and implications.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Portulaca , Animales , Antioxidantes/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Glucosa/metabolismo , Inflamación/metabolismo , Masculino , Estrés Oxidativo , Extractos Vegetales/metabolismo , Portulaca/química , Ratas , Estreptozocina/farmacología , Compuestos de Sulfhidrilo/metabolismo , Superóxido Dismutasa/metabolismo , Testículo , Testosterona/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Diabetologia ; 65(12): 2108-2120, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35953727

RESUMEN

AIMS/HYPOTHESIS: Enterovirus (EV) infection of pancreatic islet cells is one possible factor contributing to type 1 diabetes development. We have reported the presence of EV genome by PCR and of EV proteins by immunohistochemistry in pancreatic sections. Here we explore multiple human virus species in the Diabetes Virus Detection (DiViD) study cases using innovative methods, including virus passage in cell cultures. METHODS: Six recent-onset type 1 diabetes patients (age 24-35) were included in the DiViD study. Minimal pancreatic tail resection was performed under sterile conditions. Eleven live cases (age 43-83) of pancreatic carcinoma without diabetes served as control cases. In the present study, we used EV detection methods that combine virus growth in cell culture, gene amplification and detection of virus-coded proteins by immunofluorescence. Pancreas homogenates in cell culture medium were incubated with EV-susceptible cell lines for 3 days. Two to three blind passages were performed. DNA and RNA were extracted from both pancreas tissue and cell cultures. Real-time PCR was used for detecting 20 different viral agents other than EVs (six herpesviruses, human polyomavirus [BK virus and JC virus], parvovirus B19, hepatitis B virus, hepatitis C virus, hepatitis A virus, mumps, rubella, influenza A/B, parainfluenza 1-4, respiratory syncytial virus, astrovirus, norovirus, rotavirus). EV genomes were detected by endpoint PCR using five primer pairs targeting the partially conserved 5' untranslated region genome region of the A, B, C and D species. Amplicons were sequenced. The expression of EV capsid proteins was evaluated in cultured cells using a panel of EV antibodies. RESULTS: Samples from six of six individuals with type 1 diabetes (cases) and two of 11 individuals without diabetes (control cases) contained EV genomes (p<0.05). In contrast, genomes of 20 human viruses other than EVs could be detected only once in an individual with diabetes (Epstein-Barr virus) and once in an individual without diabetes (parvovirus B19). EV detection was confirmed by immunofluorescence of cultured cells incubated with pancreatic extracts: viral antigens were expressed in the cytoplasm of approximately 1% of cells. Notably, infection could be transmitted from EV-positive cell cultures to uninfected cell cultures using supernatants filtered through 100 nm membranes, indicating that infectious agents of less than 100 nm were present in pancreases. Due to the slow progression of infection in EV-carrying cell cultures, cytopathic effects were not observed by standard microscopy but were recognised by measuring cell viability. Sequences of 5' untranslated region amplicons were compatible with EVs of the B, A and C species. Compared with control cell cultures exposed to EV-negative pancreatic extracts, EV-carrying cell cultures produced significantly higher levels of IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1). CONCLUSIONS/INTERPRETATION: Sensitive assays confirm that the pancreases of all DiViD cases contain EVs but no other viruses. Analogous EV strains have been found in pancreases of two of 11 individuals without diabetes. The detected EV strains can be passaged in series from one cell culture to another in the form of poorly replicating live viruses encoding antigenic proteins recognised by multiple EV-specific antibodies. Thus, the early phase of type 1 diabetes is associated with a low-grade infection by EVs, but not by other viral agents.


Asunto(s)
Diabetes Mellitus Tipo 1 , Infecciones por Enterovirus , Enterovirus , Infecciones por Virus de Epstein-Barr , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 1/patología , Regiones no Traducidas 5' , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4/genética , Enterovirus/genética , Páncreas/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Antígenos Virales , Extractos Pancreáticos
16.
Curr Opin Endocrinol Diabetes Obes ; 29(4): 303-309, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776685

RESUMEN

PURPOSE OF REVIEW: This study aims to review bone marrow adipose tissue (BMAT) changes in people with diabetes, contributing factors, and interventions. RECENT FINDINGS: In type 1 diabetes (T1D), BMAT levels are similar to healthy controls, although few studies have been performed. In type 2 diabetes (T2D), both BMAT content and composition appear altered, and recent bone histomorphometry data suggests increased BMAT is both through adipocyte hyperplasia and hypertrophy. Position emission tomography scanning suggests BMAT is a major source of basal glucose uptake. BMAT is responsive to metabolic interventions. SUMMARY: BMAT is a unique fat depot that is influenced by metabolic factors and proposed to negatively affect the skeleton. BMAT alterations are more consistently seen in T2D compared to T1D. Interventions such as thiazolidinedione treatment may increase BMAT, whereas metformin treatment, weight loss, and exercise may decrease BMAT. Further understanding of the role of BMAT will provide insight into the pathogenesis of diabetic bone disease and could lead to targeted preventive and therapeutic strategies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Tejido Adiposo/metabolismo , Adiposidad , Médula Ósea/metabolismo , Médula Ósea/patología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Obesidad/metabolismo
17.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887317

RESUMEN

Macrophages play an important role in the early development of type 1 diabetes (T1D). Based on the phenotype, macrophages can be classified into pro-inflammatory (M1) and anti-inflammatory (M2) macrophages. Despite intensive research in the field of macrophages and T1D, the kinetic response of M1/M2 ratio has not been studied in T1D. Thus, herein, we studied the M1 and M2 macrophages in the early development of T1D using the multiple low dose streptozotocin (MLDSTZ) mouse model. We determined the proportions of M1 and M2 macrophages in thymic glands, pancreatic lymph nodes and spleens on days 3, 7 and 10 after the first injection of STZ. In addition, we investigated the effect of IL-35 in vivo on the M1/M2 ratio and IL-35+ plasmacytoid dendritic cells in diabetic mice and in vitro on the sorted macrophages. Our results revealed that the M1/M2 ratio is higher in STZ-treated mice but this was lowered upon the treatment with IL-35. Furthermore, IL-35 treated mice had lower blood glucose levels and a higher proportion of IL-35+ cells among pDCs. Macrophages treated with IL-35 in vitro also had a higher proportion of M2 macrophages. Together, our data indicate that, under diabetic conditions, pro-inflammatory macrophages increased, but IL-35 treatment decreased the pro-inflammatory macrophages and increased anti-inflammatory macrophages, further suggesting that IL-35 prevents hyperglycemia by maintaining the anti-inflammatory phenotype of macrophages and other immune cells. Thus, IL-35 should be further investigated for the treatment of T1D and other autoimmune disorders.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Animales , Diabetes Mellitus Tipo 1/patología , Interleucinas , Macrófagos , Ratones , Estreptozocina
18.
Arch Razi Inst ; 77(1): 467-475, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35891736

RESUMEN

Diabetes mellitus (DM) is a clinical illness usually linked to a wide range of skin manifestations; however, skin, as the greatest organ in the body, has received little attention. As a result, this study aimed to detect the prevalence and pattern of non-infectious skin disorders among patients with diabetes. This study was carried out at the Faiha Specialized Diabetes, Endocrine, and Metabolism Center, Basrah Province, Iraq, from September 2020 to September 2021. The data were collected from 347 patients with Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM). The exclusion criteria were patients with skin changes due to some medications, pregnancy, iatrogenic factors, skin infections, established hypo- or hyper-thyroidism, Cushing or adrenal insufficiency, pituitary disorders, end-stage renal impairment, malignancy, and established rheumatological disease and those who were on chemotherapy. Full dermatological examinations and screenings were performed under the supervision of a dermatologist expert and all clinically definable cutaneous lesions were recorded. The prevalence of skin lesions was estimated at 71.5% in patients. Pruritus, xerosis, acrochordon, diabetic dermopathy, acanthosis nigricans, and insulin-related lipohypertrophy were the commonest skin lesions reported among the patients. The occurrence of skin lesions in diabetic patients was proportional to the female gender, duration of disease, obesity, insulin therapy, and worse glycemic control. There was a broad spectrum of skin lesions in both T1DM and T2DM with corresponding prevalence.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Insulinas , Enfermedades de la Piel , Femenino , Humanos , Masculino , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/patología , Irak/epidemiología , Enfermedades de la Piel/epidemiología , Enfermedades de la Piel/patología
19.
Proc Natl Acad Sci U S A ; 119(31): e2120028119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878027

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic ß-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23. Of these 17 peptides, the hprt4-18 peptide, found in the normal human gut commensal Parabacteroides distasonis, activated both human T cell clones from T1D patients and T cell hybridomas from nonobese diabetic (NOD) mice specific to insB:9-23. Immunization of NOD mice with P. distasonis insB:9-23 peptide mimic or insB:9-23 peptide verified immune cross-reactivity. Colonization of female NOD mice with P. distasonis accelerated the development of T1D, increasing macrophages, dendritic cells, and destructive CD8+ T cells, while decreasing FoxP3+ regulatory T cells. Western blot analysis identified P. distasonis-reacting antibodies in sera of NOD mice colonized with P. distasonis and human T1D patients. Furthermore, adoptive transfer of splenocytes from P. distasonis-treated mice to NOD/SCID mice enhanced disease phenotype in the recipients. Finally, analysis of human children gut microbiome data from a longitudinal DIABIMMUNE study revealed that seroconversion rates (i.e., the proportion of individuals developing two or more autoantibodies) were consistently higher in children whose microbiome harbored sequences capable of producing the hprt4-18 peptide compared to individuals who did not harbor it. Taken together, these data demonstrate the potential role of a gut microbiota-derived insB:9-23-mimic peptide as a molecular trigger of T1D pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Imitación Molecular , Péptidos , Animales , Autoanticuerpos/inmunología , Bacteroidetes , Linfocitos T CD8-positivos , Niño , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Insulina/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Péptidos/química
20.
Mol Cell Biochem ; 477(12): 2817-2828, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35666430

RESUMEN

Pancreatic inflammation and oxidative damage remain major concerns in type 1 diabetes mellitus (T1DM). Punicalagin, a major polyphenol in pomegranates, exhibited antioxidant and protective effects on several organs in case of T1DM; however, no study has yet explored the protective effects of punicalagin on the pancreas and islets of Langerhans. T1DM was induced by injecting 40 mg/kg streptozotocin (STZ) intraperitoneally. Punicalagin (1 mg/kg ip) was injected daily for 15 days after T1DM induction. In diabetic rats, punicalagin treatment lowered the levels of inflammatory biomarkers (monocyte chemoattractant protein-1 and C-reactive protein) and adhesion molecules (E-selectin, intercellular adhesion molecule, and vascular cell adhesion molecule) while activating myeloperoxidase activity. Treatment of diabetic rats with punicalagin improved glutathione content and superoxide dismutase, catalase, and glutathione peroxidase activities; upregulated serum paraoxonase-1 activity; and prevented the elevation lipid peroxidation and protein oxidation products in the pancreas. Furthermore, punicalagin protected the pancreas against STZ-induced histopathological alterations and increased immune-reactive ß-cells while reducing leucocyte infiltration into the islets of Langerhans, leading to normalized blood glucose and insulin levels. These findings indicated that punicalagin might protect against the development of insulitis in T1DM. In conclusion, punicalagin exerts a strong protective effect on the pancreas against oxidative injury and inflammation in STZ-induced experimental T1DM. The present results recommend punicalagin as a potential adjuvant for reducing diabetes-associated insulitis.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Ratas , Animales , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Experimental/metabolismo , Estrés Oxidativo , Estreptozocina/efectos adversos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Glucemia/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA