Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
1.
Cancer Med ; 13(9): e7238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716625

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) has a high recurrence rate and a poor prognosis. Thus, the development of effective treatment and prognostic biomarkers is required. High expression of diacylglycerol kinase alpha (DGKα) is a prognostic factor for the recurrence of hepatocellular carcinoma. However, the relationship between DGKα expression and prognosis in ICC has not been reported. METHODS: Immunohistochemistry (IHC) with anti-DGKα antibody was performed on surgical specimens of ICC (n = 69). First, DGKα expression in cancer cells was qualitatively classified into four groups (-, 1+, 2+, 3+) and divided into two groups (DGKα- and DGKα+1 + to 3+). The relationship between clinical features and DGKα expression was analyzed. Second, Ki-67 expression was evaluated as a cell proliferation marker. The number of Ki-67-positive cells was counted, and the relationship with DGKα expression was examined. RESULTS: DGKα IHC divided the patients into a DGKα+ group (1+: n = 15; 2+: n = 5; 3+: n = 5) and a DGKα- group (-: n = 44). In the DGKα+ group, patients were older and had advanced disease. Both overall survival and recurrence-free survival (RFS) were significantly worse in the DGKα+ patients. DGKα+ was identified as an independent prognostic factor for RFS by multivariate analysis. Furthermore, the number of Ki-67-positive cells increased in association with the staining levels of DGKα. CONCLUSION: Pathological DGKα expression in ICC was a cancer proliferation marker associated with recurrence. This suggests that DGKα may be a potential therapeutic target for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Biomarcadores de Tumor , Proliferación Celular , Colangiocarcinoma , Diacilglicerol Quinasa , Antígeno Ki-67 , Humanos , Colangiocarcinoma/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/mortalidad , Diacilglicerol Quinasa/metabolismo , Diacilglicerol Quinasa/genética , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/mortalidad , Anciano , Antígeno Ki-67/metabolismo , Adulto , Inmunohistoquímica , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/metabolismo
2.
Drug Resist Updat ; 73: 101055, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387281

RESUMEN

Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Asociados a Tumores , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno , ARN Interferente Pequeño/genética , Proliferación Celular , Quimiocinas/farmacología , Quimiocinas/uso terapéutico , Línea Celular Tumoral , Quimiocina CCL22/farmacología , Quimiocina CCL22/uso terapéutico
3.
Adv Biol Regul ; 91: 100999, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949728

RESUMEN

Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.


Asunto(s)
Diacilglicerol Quinasa , Neoplasias , Animales , Ratones , Diacilglicerol Quinasa/metabolismo , Diglicéridos/metabolismo , Linfocitos T/patología , Neoplasias/patología , Inmunoterapia
4.
J Lipid Res ; 65(1): 100480, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38008259

RESUMEN

Diacylglycerol kinase-ε (DGKε) catalyzes phosphorylation of diacylglycerol to phosphatidic acid with a unique specificity toward 1-stearoyl-2-arachidonoyl-sn-glycerol, which is a backbone of phosphatidylinositol (PI). Owing to this specificity, DGKε is involved in the PI cycle maintaining the cellular level of phosphorylated PI derivatives of signaling activity and was also found crucial for lipid metabolism. DGKε dysfunction is linked with the development of atypical hemolytic uremic syndrome (aHUS) and possibly other human diseases. Despite the DGKε significance, data on its regulation by cotranslational and/or post-translational modifications are scarce. Here, we report that DGKε is S-palmitoylated at Cys38/40 (mouse/human DGKε) located in the cytoplasmic end of its N-terminal putative transmembrane fragment. The S-palmitoylation of DGKε was revealed by metabolic labeling of cells with a palmitic acid analogue followed by click chemistry and with acyl-biotin and acyl-polyethylene glycol exchange assays. The S-acyltransferases zDHHC7 (zinc finger DHHC domain containing) and zDHHC17 and the zDHHC6/16 tandem were found to catalyze DGKε S-palmitoylation, which also increased the DGKε abundance. Mouse DGKε-Myc ectopically expressed in human embryonic kidney 293 cells localized to the endoplasmic reticulum where zDHHC6/16 reside and in small amounts also to the Golgi apparatus where zDHHC7 and zDHHC17 are present. The Cys38Ala substitution upregulated, whereas hyperpalmitoylation of wild-type DGKε reduced the kinase activity, indicating an inhibitory effect of the Cys38 S-palmitoylation. In addition, the substitution of neighboring Pro31 with Ala also diminished the activity of DGKε. Taken together, our data indicate that S-palmitoylation can fine-tune DGKε activity in distinct cellular compartments, possibly by affecting the distance between the kinase and its substrate in a membrane.


Asunto(s)
Cisteína , Diacilglicerol Quinasa , Ratones , Humanos , Animales , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Transducción de Señal , Citosol/metabolismo , Metabolismo de los Lípidos
5.
Cancer Commun (Lond) ; 44(2): 226-250, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38143235

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA. METHODS: We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells. RESULTS: Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling. CONCLUSION: Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Diacilglicerol Quinasa/genética , Multiómica , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/genética , ARN/uso terapéutico , Microambiente Tumoral
6.
Int Immunopharmacol ; 125(Pt A): 111145, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935092

RESUMEN

The enhancement of T cell and NK cell function is an immunotherapeutic strategy for combating cancer. Antibodies that block inhibitory receptors, such as PD-1 and CTLA4, augment T cell function and have been successful in curing patients with some types of cancer. As an alternative approach to targeting specific inhibitory receptors by antibodies, small molecule drugs that inhibit negative regulators of T cell activation have been sought. One potential pharmacological target is diacylglycerol (DAG) kinase (DGK)ζ, which is an enzyme that acts as a negative regulator of DAG by phosphorylating DAG and converting it into phosphatidic acid. DAG-mediated signaling is critical for T cell activation through its T cell receptor and NK cell activation downstream of a variety of activating receptors. Thus, DGKζ-deficient T cells and NK cells display increased function upon activating receptor engagement. Moreover, treatment with the DGKζ-selective inhibitor ASP1570 augments T cell function. In this study, we sought to test whether the acute inhibition of DGKζ by ASP1570 augments NK cell function. We find that ASP1570 enhances DAG-mediated signaling in immunoreceptor-stimulated NK cells. Accordingly, ASP1570 treatment enhanced IFNγ production and degranulation of immunoreceptor-activated NK cells in vitro and NK cell-mediated tumor clearance in vivo. Thus, ASP1570 enhances both T and NK cell function, which could possibly induce more durable anti-tumor responses for immunotherapy.


Asunto(s)
Diacilglicerol Quinasa , Neoplasias , Humanos , Diacilglicerol Quinasa/metabolismo , Linfocitos T , Transducción de Señal , Células Asesinas Naturales/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
7.
Cell Immunol ; 393-394: 104780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37918056

RESUMEN

Allergic airway diseases are caused by inappropriate immune responses directed against inhaled environmental antigens. We previously reported that the inhibition of diacylglycerol (DAG) kinaseζ (DGKζ),an enzyme that terminates DAG-mediated signaling,protects against T cell-mediated allergic airway inflammation by blocking Th2 cell differentiation.In this study, we tested whether DGKζ deficiency also affects allergic airway disease mediated by type 2 innate lymphoid cells (ILC2)s. DGKζ-deficient mice displayed diminished ILC2 function and reduced papain-induced airway inflammation compared to wildtype mice. Unexpectedly, however, mice with hematopoietic cell-specific deletion ofDGKζ displayed intact airway inflammation upon papain challenge. Rather, bone marrow chimera studies revealed thatDGKζ deficiency in the non-hematopoietic compartment was responsible for the reduction in papain-induced airway inflammation. These data suggest that DGK might represent a novel therapeutic target not only for T cell-dependent but also ILC2-dependent allergic airway inflammation by affecting non-hematopoietic cells.


Asunto(s)
Hipersensibilidad , Inmunidad Innata , Animales , Ratones , Papaína , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Linfocitos , Inflamación
8.
Sci Transl Med ; 15(719): eadh1892, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878674

RESUMEN

Programmed cell death protein 1 (PD-1) immune checkpoint blockade therapy has revolutionized cancer treatment. Although PD-1 blockade is effective in a subset of patients with cancer, many fail to respond because of either primary or acquired resistance. Thus, next-generation strategies are needed to expand the depth and breadth of clinical responses. Toward this end, we designed a human primary T cell phenotypic high-throughput screening strategy to identify small molecules with distinct and complementary mechanisms of action to PD-1 checkpoint blockade. Through these efforts, we selected and optimized a chemical series that showed robust potentiation of T cell activation and combinatorial activity with αPD-1 blockade. Target identification was facilitated by chemical proteomic profiling with a lipid-based photoaffinity probe, which displayed enhanced binding to diacylglycerol kinase α (DGKα) in the presence of the active compound, a phenomenon that correlated with the translocation of DGKα to the plasma membrane. We further found that optimized leads within this chemical series were potent and selective inhibitors of both DGKα and DGKζ, lipid kinases that constitute an intracellular T cell checkpoint that blunts T cell signaling through diacylglycerol metabolism. We show that dual DGKα/ζ inhibition amplified suboptimal T cell receptor signaling mediated by low-affinity antigen presentation and low major histocompatibility complex class I expression on tumor cells, both hallmarks of resistance to PD-1 blockade. In addition, DGKα/ζ inhibitors combined with αPD-1 therapy to elicit robust tumor regression in syngeneic mouse tumor models. Together, these findings support targeting DGKα/ζ as a next-generation T cell immune checkpoint strategy.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Ratones , Animales , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Proteómica , Diacilglicerol Quinasa/metabolismo , Linfocitos T , Lípidos
9.
Respir Res ; 24(1): 155, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301818

RESUMEN

BACKGROUND: Diacylglycerol kinase (DGK) regulates intracellular signaling and functions by converting diacylglycerol (DAG) into phosphatidic acid. We previously demonstrated that DGK inhibition attenuates airway smooth muscle (ASM) cell proliferation, however, the mechanisms mediating this effect are not well established. Given the capacity of protein kinase A (PKA) to effect inhibition of ASM cells growth in response to mitogens, we employed multiple molecular and pharmacological approaches to examine the putative role of PKA in the inhibition of mitogen-induced ASM cell proliferation by the small molecular DGK inhibitor I (DGK I). METHODS: We assayed cell proliferation using CyQUANT™ NF assay, protein expression and phosphorylation using immunoblotting, and prostaglandin E2 (PGE2) secretion by ELISA. ASM cells stably expressing GFP or PKI-GFP (PKA inhibitory peptide-GFP chimera) were stimulated with platelet-derived growth factor (PDGF), or PDGF + DGK I, and cell proliferation was assessed. RESULTS: DGK inhibition reduced ASM cell proliferation in cells expressing GFP, but not in cells expressing PKI-GFP. DGK inhibition increased cyclooxygenase II (COXII) expression and PGE2 secretion over time to promote PKA activation as demonstrated by increased phosphorylation of (PKA substrates) VASP and CREB. COXII expression and PKA activation were significantly decreased in cells pre-treated with pan-PKC (Bis I), MEK (U0126), or ERK2 (Vx11e) inhibitors suggesting a role for PKC and ERK in the COXII-PGE2-mediated activation of PKA signaling by DGK inhibition. CONCLUSIONS: Our study provides insight into the molecular pathway (DAG-PKC/ERK-COXII-PGE2-PKA) regulated by DGK in ASM cells and identifies DGK as a potential therapeutic target for mitigating ASM cell proliferation that contributes to airway remodeling in asthma.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Diacilglicerol Quinasa , Diacilglicerol Quinasa/metabolismo , Diacilglicerol Quinasa/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/farmacología , Células Cultivadas , Proliferación Celular , Miocitos del Músculo Liso/metabolismo
10.
Int. j. morphol ; 41(3): 789-797, jun. 2023. ilus
Artículo en Inglés | LILACS | ID: biblio-1514318

RESUMEN

SUMMARY: Diacylglycerol kinase (DGK) exerts balancing the intracellular level between two-second messengers, diacylglycerol and phosphatidic acid, by its phosphorylation activity. DGK ζ is often localized in cell nuclei, suggesting its involvement in the regulation of intranuclear activities, including mitosis and apoptosis. The present immunohistochemical study of rat kidneys first revealed no detection levels of DGK ζ -immunoreactivity in nuclei of most proximal tubule epithelia in contrast to its distinct occurrence in cell nuclei of collecting and distal tubules with the former more dominant. This finding suggests that DGK ζ is a key factor regulating vulnerability to acute kidney injury in various renal tubules: its low expression represents the high vulnerability of proximal tubule cells, and its distinct expression does the resistance of collecting and distal tubule cells. In addition, this isozyme was more or less localized in nuclei of cells forming glomeruli as well as in endothelial nuclei of peritubular capillaries and other intrarenal blood vessels, and epithelial nuclei of glomerular capsules (Bowman's capsules) and renal calyces, including intrarenal interstitial cells.


La diacilglicerol quinasa (DGK) ejerce el equilibrio del nivel intracelular entre dos segundos mensajeros, diacilglicerol y ácido fosfatídico, por su actividad de fosforilación. La DGK ζ a menudo se localiza en los núcleos celulares, lo que sugiere su participación en la regulación de las actividades intranucleares, incluidas la mitosis y la apoptosis. El presente estudio inmunohistoquímico en riñones de rata no reveló niveles de detección de inmunorreactividad de DGK ζ en los núcleos de la mayoría de los epitelios de los túbulos proximales, en contraste a la detección en los núcleos celulares de los túbulos colectores y distales, siendo el primero más dominante. Este hallazgo sugiere que DGK ζ es un factor clave que regula la vulnerabilidad a la lesión renal aguda en varios túbulos renales: su baja expresión representa la alta vulnerabilidad de las células del túbulo proximal, y su expresión distinta hace a la resistencia de las células del túbulo colector y distal. Además, esta isoenzima estaba más o menos localizada en los núcleos de las células que forman los glomérulos, así como en los núcleos endoteliales de los capilares peritubulares y otros vasos sanguíneos intrarrenales, y en los núcleos epiteliales de las cápsulas glomerulares (cápsulas de Bowman) y los cálices renales, incluidas las células intersticiales intrarrenales.


Asunto(s)
Animales , Ratas , Diacilglicerol Quinasa/metabolismo , Túbulos Renales/metabolismo , Inmunohistoquímica , Microscopía Inmunoelectrónica , Ratas Sprague-Dawley , Diacilglicerol Quinasa/ultraestructura , Túbulos Renales/ultraestructura
11.
Front Immunol ; 14: 1043603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138877

RESUMEN

Background: Phosphorylation of diacylglycerol by diacylglycerol-kinases represents a major inhibitory event constraining T cell activation upon antigen engagement. Efficient TCR signalling requires the inhibition of the alpha isoform of diacylglycerol kinase, DGKα, by an unidentified signalling pathway triggered by the protein adaptor SAP. We previously demonstrated that, in SAP absence, excessive DGKα activity makes the T cells resistant to restimulation-induced cell death (RICD), an apoptotic program counteracting excessive T cell clonal expansion. Results: Herein, we report that the Wiskott-Aldrich syndrome protein (WASp) inhibits DGKα through a specific interaction of the DGKα recoverin homology domain with the WH1 domain of WASp. Indeed, WASp is necessary and sufficient for DGKα inhibition, and this WASp function is independent of ARP2/3 activity. The adaptor protein NCK-1 and the small G protein CDC42 connect WASp-mediated DGKα inhibition to SAP and the TCR signalosome. In primary human T cells, this new signalling pathway is necessary for a full response in terms of IL-2 production, while minimally affecting TCR signalling and restimulation-induced cell death. Conversely, in T cells made resistant to RICD by SAP silencing, the enhanced DAG signalling due to DGKα inhibition is sufficient to restore apoptosis sensitivity. Conclusion: We discover a novel signalling pathway where, upon strong TCR activation, the complex between WASp and DGKα blocks DGKα activity, allowing a full cytokine response.


Asunto(s)
Diacilglicerol Quinasa , Proteína del Síndrome de Wiskott-Aldrich , Humanos , Diacilglicerol Quinasa/genética , Diglicéridos , Interleucina-2 , Receptores de Antígenos de Linfocitos T
12.
Thorac Cancer ; 14(13): 1179-1191, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965165

RESUMEN

BACKGROUND: Diacylglycerol kinase α (DGKA) is the first member discovered from the diacylglycerol kinase family, and it has been linked to the progression of various types of tumors. However, it is unclear whether DGKA is linked to the development of lung cancer. METHODS: We investigated the levels of DGKA in the lung cancer tissues. Cell growth assay, colony formation assay and EdU assay were used to examine the effects of DGKA-targeted siRNAs/shRNAs/drugs on the proliferation of lung cancer cells in vitro. Xenograft mouse model was used to investigate the role of DGKA inhibitor ritanserin on the proliferation of lung cancer cells in vivo. The downstream target of DGKA in lung tumorigenesis was identified by RNA sequencing. RESULTS: DGKA is upregulated in the lung cancer cells. Functional assays and xenograft mouse model indicated that the proliferation ability of lung cancer cells was impaired after inhibiting DGKA. And cyclin D3(CCND3) is the downstream target of DGKA promoting lung cancer. CONCLUSIONS: Our study demonstrated that DGKA promotes lung tumorigenesis by regulating the CCND3 expression and hence it can be considered as a potential molecular biomarker to evaluate the prognosis of lung cancer patients. What's more, we also demonstrated the efficacy of ritanserin as a promising new medication for treating lung cancer.


Asunto(s)
Diacilglicerol Quinasa , Neoplasias Pulmonares , Humanos , Animales , Ratones , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Ciclina D3/genética , Ciclina D3/metabolismo , Ritanserina , Neoplasias Pulmonares/genética , Transformación Celular Neoplásica/genética , ARN Interferente Pequeño/genética , Proliferación Celular , Pulmón , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
13.
Cell Rep Med ; 4(1): 100880, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36603576

RESUMEN

Glioblastoma (GBM) currently has a dismal prognosis. GBM cells that survive radiotherapy contribute to tumor progression and recurrence with metabolic advantages. Here, we show that diacylglycerol kinase B (DGKB), a regulator of the intracellular concentration of diacylglycerol (DAG), is significantly downregulated in radioresistant GBM cells. The downregulation of DGKB increases DAG accumulation and decreases fatty acid oxidation, contributing to radioresistance by reducing mitochondrial lipotoxicity. Diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the formation of triglycerides from DAG, is increased after ionizing radiation. Genetic inhibition of DGAT1 using short hairpin RNA (shRNA) or microRNA-3918 (miR-3918) mimic suppresses radioresistance. We discover that cladribine, a clinical drug, activates DGKB, inhibits DGAT1, and sensitizes GBM cells to radiotherapy in vitro and in vivo. Together, our study demonstrates that DGKB downregulation and DGAT1 upregulation confer radioresistance by reducing mitochondrial lipotoxicity and suggests DGKB and DGAT1 as therapeutic targets to overcome GBM radioresistance.


Asunto(s)
Diacilglicerol Quinasa , Glioblastoma , Humanos , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Lípidos/toxicidad , Triglicéridos/metabolismo , Regulación hacia Arriba
14.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233170

RESUMEN

Airway remodeling in asthma involves the hyperproliferation of airway smooth muscle (ASM) cells. However, the molecular signals that regulate ASM growth are not completely understood. Gq-coupled G protein-coupled receptor and receptor tyrosine kinase signaling regulate ASM cell proliferation via activation of phospholipase C, generation of inositol triphosphate (IP3) and diacylglycerol (DAG). Diacylglycerol kinase (DGK) converts DAG into phosphatidic acid (PA) and terminates DAG signaling while promoting PA-mediated signaling and function. Herein, we hypothesized that PA is a pro-mitogenic second messenger in ASM, and DGK inhibition reduces the conversion of DAG into PA resulting in inhibition of ASM cell proliferation. We assessed the effect of pharmacological inhibition of DGK on pro-mitogenic signaling and proliferation in primary human ASM cells. Pretreatment with DGK inhibitor I (DGKI) significantly inhibited platelet-derived growth factor-stimulated ASM cell proliferation. Anti-mitogenic effect of DGKI was associated with decreased mTOR signaling and expression of cyclin D1. Exogenous PA promoted pro-mitogenic signaling and rescued DGKI-induced attenuation of ASM cell proliferation. Finally, house dust mite (HDM) challenge in wild type mice promoted airway remodeling features, which were attenuated in DGKζ-/- mice. We propose that DGK serves as a potential drug target for mitigating airway remodeling in asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Animales , Asma/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Diglicéridos/metabolismo , Humanos , Inositol/farmacología , Ratones , Mitógenos/farmacología , Miocitos del Músculo Liso/metabolismo , Ácidos Fosfatidicos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Tirosina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfolipasas de Tipo C/metabolismo
15.
Front Immunol ; 13: 964891, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059514

RESUMEN

Background: Thyroid carcinoma (THCA) has a low mortality rate, but its incidence has been rising over the years. We need to pay attention to its progression and prognosis. In this study, a transcriptome sequencing analysis and bioinformatics methods were used to screen key genes associated with THCA development and analyse their clinical significance and diagnostic value. Methods: We collected 10 pairs of THCA tissues and noncancerous tissues, these samples were used for transcriptome sequencing to identify disordered genes. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Comprehensive analysis of thyroid clinicopathological data using The Cancer Genome Atlas (TCGA). R software was used to carry out background correction, normalization and log2 conversion. We used quantitative real-time PCR (qRT-PCR) and Western blot to determine differentially expressed genes (DEGs) expression in samples. We integrated the DEGs expression, clinical features and progression-free interval (PFI). The related functions and immune infiltration degree were established by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and single-sample Gene Set Enrichment Analysis (ssGSEA). The UALCAN database was used to analyse the methylation level. Results: We evaluated DEGs between normal tissue and cancer. Three genes were identified: regulator of G protein signaling 8 (RGS8), diacylglycerol kinase iota (DGKI) and oculocutaneous albinism II (OCA2). The mRNA and protein expression levels of RGS8, DGKI and OCA2 in normal tissues were higher than those in THCA tissues. Better survival outcomes were associated with higher expression of RGS8 (HR=0.38, P=0.001), DGKI (HR=0.52, P=0.022), and OCA2 (HR=0.41, P=0.003). The GO analysis, KEGG analysis and GSEA proved that the coexpressed genes of RGS8, DGKI and OCA2 were related to thyroid hormone production and peripheral downstream signal transduction effects. The expression levels of RGS8, DGKI and OCA2 were linked to the infiltration of immune cells such as DC cells. The DNA methylation level of OCA2 in cancer tissues was higher than that in the normal samples. Conclusions: RGS8, DGKI and OCA2 might be promising prognostic molecular markers in patients with THCA and reveal the clinical significance of RGS8, DGKI and OCA2 in THCA.


Asunto(s)
Diacilglicerol Quinasa , Proteínas de Transporte de Membrana , Proteínas RGS , Neoplasias de la Tiroides , Bases de Datos Genéticas , Diacilglicerol Quinasa/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteínas de Transporte de Membrana/genética , Pronóstico , Proteínas RGS/genética , Neoplasias de la Tiroides/genética , Transcriptoma
16.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142650

RESUMEN

Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used in food, cosmetic, and pharmaceutical products as natural emulsifiers and components of liposomes. In Yarrowia lipolytica, PLs are synthesized through a similar pathway like in higher eukaryotes. However, PL biosynthesis in this yeast is still poorly understood. The key intermediate in this pathway is phosphatidic acid, which in Y. lipolytica is mostly directed to the production of triacylglycerols and, in a lower amount, to PL. This study aimed to deliver a strain with improved PL production, with a particular emphasis on increased biosynthesis of phosphatidylcholine (PC). Several genetic modifications were performed: overexpression of genes from PL biosynthesis pathways as well as the deletion of genes responsible for PL degradation. The best performing strain (overexpressing CDP-diacylglycerol synthase (CDS) and phospholipid methyltransferase (OPI3)) reached 360% of PL improvement compared to the wild-type strain in glucose-based medium. With the substitution of glucose by glycerol, a preferred carbon source by Y. lipolytica, an almost 280% improvement of PL was obtained by transformant overexpressing CDS, OPI3, diacylglycerol kinase (DGK1), and glycerol kinase (GUT1) in comparison to the wild-type strain. To further increase the amount of PL, the optimization of culture conditions, followed by the upscaling to a 2 L bioreactor, were performed. Crude glycerol, being a cheap and renewable substrate, was used to reduce the costs of PL production. In this process 653.7 mg/L of PL, including 352.6 mg/L of PC, was obtained. This study proved that Y. lipolytica is an excellent potential producer of phospholipids, especially from waste substrates.


Asunto(s)
Yarrowia , Carbono/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Diacilglicerol Quinasa/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Glicerol Quinasa/metabolismo , Liposomas/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfatidil-N-Metiletanolamina N-Metiltransferasa/metabolismo , Fosfatidilcolinas/metabolismo , Triglicéridos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
17.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955558

RESUMEN

In recent years, the significant research efforts put into the clarification of the PI3K/AKT/mTOR pathway resulted in the approval of the first targeted therapies based on lipid kinase inhibitors [...].


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Diglicéridos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
18.
J Phys Chem B ; 126(37): 7172-7183, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36041230

RESUMEN

Diacylglycerol kinases (DGKs) are important enzymes in molecular membrane biology, as they can lower the concentration of diacylglycerol through phosphorylation while at the same time producing phosphatidic acid. Dysfunction of DGK is linked with multiple diseases including cancer and autoimmune disorders. Currently, the high-resolution structures have not been determined for any of the 10 human DGK paralogs, which has made it difficult to gain a more complete understanding of the enzyme's mechanism of action and regulation. In the present study, we have taken advantage of the significant developments in protein structural prediction technology by artificial intelligence (i.e., Alphafold 2.0), to conduct a comprehensive investigation on the properties of all 10 human DGK paralogs. Structural alignment of the predictions reveals that the C1, catalytic, and accessory domains are conserved in their spatial arrangement relative to each other, across all paralogs. This suggests a critical role played by this domain architecture in DGK function. Moreover, docking studies corroborate the existence of a conserved ATP-binding site between the catalytic and accessory domains. Interestingly, the ATP bound to the interdomain cleft was also found to be in proximity of the conserved glycine-rich motif, which in protein kinases has been suggested to function in ATP binding. Lastly, the spatial arrangement of DGK, with respect to the membrane, reveals that most paralogs possess a more energetically favorable interaction with curved membranes. In conclusion, AlphaFold predictions of human DGKs provide novel insights into the enzyme's structural and functional properties while also paving the way for future experimentation.


Asunto(s)
Diacilglicerol Quinasa , Diglicéridos , Adenosina Trifosfato , Inteligencia Artificial , Diacilglicerol Quinasa/química , Diacilglicerol Quinasa/metabolismo , Diglicéridos/química , Glicina , Humanos , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Proteínas Quinasas
19.
Exp Eye Res ; 223: 109205, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35963308

RESUMEN

Based on the theory that the phosphoinositide (PI) signal is involved in the physiology of cornea and conjunctiva, we examined the localization in the mouse anterior ocular epithelia of immunoreactivities for phosphatidylinositol 4-phosphate 5-kinase (PIP5K), phospholipase C (PLC) and diacylglycerol kinase (DGK), enzymes that work sequentially in PI cycle. Immunoreactivity for PIP5Kγ in the corneal epithelium, including the limbus, was distinct in adults in contrast to faint or negligible immunoreactivity in the conjunctival epithelium in neonatal mice. This adult localization pattern was first recognized at the postnatal time of eyelid opening. Immunoreactivity for PLCß3 was rather equally distinct throughout the entire corneal and conjunctival epithelia in adults. DGKζ-immunoreactive nuclei were mainly localized in the basal half domain of the corneal epithelium but in both basal and apical domains of the conjunctival epithelium in adults. This nuclear immunoreactivity was at weak or negligible levels in the peripheral and limbus cornea and in a considerable portion of the bulbar conjunctival epithelium continuous with the limbus. The adult patterns for PLCß3 and DGKζ were already present at birth. The present findings suggest the following possibilities on the functional significance of the three enzyme molecules. PIP5Kγ is involved in cornea-specific functions such as bright-field vision, including corneal transparency, and in the stability of epithelial junctions, for which there seems to be a much higher requirement in the corneal epithelium than in the conjunctival epithelium. PLCß3 is involved from birth in as-yet undefined functions exerted ubiquitously from birth in both corneal and conjunctival epithelia. DGKζ is involved in regulation from birth of the transcription in epithelial cells, including apoptosis as well as regulation of mitosis of epithelial cells in both cornea and conjunctiva, with the transcription involvement more apparent in the conjunctiva, although it does not work in stem cells of the corneal limbus.


Asunto(s)
Epitelio Corneal , Animales , Conjuntiva , Córnea , Diacilglicerol Quinasa , Epitelio , Ratones , Fosfatos , Fosfatos de Fosfatidilinositol , Fosfatidilinositoles , Fosfolipasas , Fosfolipasas de Tipo C
20.
Protein Sci ; 31(7): e4365, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35762720

RESUMEN

Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that modulate the levels of lipid messengers, diacylglycerol, and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. However, little progress has been made on the structural biology of DGKs, and a detailed understanding of the Ca2+ -triggered activation of DGKα, for which the N-terminal domains likely play a critical role, remains unclear. We have recently shown that Ca2+ binding to DGKα-EF induces conformational changes from a protease-susceptible "open" conformation in the apo state to a well-folded one in its holo state. Here, we further studied the structural properties of DGKα N-terminal (RVH and EF) domains using a series of biophysical techniques. We first revealed that the N-terminal RVH domain is a novel Ca2+ -binding domain, but the Ca2+ -induced conformational changes mainly occur in the EF domain. This was corroborated by NMR experiments showing that the EF domain adopts a molten-globule like structure in the apo state. Further analyses using SEC-SAXS and NMR indicate that the partially unfolded EF domain interacts with RVH domain, likely via hydrophobic interactions in the absence of Ca2+ , and this interaction is modified in the presence of Ca2+ . Taken together, these results present novel insights into the structural rearrangement of DGKα N-terminal domains upon binding to Ca2+ , which is essential for the activation of the enzyme.


Asunto(s)
Diacilglicerol Quinasa , Diglicéridos , Diacilglicerol Quinasa/genética , Endopeptidasas , Dispersión del Ángulo Pequeño , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA