Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.952
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 631(8019): 207-215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926576

RESUMEN

Pyroptosis is a lytic cell death mode that helps limit the spread of infections and is also linked to pathology in sterile inflammatory diseases and autoimmune diseases1-4. During pyroptosis, inflammasome activation and the engagement of caspase-1 lead to cell death, along with the maturation and secretion of the inflammatory cytokine interleukin-1ß (IL-1ß). The dominant effect of IL-1ß in promoting tissue inflammation has clouded the potential influence of other factors released from pyroptotic cells. Here, using a system in which macrophages are induced to undergo pyroptosis without IL-1ß or IL-1α release (denoted Pyro-1), we identify unexpected beneficial effects of the Pyro-1 secretome. First, we noted that the Pyro-1 supernatants upregulated gene signatures linked to migration, cellular proliferation and wound healing. Consistent with this gene signature, Pyro-1 supernatants boosted migration of primary fibroblasts and macrophages, and promoted faster wound closure in vitro and improved tissue repair in vivo. In mechanistic studies, lipidomics and metabolomics of the Pyro-1 supernatants identified the presence of both oxylipins and metabolites, linking them to pro-wound-healing effects. Focusing specifically on the oxylipin prostaglandin E2 (PGE2), we find that its synthesis is induced de novo during pyroptosis, downstream of caspase-1 activation and cyclooxygenase-2 activity; further, PGE2 synthesis occurs late in pyroptosis, with its release dependent on gasdermin D pores opened during pyroptosis. As for the pyroptotic metabolites, they link to immune cell infiltration into the wounds, and polarization to CD301+ macrophages. Collectively, these data advance the concept that the pyroptotic secretome possesses oxylipins and metabolites with tissue repair properties that may be harnessed therapeutically.


Asunto(s)
Movimiento Celular , Macrófagos , Oxilipinas , Piroptosis , Cicatrización de Heridas , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/citología , Oxilipinas/metabolismo , Masculino , Fibroblastos/metabolismo , Fibroblastos/citología , Femenino , Proliferación Celular , Interleucina-1beta/metabolismo , Caspasa 1/metabolismo , Secretoma/metabolismo , Dinoprostona/metabolismo , Ratones Endogámicos C57BL , Lipidómica , Ciclooxigenasa 2/metabolismo , Inflamasomas/metabolismo , Humanos , Proteínas de Unión a Fosfato/metabolismo
2.
Pharmacol Res Perspect ; 12(4): e1226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886975

RESUMEN

Although classically recognized as a neurotransmitter, gamma aminobutyric acid (GABA) has also been identified in colonic tumors. Moreover, the gut microbiome represents another potential source of GABA. Both GABAA and GABAB receptors have been implicated in contributing to the effects of GABA in colorectal cancer, with both pro- and anti-tumorigenic functions identified. However, their subunit composition is often overlooked. Studies to date have not addressed whether the GABA-producing potential of the microbiome changes over the course of colon tumor development or whether receptor subunit expression patterns are altered in colon cancer. Therefore, we investigated the clusters of orthologous group frequencies of glutamate decarboxylase (GAD) in feces from two murine models of colon cancer and found that the frequency of microbial GAD was significantly decreased early in the tumorigenic process. We also determined that microbial-derived GABA inhibited proliferation of colon cancer cells in vitro and that this effect of GABA on SW480 cells involved both GABAA and GABAB receptors. GABA also inhibited prostaglandin E2 (PGE2)-induced proliferation and interleukin-6 (IL-6) expression in these cells. Gene expression correlations were assessed using the "Cancer Exploration" suite of the TIMER2.0 web tool and identified that GABA receptor subunits were differentially expressed in human colon cancer. Moreover, GABAA receptor subunits were predominantly positively associated with PGE2 synthase, cyclooxygenase-2 and IL-6. Collectively, these data demonstrate decreased potential of the microbiome to produce GABA during tumorigenesis, a novel anti-tumorigenic pathway for GABA, and that GABA receptor subunit expression adds a further layer of complexity to GABAergic signaling in colon cancer.


Asunto(s)
Proliferación Celular , Neoplasias del Colon , Microbioma Gastrointestinal , Receptores de GABA-A , Receptores de GABA-B , Transducción de Señal , Ácido gamma-Aminobutírico , Animales , Neoplasias del Colon/metabolismo , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Ácido gamma-Aminobutírico/metabolismo , Humanos , Ratones , Línea Celular Tumoral , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Dinoprostona/metabolismo , Glutamato Descarboxilasa/metabolismo , Interleucina-6/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Carcinogénesis , Heces/microbiología , Receptores de GABA/metabolismo , Receptores de GABA/genética , Masculino , Ratones Endogámicos C57BL , Femenino
3.
BMC Urol ; 24(1): 117, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851678

RESUMEN

BACKGROUND: This study investigated the relaxation effect of PGE2 on the ureter and its role in promoting calculi expulsion following calculi development. METHODS: By using immunofluorescence and Western blot, we were able to locate EP receptors in the ureter. In vitro experiments assessed the impact of PGE2, receptor antagonists, and agonists on ureteral relaxation rate. We constructed a model of ureteral calculi with flowable resin and collected ureteral tissue from postoperative side of the ureter after obstruction surgery. Western blot analysis was used to determine the protein expression levels of EP receptors and the PGE2 terminal synthase mPGES-1. Additionally, PGE2 was added to smooth muscle cells to observe downstream cAMP and PKA changes. RESULTS: The expression of EP2 and EP4 proteins in ureteral smooth muscle was verified by Western blot analysis. According to immunofluorescence, EP2 was primarily found on the cell membrane, while EP4 was found in the nucleus. In vitro, PGE2 induced concentration-dependent ureteral relaxation. Maximum diastolic rate was 70.94 ± 4.57% at a concentration of 30µM. EP2 antagonists hindered this effect, while EP4 antagonists did not. Obstructed ureters exhibited elevated mPGES-1 and EP2 protein expression (P < 0.01). Smooth muscle cells treated with PGE2 displayed increased cAMP and phosphorylated PKA. CONCLUSIONS: PGE2 binding to EP2 induces ureteral relaxation through the cAMP-PKA pathway. This will provide a new theoretical basis for the development of new therapeutic approaches for the use of PGE2 in the treatment of ureteral stones.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Dinoprostona , Subtipo EP2 de Receptores de Prostaglandina E , Uréter , Cálculos Ureterales , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Animales , Uréter/metabolismo , Transducción de Señal/fisiología , Masculino , Relajación Muscular/efectos de los fármacos , Relajación Muscular/fisiología
4.
Front Immunol ; 15: 1372927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742105

RESUMEN

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Asunto(s)
Dinoprostona , Lectinas Tipo C , Manosa , Polisacáridos , Schistosoma mansoni , Células Th2 , Animales , Ratones , Antígenos Helmínticos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Lectinas Tipo C/metabolismo , Lectinas Tipo C/inmunología , Manosa/metabolismo , Manosa/inmunología , Ratones Endogámicos C57BL , Óvulo/inmunología , Óvulo/metabolismo , Ligando OX40/metabolismo , Polisacáridos/inmunología , Polisacáridos/metabolismo , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/metabolismo , Esquistosomiasis mansoni/parasitología , Células Th2/inmunología , Células Th2/metabolismo
5.
J Microbiol Biotechnol ; 34(6): 1340-1347, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38783718

RESUMEN

Ehretia asperula is a medicinal plant of the Ehretiaceae family used to treat inflammatory disorders, but the underlying mechanisms are not fully elucidated. The anti-inflammatory potential was determined based on enzyme cyclooxygenase-2 (COX-2) inhibition, which showed that the 95% ethanol extract (95ECH) was most effective with a half-maximal inhibitory concentration (IC50) value of 34.09 µg/mL. The effects of 95ECH on phagocytosis, NO production, gene, and protein expression of the cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) and inducible nitric oxide synthase/nitric oxide (iNOS/NO) pathways in lipopolysaccharide (LPS)-induced RAW264.7 cells were examined using the neutral red uptake and Griess assays, reverse-transcriptase polymerase chain reactions (RTPCR), and enzyme-linked immunosorbent assays (ELISA). The results showed that 95ECH suppressed phagocytosis and the NO production in activated macrophage cells (p < 0.01). Conversely, 95ECH regulated the expression levels of mRNAs for cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) as well as the corresponding proteins. In addition, PGE2 production was inhibited in a dose-dependent manner by 95ECH, and the expression of iNOS and COX-2 mRNAs was decreased in activated macrophage cells, as expected. Therefore, 95ECH from E. asperula leaves contains potentially valuable compounds for use in inflammation management.


Asunto(s)
Antiinflamatorios , Ciclooxigenasa 2 , Dinoprostona , Lipopolisacáridos , Macrófagos , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Fagocitosis , Extractos Vegetales , Animales , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Antiinflamatorios/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Fagocitosis/efectos de los fármacos , Óxido Nítrico/metabolismo , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Dinoprostona/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
6.
Clin Oral Investig ; 28(6): 337, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795217

RESUMEN

OBJECTIVES: Mechano-sensitive odontoblast cells, which sense mechanical loading and various stresses in the tooth structure, synthesize early signaling molecules such as prostaglandin E2 (PGE2) and nitric oxide (NO) as an adaptive response. It is thought that these synthesized molecules can be used for the diagnosis and treatment of periodontal and periapical diseases. The aim of this study was to investigate the relationship between the severity of apical periodontitis (AP) and chronic periodontitis (CP) and serum (s) TNF-α, IL-10, PGE2 and NO levels, as well as PGE2 and NO levels in gingival crevicular fluid (GCF) samples. MATERIALS & METHODS: A total of 185 subjects were divided into three categories: AP group (n = 85), CP group (n = 50) and healthy control group (n = 50). The AP group was divided into 3 subgroups according to abscess scoring (AS-PAI 1, 2 and 3) based on the periapical index. The CP group was divided into 4 subgroups according to the periodontitis staging system (PSS1, 2,3 and 4). After recording the demographic and clinical characteristics of all participants, serum (s) and gingival crevicular fluid (GCF) samples were taken. TNF-α, IL-10, PGE2 and NO levels were measured in these samples. RESULTS: Unlike serum measurements (sTNF-α, sIL-10, sNO and sPGE2), GCF-NO and GCF-PGE levels of the AP group were significantly higher than the control group in relation to abscess formation (54.4 ± 56.3 vs. 22.5 ± 12.6 µmol/mL, p < 0.001 and 100 ± 98 vs. 41 ± 28 ng/L, p < 0.001, respectively). Confirming this, the GCF-NO and GCF-PGE levels of the AS-PAI 1 group, in which abscesses have not yet formed, were found to be lower than those in AS-PAI 2 and 3, which are characterized by abscess formation [(16.7(3.7-117.8), 32.9(11.8-212.8) and 36.9(4.3-251.6) µmol/mL, p = 0,0131; 46.0(31.4-120.0), 69.6(40.3-424.2) and 74.4(32.1-471.0) ng/L, p = 0,0020, respectively]. Consistent with the increase in PSS, the levels of sTNF [29.8 (8.2-105.5) vs. 16.7(6.3-37.9) pg/mL, p < 0.001], sIL-10 [542(106-1326) vs. 190(69-411) pg/mL, p < 0.001], sNO [182.1(36.3-437) vs. 57.0(15.9-196) µmol/mL, p < 0.001], sPGE2 [344(82-1298) vs. 100(35-1178) ng/L, p < 0.001], GCF-NO [58.9 ± 33.6 vs. 22.5 ± 12.6 ng/L, p < 0.001] and GCF-PGE2 [ 99(37-365) vs. 30(13-119), p < 0.001] in the CP group were higher than the control group. Comparison ROC analysis revealed that the GCF-PGE2 test had the best diagnostic value for both AP and CP (sensitivity: 94.1 and 88.0; specificity: 64.0 and 78.0, respectively; p < 0.001). CONCLUSIONS: GCF-PE2 and GCF-NO have high diagnostic value in the determination of AP and CP, and can be selected as targets to guide treatment. In addition, the measurements of PGE2 and NO in GCF can be used as an important predictor of pulpal necrosis leading to abscess in patients with AP. CLINICAL RELEVANCE: In this article, it is reported that syntheses of early signaling molecules such as PGE2 and NO can be used for the diagnosis and treatment target of periapical and periodontal infections.


Asunto(s)
Periodontitis Crónica , Dinoprostona , Líquido del Surco Gingival , Interleucina-10 , Óxido Nítrico , Periodontitis Periapical , Factor de Necrosis Tumoral alfa , Humanos , Periodontitis Periapical/metabolismo , Masculino , Femenino , Periodontitis Crónica/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/biosíntesis , Líquido del Surco Gingival/química , Adulto , Dinoprostona/metabolismo , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Persona de Mediana Edad , Ensayo de Inmunoadsorción Enzimática , Estudios de Casos y Controles
8.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38772371

RESUMEN

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Centro Germinal , Inmunidad Humoral , Bazo , Animales , Masculino , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/farmacología , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Ganglios Espinales/metabolismo , Centro Germinal/inmunología , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal , Bazo/inervación , Bazo/inmunología , Femenino
9.
Life Sci ; 350: 122751, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797363

RESUMEN

AIM: To understand the mechanism of prostaglandin E2 (PGE2)-mediated immunosuppression in dendritic cells (DCs). MAIN METHODS: In vivo experiments were conducted on 4T1 tumor bearing mice (TBM). In vitro experiments were performed in bone marrow-derived DCs (BMDCs), or spleen cells. Cytokines were monitored by ELISA/ELIspot. Gene expression was monitored by RT-PCR/flow cytometry. KEY FINDINGS: In silico, in vitro, and in vivo experiments in 4T1 TBM revealed that PGE2 induced IL-6/pSTAT3 signaling through EP4 receptors in DCs, resulting in their dysfunction. These effects were reversed by EP4 antibody neutralization, EP4 antagonist, and STAT3 inhibitory peptides. PGE2 induced IL-6 was regulated by miR-365, as its mimic inhibited PGE2 induced IL-6 and the inhibitor increased lL-6 levels in DC. Bio-informatic analysis in human mammary cancers also revealed a strong compared co-relation between PGE2 and IL-6 (Correlation AnalyzeR) (R = 0.94). Mice bearing PTGS-2 KD 4T1 tumors had decreased tumor burden, PGE2, EP4, IL-6, and pSTAT3 signaling, along with improved DCs and T cell functions. Treatment of mice with a cyclooxygenase-2 (COX-2) inhibitor or EP4 antagonist decreased tumor burden, and this effect of EP4 antagonist was abrogated upon in vivo depletion of CD11c cells, indicating the crucial role of PGE2 signaling in DCs in tumor progression. SIGNIFICANCE: In summary, our data highlights the importance of dendritic cells in mediating PGE2-mediated immunosuppression and the use of EP4 or STAT3 inhibitors or miR365 mimics can restore immunogenicity in cancer.


Asunto(s)
Células Dendríticas , Dinoprostona , Interleucina-6 , MicroARNs , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Factor de Transcripción STAT3/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Femenino , Humanos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo
10.
Immunity ; 57(6): 1274-1288.e6, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821053

RESUMEN

Severe asthma and sinus disease are consequences of type 2 inflammation (T2I), mediated by interleukin (IL)-33 signaling through its membrane-bound receptor, ST2. Soluble (s)ST2 reduces available IL-33 and limits T2I, but little is known about its regulation. We demonstrate that prostaglandin E2 (PGE2) drives production of sST2 to limit features of lung T2I. PGE2-deficient mice display diminished sST2. In humans with severe respiratory T2I, urinary PGE2 metabolites correlate with serum sST2. In mice, PGE2 enhanced sST2 secretion by mast cells (MCs). Mice lacking MCs, ST2 expression by MCs, or E prostanoid (EP)2 receptors by MCs showed reduced sST2 lung concentrations and strong T2I. Recombinant sST2 reduced T2I in mice lacking PGE2 or ST2 expression by MCs back to control levels. PGE2 deficiency also reversed the hyperinflammatory phenotype in mice lacking ST2 expression by MCs. PGE2 thus suppresses T2I through MC-derived sST2, explaining the severe T2I observed in low PGE2 states.


Asunto(s)
Dinoprostona , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Pulmón , Mastocitos , Ratones Noqueados , Animales , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Mastocitos/inmunología , Mastocitos/metabolismo , Dinoprostona/metabolismo , Ratones , Interleucina-33/metabolismo , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Asma/inmunología , Asma/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Ratones Endogámicos C57BL , Inflamación/inmunología , Femenino , Masculino , Transducción de Señal , Neumonía/inmunología , Neumonía/metabolismo
11.
Pharmacol Rev ; 76(3): 388-413, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697857

RESUMEN

The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.


Asunto(s)
Dinoprostona , Neoplasias , Subtipo EP2 de Receptores de Prostaglandina E , Subtipo EP4 de Receptores de Prostaglandina E , Microambiente Tumoral , Humanos , Dinoprostona/metabolismo , Animales , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Transducción de Señal
12.
Zhongguo Fei Ai Za Zhi ; 27(4): 245-256, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38769827

RESUMEN

BACKGROUND: Tumor microenvironment (TME) is one of the important factors in tumorigenesis and progression, in which tumor-associated macrophages (TAMs) play an important role in non-small cell lung cancer (NSCLC) progression. However, the mechanism of TAMs in NSCLC progression remains unclear, so this study aimed to investigate the role of TAMs in NSCLC progression and to find potential therapeutic targets. METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) database was used to analyze the expression of prostaglandin E2 receptor 4 (EP4) mRNA in NSCLC and normal lung tissues; the protein expression levels of cyclooxygenase-2 (COX-2), EP4, cluster of differentiation 86 (CD86), CD163 and CD31 were detected by immunohistochemistry (IHC) in 120 NSCLC tissues and 24 paracancerous tissues specimens. The nude mouse lung adenocarcinoma cell A549 and macrophage RAW264.7 co-transplanted tumor model was established. And the samples were collected by gavage with EP4 inhibitor E7046, and then stained with hematoxylin-eosin (HE), IHC, and immunofluorescence (IF), and then detected by Western blot for the epithelial mesenchymal transformation (EMT) of the tumor tissues of the nude mice in each group. Western blot was used to detect the expressions of EMT related protiens in each group of nude mice; full-length transcriptome sequencing was used to screen the key genes causing liver metastasis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed. RESULTS: EP4 mRNA expression level in NSCLC tissues was generally lower than that in normal lung tissues (P<0.05); COX-2, EP4, CD163, CD31 proteins were differentially expressed in NSCLC tissues and adjacent tissues, and differences were observed in many clinicopathological parameters of NSCLC patients; RAW264.7 shortened the latency period of tumorigenesis of A549 and promoted the proliferation of tumors and liver metastasis of tumors, and E7046 could reduce tumor cell proliferation activity, tumor tissue vascular density and M2-type macrophage infiltration in nude mice; IF staining showed that macrophages were mainly distributed around the metastatic foci of tumors; Western blot results showed that compared with A549 alone transplantation group, the relative expression of E-cadherin protein in tumor tissues of mice in A549 and RAW264.7 co-transplantation group was significantly decreased, and the difference was statistically significant (P<0.05), while the relative expression of N-cadherin protein was up-regulated, but the difference was not statistically significant (P>0.05); the main pathways enriched in the differential genes of the full-length transcriptome were the PI3K-AKT and MAPK signaling pathways. CONCLUSIONS: During NSCLC development, the COX-2/PGE2/EP4 axis may promote tumor progression by inducing macrophage functional activation, and EP4 may be a potential new target for tumor immunotherapy. This study provides new perspectives and ideas for in-depth exploration of the mechanisms of NSCLC development, as well as a theoretical basis for the development of new therapeutic strategies for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ciclooxigenasa 2 , Dinoprostona , Neoplasias Pulmonares , Subtipo EP4 de Receptores de Prostaglandina E , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Humanos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Animales , Dinoprostona/metabolismo , Ratones , Macrófagos/metabolismo , Activación de Macrófagos , Masculino , Femenino , Células A549 , Células RAW 264.7
13.
Nat Commun ; 15(1): 4326, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773113

RESUMEN

Resolving inflammation is thought to return the affected tissue back to homoeostasis but recent evidence supports a non-linear model of resolution involving a phase of prolonged immune activity. Here we show that within days following resolution of Streptococcus pneumoniae-triggered lung inflammation, there is an influx of antigen specific lymphocytes with a memory and tissue-resident phenotype as well as macrophages bearing alveolar or interstitial phenotype. The transcriptome of these macrophages shows enrichment of genes associated with prostaglandin biosynthesis and genes that drive T cell chemotaxis and differentiation. Therapeutic depletion of post-resolution macrophages, inhibition of prostaglandin E2 (PGE2) synthesis or treatment with an EP4 antagonist, MF498, reduce numbers of lung CD4+/CD44+/CD62L+ and CD4+/CD44+/CD62L-/CD27+ T cells as well as their expression of the α-integrin, CD103. The T cells fail to reappear and reactivate upon secondary challenge for up to six weeks following primary infection. Concomitantly, EP4 antagonism through MF498 causes accumulation of lung macrophages and marked tissue fibrosis. Our study thus shows that PGE2 signalling, predominantly via EP4, plays an important role during the second wave of immune activity following resolution of inflammation. This secondary immune activation drives local tissue-resident T cell development while limiting tissue injury.


Asunto(s)
Dinoprostona , Modelos Animales de Enfermedad , Pulmón , Macrófagos , Ratones Endogámicos C57BL , Neumonía Neumocócica , Subtipo EP4 de Receptores de Prostaglandina E , Streptococcus pneumoniae , Animales , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/patología , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/metabolismo , Ratones , Dinoprostona/metabolismo , Streptococcus pneumoniae/inmunología , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/microbiología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Cadenas alfa de Integrinas/metabolismo , Cadenas alfa de Integrinas/genética , Femenino , Antígenos CD/metabolismo , Antígenos CD/genética , Linfocitos T/inmunología
14.
World J Gastroenterol ; 30(19): 2505-2511, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38817656

RESUMEN

Chronic enteropathy associated with the SLCO2A1 gene (CEAS) is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss. This review explores the potential mechanisms underlying the pathogenesis of CEAS, focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2 (PGE2) levels. Studies have suggested that elevated PGE2 levels contribute to mucosal damage, inflammation, and disruption of the intestinal barrier. The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality, as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS. Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel, targeted therapies.


Asunto(s)
Dinoprostona , Mucosa Intestinal , Transportadores de Anión Orgánico , Humanos , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Enfermedad Crónica , Dinoprostona/metabolismo , Intestino Delgado/patología , Intestino Delgado/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Enfermedades Intestinales/genética , Enfermedades Intestinales/patología , Animales , Hemorragia Gastrointestinal/genética , Hemorragia Gastrointestinal/etiología , Úlcera/genética , Úlcera/patología
15.
Eur J Cell Biol ; 103(2): 151412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608422

RESUMEN

Mesenchymal stromal cells (MSCs) that are promising for cartilage tissue engineering secrete high amounts of prostaglandin E2 (PGE2), an immunoactive mediator involved in endochondral bone development. This study aimed to identify drivers of PGE2 and its role in the inadvertent MSC misdifferentiation into hypertrophic chondrocytes. PGE2 release, which rose in the first three weeks of MSC chondrogenesis, was jointly stimulated by endogenous BMP, WNT, and hedgehog activity that supported the exogenous stimulation by TGF-ß1 and insulin to overcome the PGE2 inhibition by dexamethasone. Experiments with PGE2 treatment or the inhibitor celecoxib or specific receptor antagonists demonstrated that PGE2, although driven by prohypertrophic signals, exerted broad autocrine antihypertrophic effects. This chondroprotective effect makes PGE2 not only a promising option for future combinatorial approaches to direct MSC tissue engineering approaches into chondral instead of endochondral development but could potentially have implications for the use of COX-2-selective inhibitors in osteoarthritis pain management.


Asunto(s)
Condrogénesis , Dinoprostona , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Dinoprostona/metabolismo , Humanos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos
16.
Shanghai Kou Qiang Yi Xue ; 33(1): 85-89, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38583031

RESUMEN

PURPOSE: To study the relationship between the expression of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2) and the osteogenic activity and oxygen level of alveolar bone. METHODS: The alveolar bones of 56 patients with chronic periodontitis who received dental treatment from March 2021 to March 2023 were collected as the experimental (periodontitis) group, and the healthy alveolar bones of 53 patients who received dental treatment during the same period were selected as the control group. The osteoblasts were cultured by tissue block culture, and modified Kaplow's alkaline phosphatase (ALP) staining was used to identify the cells. COX-2, PGE2 and osteoclastogenesis inhibitory factor (OPG) receptor activator of nuclear factor-κb ligand (RANKL) and other indicators were determined by ELISA. PGE2, COX-2, OPG, internal oxygen level, ALP, RANKL and their correlation were compared between the two groups. Statistical analysis was performed with SPSS 27.0 software package. RESULTS: PGE2, COX-2 and RANKL in periodontitis group were significantly higher than those in the control group, but OPG, internal oxygen level and ALP were significantly lower than those in the control group (P<0.05). PGE2 and COX2 were highly positively correlated with OPG, internal oxygen level and ALP, but were highly positively correlated with RANKL(P<0.05). CONCLUSIONS: The expression of PGE2 and COX-2 is highly negatively correlated with ALP and oxygen levels. Clinical treatment may consider increasing oxygen levels, increasing oxygen partial pressure, and regulating ALP levels by drugs, so as to change the inflammatory condition of periodontitis or other dental diseases.


Asunto(s)
Dinoprostona , Periodontitis , Humanos , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacología , Osteoblastos/metabolismo , Osteogénesis , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo
17.
Arch Toxicol ; 98(7): 2247-2259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38635053

RESUMEN

3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.


Asunto(s)
Endotelio Vascular , Fluorenos , FN-kappa B , Especies Reactivas de Oxígeno , Pez Cebra , Animales , Especies Reactivas de Oxígeno/metabolismo , Fluorenos/toxicidad , FN-kappa B/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Permeabilidad Capilar/efectos de los fármacos
18.
Benef Microbes ; 15(3): 331-341, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38677715

RESUMEN

This study investigated the anti-inflammatory effects of cell-free supernatant of Lactococcus lactis IDCC 2301 on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Expression of inflammatory mediators and cytokines, and the production of nitric oxide (NO) and prostaglandin E2 (PGE2) were qualitatively analysed. The expression of signal transductors in inflammatory cascades was quantified by western blot. Treatment with cell-free supernatant of L. lactis IDCC 2301 significantly decreased the mRNA expression levels of tumour necrosis factor (TNF-α) and interleukins including IL-1ß and IL-6. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) were also remarkably reduced in LPS-induced macrophages after the treatment. Furthermore, L. lactis IDCC 2301 reduced the levels of both dephosphorylated and phosphorylated forms of nuclear factor-kappa B (NF-κB), IκB-α, extracellular signal-regulated kinases (ERK), c-Jun amino-terminal kinases (JNK), and p38 in LPS-induced RAW 264.7 cells. Therefore, L. lactis IDCC 2301 shows anti-inflammatory activity by suppressing the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways.


Asunto(s)
Antiinflamatorios , Lactococcus lactis , Lipopolisacáridos , Macrófagos , FN-kappa B , Óxido Nítrico , Lactococcus lactis/metabolismo , Lactococcus lactis/genética , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Células RAW 264.7 , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Citocinas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Dinoprostona/metabolismo , Transducción de Señal/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Medios de Cultivo Condicionados/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética
19.
Inflammopharmacology ; 32(3): 1839-1853, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581641

RESUMEN

Based on their high antioxidant capacity and noteworthy phytochemistry, Terminalia ferdinandiana fruit and leaves have attracted considerable recent interest for their therapeutic potential. Whilst those studies have reported a variety of therapeutic properties for the fruit, the anti-inflammatory potential of T. ferdinandiana has been largely neglected and the leaves have been almost completely ignored. This study investigated the immune-modulatory and anti-inflammatory properties of T. ferdinandiana fruit and leaf extracts by evaluating their inhibition of multiple pro- and anti-inflammatory cytokines and chemokines secretion in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 macrophages using multiplex bead immunoassays and ELISA assays. The methanolic extracts were particularly good immune-modulators, significantly inhibiting the secretion of all the cytokines and chemokines tested. Indeed, the methanolic extracts completely inhibited IL-10, IFN-γ, IL-1ß, IL-6, MCP-1, and MIP-2a secretion, and almost completely inhibited the secretion of TNF-α. In addition, the methanolic T. ferdinandiana extracts also significantly inhibited cytosolic COX-2 levels (by 87-95%) and the synthesis of the PGE2 (by ~ 98%). In contrast, the methanolic extracts stimulated LTB4 secretion by ~ 60-90%, whilst the aqueous extracts significantly inhibited LTB4 secretion (by ~ 27% each). Exposure of RAW 264.7 cells to the methanolic T. ferdinandiana extracts also significantly down-regulated the cytosolic levels of NF-κB by 33-44%, indicating that the immune-modulatory and anti-inflammatory properties of the extracts may be regulated via a decrease in NF-κB transcription pathways. Taken together, these results demonstrate potent anti-inflammatory properties for the extracts and provide insights into their anti-inflammatory mechanisms.


Asunto(s)
Antiinflamatorios , Ciclooxigenasa 2 , Citocinas , Dinoprostona , Regulación hacia Abajo , FN-kappa B , Extractos Vegetales , Hojas de la Planta , Terminalia , Ratones , Animales , FN-kappa B/metabolismo , Células RAW 264.7 , Extractos Vegetales/farmacología , Dinoprostona/metabolismo , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Terminalia/química , Regulación hacia Abajo/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Hojas de la Planta/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Frutas/química
20.
Ecotoxicol Environ Saf ; 277: 116358, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653025

RESUMEN

Exposure to nicotine by cigarette smoking have shown strongly defectives on the physiological function of ovaries, which in turn leads to disorders of fertility in women. However, the potential molecular mechanisms remain to be elucidated. In this study, we notably found that nicotine was likely to specifically raise the expression of histone deacetylase 3 (HDAC3) to promote the apoptosis and autophagy of granulosa cells (GCs) and block follicular maturation. Moreover, prostaglandin E2 (PGE2) inhibited the apoptosis of GCs and facilitated follicular maturation, and nicotine appeared to inhibit PGE2 secretion by freezing the expression of cyclooxygenase 1 (COX1), which was the rate-limiting and essential enzyme for PGE2 synthesis. Epigenetically, the nicotine was observed to diminish the histone H3 lysine 9 acetylation (H3K9ac) level and compact the chromatin accessibility in -1776/-1499 bp region of COX1 by evoking the expression of HDAC3, with the deactivated Cas9-HDAC3/sgRNA system. Mechanistically, the COX1 protein was found to pick up and degrade the autophagy related protein beclin 1 (BECN1) to control the autophagy of GCs. These results provided a potential new molecular therapy to recover the damage of female fertility induced by nicotine from cigarette smoking.


Asunto(s)
Autofagia , Dinoprostona , Células de la Granulosa , Nicotina , Femenino , Autofagia/efectos de los fármacos , Animales , Nicotina/toxicidad , Células de la Granulosa/efectos de los fármacos , Dinoprostona/metabolismo , Ratones , Histona Desacetilasas/metabolismo , Folículo Ovárico/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA