Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
Phytomedicine ; 134: 156014, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39241386

RESUMEN

BACKGROUND: Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, remarkable advances have been made in vaccine development to reduce mortality. However, therapeutic interventions for COVID-19 are comparatively limited despite these intensive efforts. Furthermore, the rapid mutation capability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a characteristic of its RNA structure, has led to the emergence of multiple variants, necessitating a shift from a predominantly vaccine-centric approach to one that encompasses therapeutic strategies. 6'-Hydroxy justicidin B (6'-HJB), an arylnaphthalene lignan isolated from Justicia procumbens, a traditional Chinese medicine, is known for its antiviral properties. HYPOTHESIS/PURPOSE: The aim of the present study was to assess the effectiveness and safety of 6'-HJB against SARS-CoV-2 in order to determine its potential as a therapeutic agent against COVID-19. METHODS: The efficacy of 6'-HJB was evaluated both in vitro using Vero and Calu-3 cell lines and in vivo using ferrets. The safety assessment included toxicokinetics, safety pharmacology, and Good Laboratory Practice (GLP)-compliant toxicity evaluations following single- and repeated-dose toxicity studies in dogs. RESULTS: The anti-SARS-CoV-2 efficacy of 6'-HJB was evaluated through dose-response curve (DRC) analysis using immunofluorescence; 6'-HJB demonstrated superior inhibition of SARS-CoV-2 growth and lower cytotoxicity than remdesivir. In SARS-CoV-2-infected ferret, 6'-HJB showed efficacy comparable to that of the positive control, Truvada. Further GLP toxicity studies corroborated the safety profile of 6'-HJB. Single-dose and 4-week repeated oral toxicity studies in Beagle dogs demonstrated minimal harmful effects at the highest dosages. The lethal dose of 6'-HJB exceeded 2,000 mg kg-1 in Beagle dogs. Toxicokinetic and GLP safety pharmacology studies demonstrated no adverse effects of 6'-HJB on metabolic processes, respiratory or central nervous systems, or cardiac functions. CONCLUSION: This research highlights both the antiviral efficacy and safety profile of 6'-HJB, underscoring its potential as a novel COVID-19 treatment option. The potential of 6'-HJB was demonstrated using modern scientific methodologies and standards.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Género Justicia , SARS-CoV-2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Células Vero , Chlorocebus aethiops , Humanos , SARS-CoV-2/efectos de los fármacos , Género Justicia/química , Hurones , Masculino , Lignanos/farmacología , Lignanos/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Femenino , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , COVID-19 , Perros , Dioxolanos
2.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4658-4671, 2024 Sep.
Artículo en Chino | MEDLINE | ID: mdl-39307804

RESUMEN

The preparation processes of iron-based organic framework(FeMOF) MIL-100(Fe) and MIL-101(Fe) with two different ligands were optimized and screened, and the optimized FeMOF was loaded with piperlongumine(PL) to enhance the biocompatibility and antitumor efficacy of PL. The MIL-100(Fe) and MIL-101(Fe) were prepared by solvent thermal method using the optimized reaction solvent. With particle size, polymer dispersity index(PDI), and yield as indexes, the optimal preparation processes of the two were obtained by using the definitive screening design(DSD) experiment and establishing a mathematical model, combined with the Derringer expectation function. After characterization, the best FeMOF was selected to load PL by solvent diffusion method, and the process of loading PL was optimized by a single factor combined with an orthogonal experiment. The CCK-8 method was used to preliminarily evaluate the biological safety of blank FeMOF and the antitumor effect of the drug-loaded nano preparations. The experimental results showed that the optimal preparation process of MIL-100(Fe) was as follows: temperature at 127.8 ℃, reaction time of 14.796 h, total solvent volume of 11.157 mL, and feed ratio of 1.365. The particle size of obtained MIL-100(Fe) nanoparticles was(108.84±2.79)nm; PDI was 0.100±0.023, and yield was 36.93%±0.79%. The optimal preparation process of MIL-101(Fe) was as follows: temperature at 128.1 ℃, reaction time of 6 h, total solvent volume of 10.005 mL, and feed ratio of 0.500. The particle size of obtained MIL-101(Fe) nanoparticles was(254.04±22.03)nm; PDI was 0.289±0.052, and yield was 44.95%±0.45%. The optimal loading process of MIL-100(Fe) loaded with PL was as follows: the feed ratio of MIL-100(Fe) to PL was 1∶2; the concentration of PL solution was 7 mg·mL~(-1), and the ratio of DMF to water was 1∶5. The drug loading capacity of obtained MIL-100(Fe)/PL nanoparticles was 68.86%±1.82%; MIL-100(Fe) was nontoxic to HepG2 cells at a dose of 0-120 µg·mL~(-1), and the half-inhibitory concentration(IC_(50)) of free PL for 24 h treatment of HepG2 cells was 1.542 µg·mL~(-1). The IC_(50) value of MIL-100(Fe)/PL was 1.092 µg·mL~(-1)(measured by PL). In this study, the optimal synthesis process of MIL-100(Fe) and MIL-101(Fe) was optimized by innovatively using the DSD to construct a mathematical model combined with the Derringer expectation function. The optimized preparation process of MIL-100(Fe) nanoparticles and the PL loading process were stable and feasible. The size and shape of MIL-100(Fe) particles were uniform, and the crystal shape was good, with a high drug loading capacity, which could significantly enhance the antitumor effect of PL. This study provides a new method for the optimization of the nano preparation process and lays a foundation for the further development and research of antitumor nano preparations of PL.


Asunto(s)
Antineoplásicos , Dioxolanos , Hierro , Estructuras Metalorgánicas , Humanos , Dioxolanos/química , Estructuras Metalorgánicas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química , Línea Celular Tumoral , Tamaño de la Partícula , Nanopartículas/química , Portadores de Fármacos/química , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Proliferación Celular/efectos de los fármacos , Piperidonas
3.
Future Med Chem ; 16(14): 1413-1428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190473

RESUMEN

Aims: Five series of novel koumine-like compounds were designed, semi-synthesized and systematically evaluated for antitumor activities.Methods: All compounds were evaluated for antiproliferative activity against four human cancer cell lines, including HT-29, HCT-116, HCT-15 and Caco-2.Results: Most compounds exhibited much higher antiproliferation activities (IC50 <10 µM) than koumine. Two selected compounds A4 and C5 showed comparable antitumor effects to 5-FU in vivo, as well as better safety profiles. Further studies suggested that A4 and C5 could arrest HT-29 cell cycle in G2 phase and raise reactive oxygen species level, thus inducing cell apoptosis related to Erk MAPK and NF-κB signaling pathways inhibition.Conclusion: These results will greatly promote the druggability study of these koumine-like compounds.


[Box: see text].


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Dioxolanos/química , Dioxolanos/farmacología , Dioxolanos/síntesis química , Línea Celular Tumoral , Estructura Molecular , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Alcaloides Indólicos
4.
Sci Transl Med ; 16(759): eadn2140, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110778

RESUMEN

Hearing loss is a major health concern in our society, affecting more than 400 million people worldwide. Among the causes, aminoglycoside therapy can result in permanent hearing loss in 40% to 60% of patients receiving treatment, and despite these high numbers, no drug for preventing or treating this type of hearing loss has yet been approved by the US Food and Drug Administration. We have previously conducted high-throughput screenings of bioactive compounds, using zebrafish as our discovery platform, and identified piplartine as a potential therapeutic molecule. In the present study, we expanded this work and characterized piplartine's physicochemical and therapeutic properties. We showed that piplartine had a wide therapeutic window and neither induced nephrotoxicity in vivo in zebrafish nor interfered with aminoglycoside antibacterial activity. In addition, a fluorescence-based assay demonstrated that piplartine did not inhibit cytochrome C activity in microsomes. Coadministration of piplartine protected from kanamycin-induced hair cell loss in zebrafish and protected hearing function, outer hair cells, and presynaptic ribbons in a mouse model of kanamycin ototoxicity. Last, we investigated piplartine's mechanism of action by phospho-omics, immunoblotting, immunohistochemistry, and molecular dynamics experiments. We found an up-regulation of AKT1 signaling in the cochleas of mice cotreated with piplartine. Piplartine treatment normalized kanamycin-induced up-regulation of TRPV1 expression and modulated the gating properties of this receptor. Because aminoglycoside entrance to the inner ear is, in part, mediated by TRPV1, these results suggested that by regulating TRPV1 expression, piplartine blocked aminoglycoside's entrance, thereby preventing the long-term deleterious effects of aminoglycoside accumulation in the inner ear compartment.


Asunto(s)
Aminoglicósidos , Pérdida Auditiva , Canales Catiónicos TRPV , Pez Cebra , Animales , Canales Catiónicos TRPV/metabolismo , Aminoglicósidos/farmacología , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/metabolismo , Pérdida Auditiva/prevención & control , Pérdida Auditiva/patología , Ratones , Ototoxicidad/metabolismo , Kanamicina , Dioxolanos/farmacología , Piperidonas
5.
Int J Pharm ; 664: 124582, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39142466

RESUMEN

Chemotherapy agents for lung cancer often cause apoptotic resistance in cells, leading to suboptimal therapeutic outcomes. FIN56 can be a potential treatment for lung cancer as it induces non-apoptotic cell death, namely ferroptosis. However, a bottleneck exists in FIN56-induced ferroptosis treatment; specifically, FIN56 fails to induce sufficient oxidative stress and may even trigger the defense system against ferroptosis, resulting in poor therapeutic efficacy. To overcome this, this study proposed a strategy of co-delivering FIN56 and piperlongumine to enhance the ferroptosis treatment effect by increasing oxidative stress and connecting with the autophagy pathway. FIN56 and piperlongumine were encapsulated into silk fibroin-based nano-disruptors, named FP@SFN. Characterization results showed that the particle size of FP@SFN was in the nanometer range and the distribution was uniform. Both in vivo and in vitro studies demonstrated that FP@SFN could effectively eliminate A549 cells and inhibit subcutaneous lung cancer tumors. Notably, ferroptosis and autophagy were identified as the main cell death pathways through which the nano-disruptors increased oxidative stress and facilitated cell membrane rupture. In conclusion, nano-disruptors can effectively enhance the therapeutic effect of ferroptosis treatment for lung cancer through the ferroptosis-autophagy synergy mechanism, providing a reference for the development of related therapeutics.


Asunto(s)
Autofagia , Ferroptosis , Fibroínas , Neoplasias Pulmonares , Nanopartículas , Estrés Oxidativo , Ferroptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Humanos , Autofagia/efectos de los fármacos , Animales , Fibroínas/química , Fibroínas/farmacología , Células A549 , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Dioxolanos/farmacología , Dioxolanos/química , Dioxolanos/administración & dosificación , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Piperidonas
7.
J Agric Food Chem ; 72(28): 15971-15984, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959404

RESUMEN

Myristicin (MYR) mainly occurs in nutmeg and belongs to alkoxy-substituted allylbenzenes, a class of potentially toxic natural chemicals. RNA interaction with MYR metabolites in vitro and in vivo has been investigated in order to gain a better understanding of MYR toxicities. We detected two guanosine adducts (GA1 and GA2), two adenosine adducts (AA1 and AA2), and two cytosine adducts (CA1 and CA2) by LC-MS/MS analysis of total RNA extracts from cultured primary mouse hepatocytes and liver tissues of mice after exposure to MYR. An order of nucleoside adductions was found to be GAs > AAs > CAs, and the result of density functional theory calculations was in agreement with that detected by the LC-MS/MS-based approach. In vitro and in vivo studies have shown that MYR was oxidized by cytochrome P450 enzymes to 1'-hydroxyl and 3'-hydroxyl metabolites, which were then sulfated by sulfotransferases (SULTs) to form sulfate esters. The resulting sulfates would react with the nucleosides by SN1 and/or SN2 reactions, resulting in RNA adduction. The modification may alter the biochemical properties of RNA and disrupt RNA functions, perhaps partially contributing to the toxicities of MYR.


Asunto(s)
Activación Metabólica , Derivados de Alilbenceno , Sistema Enzimático del Citocromo P-450 , ARN , Sulfotransferasas , Espectrometría de Masas en Tándem , Animales , Ratones , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Sulfotransferasas/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/química , Derivados de Alilbenceno/química , Derivados de Alilbenceno/metabolismo , ARN/metabolismo , ARN/química , Masculino , Hepatocitos/metabolismo , Dioxolanos/metabolismo , Dioxolanos/química , Dioxolanos/toxicidad , Hígado/metabolismo , Hígado/enzimología , Disulfuros/química , Disulfuros/metabolismo , Myristica/química , Myristica/metabolismo
8.
Int J Biol Macromol ; 275(Pt 2): 133738, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992536

RESUMEN

Pancreatic cancer cells highly resistance to conventional chemo drugs, resulting low survival rates. The aim of the study was to design and develop dual targeting polymersomes (DTPS) loaded with phyto alkaloid agent i.e., piperlongumine (PL) for effective pancreatic cancer treatment. Here, hyaluronic acid (HA) was functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPEPEG-NH2), poly(ethylene glycol) bis (amine) (PEG), and phenylboronic acid (PBA) moieties. The designed DTPS could selectively recognize CD44/sialic acid (SA) and deliver PL to MIA PaCa-2 pancreatic cancer cells, facilitated via HA-CD44 and PBA-SA interactions. Drug release and stability results implied sustained PL release profile and pH sensitivity. DTPS could be more efficiently bound with SA than other sugars based on fluorescence spectroscopy. The anticancer efficacy of designed polymersomes was tested with H6C7 normal pancreas cells and SA/CD44-overexpressed MIA PaCa-2 pancreatic cancer cells. DTPS showed both SA and CD44-mediated higher cellular uptake while single-targeted polymersomes showed CD44-mediated cellular uptake. The PL-loaded DTPS efficiently uptake by MIA PaCa-2 cancer cells, causing up to 80 % cell growth inhibition, reduced cell spheroids volume and increased dead cells by 58.3 %. These results indicate that the newly developed DTPS can effectively serve as a pH-responsive drug delivery system for efficient treatment of cancer.


Asunto(s)
Ácidos Borónicos , Dioxolanos , Ácido Hialurónico , Neoplasias Pancreáticas , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Dioxolanos/farmacología , Dioxolanos/química , Línea Celular Tumoral , Ácidos Borónicos/química , Ácidos Borónicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Liberación de Fármacos , Receptores de Hialuranos/metabolismo , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Polímeros/química , Supervivencia Celular/efectos de los fármacos , Piperidonas
9.
J Nat Prod ; 87(8): 1893-1902, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39045852

RESUMEN

Piperlongumine (1) increases reactive oxygen species (ROS) levels and induces apoptosis in cancer cells through various pathways. Nitric oxide (NO) donors have demonstrated potent anticancer activities with exogenous NO being oxidized by ROS in the tumor microenvironment to form highly reactive N-oxides (RNOS). This amplifies oxidative stress cascade reactions, ultimately inducing cancer cell apoptosis. To exploit this synergy, a series of NO-releasing piperlongumine derivatives (2-5) were designed and synthesized. These compounds were expected to release NO in cancer cells, simultaneously generating piperlongumine derivative fragments to enhance the anticancer effects. Compound 6, structurally similar to compounds 2-5 but not releasing NO, served as a control. Among these derivatives, compound 5 exhibited the most potent antiproliferative activity against HCT-116 cells and efficiently released NO in this cell line. Further investigation revealed that compound 5 inhibited colon cancer cell proliferation by modulating ß-catenin expression, which is a pivotal protein in the Wnt/ß-catenin signaling pathway. These findings highlight compound 5 as a promising candidate for colon cancer treatment targeting the Wnt/ß-catenin pathway.


Asunto(s)
Neoplasias del Colon , Dioxolanos , Óxido Nítrico , Vía de Señalización Wnt , beta Catenina , Dioxolanos/farmacología , Dioxolanos/química , Humanos , Óxido Nítrico/metabolismo , Neoplasias del Colon/tratamiento farmacológico , beta Catenina/metabolismo , Estructura Molecular , Vía de Señalización Wnt/efectos de los fármacos , Células HCT116 , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Piperidonas
10.
ACS Chem Neurosci ; 15(14): 2612-2622, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38925635

RESUMEN

Numerous insults, both endogenous (e.g., glutamate) and exogenous (e.g., pesticides), compromise the function of the nervous system and pose risk factors for damage or later disease. In previous reports, limonoids such as fraxinellone showed significant neuroprotective activity against glutamate (Glu) excitotoxicity and reactive oxygen species (ROS) production in vitro, albeit with minimal mechanistic information provided. Given these findings, a library of novel fraxinellone analogs (including analogs 1 and 2 described here) was synthesized with the goal of identifying compounds exhibiting neuroprotection against insults. Analog 2 was found to be protective against Glu-mediated excitotoxicity with a measured EC50 of 44 and 39 nM for in vitro assays using PC12 and SH-SY5Y cells, respectively. Pretreatment with analog 2 yielded rapid induction of antioxidant genes, namely, Gpx4, Sod1, and Nqo1, as measured via qPCR. Analog 2 mitigated Glu-mediated ROS. Cytoprotection could be replicated using sulforaphane (SFN), a Nrf2 activator, and inhibited via ML-385, which inhibits Nrf2 binding to regulatory DNA sequences, thereby blocking downstream gene expression. Nrf2 DNA-binding activity was demonstrated using a Nrf2 ELISA-based transcription factor assay. In addition, we found that pretreatment with the thiol N-acetyl Cys completely mitigated SFN-mediated induction of antioxidant genes but had no effect on the activity of analog 2, suggesting thiol modification is not critical for its mechanism of action. In summary, our data demonstrate a fraxinellone analog to be a novel, potent, and rapid activator of the Nrf2-mediated antioxidant defense system, providing robust protection against insults.


Asunto(s)
Ácido Glutámico , Fármacos Neuroprotectores , Especies Reactivas de Oxígeno , Fármacos Neuroprotectores/farmacología , Humanos , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratas , Células PC12 , Ácido Glutámico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Línea Celular Tumoral , Isotiocianatos/farmacología , Dioxolanos/farmacología , Benzofuranos , Sulfóxidos
11.
Fitoterapia ; 177: 106091, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908760

RESUMEN

Nitric oxide (NO) is an important gas messenger molecule with a wide range of biological functions. High concentration of NO exerts promising antitumor effects and is regarded as one of the hot spots in cancer research, that have limitations in their direct application due to its gaseous state, short half-life (seconds) and high reactivity. Lysyl oxidase (LOX) is a copper-dependent amine oxidase that is responsible for the covalent bonding between collagen and elastin and promotes tumor cell invasion and metastasis. The overexpression of LOX in triple-negative breast cancer (TNBC) makes it an attractive target for TNBC therapy. Herein, novel NO donor prodrug molecules were designed and synthesized based on the naturally derived piperlongumine (PL) skeleton, which can be selectively activated by LOX to release high concentrations of NO and PL derivatives, both of them play a synergistic role in TNBC therapy. Among them, the compound TM-1 selectively released NO in highly invasive TNBC cells (MDA-MB-231), and TM-1 was also confirmed as a potential TNBC cell line inhibitor with an inhibitory concentration of 2.274 µM. Molecular docking results showed that TM-1 had a strong and selective binding affinity with LOX protein.


Asunto(s)
Dioxolanos , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Óxido Nítrico , Proteína-Lisina 6-Oxidasa , Neoplasias de la Mama Triple Negativas , Proteína-Lisina 6-Oxidasa/metabolismo , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Dioxolanos/farmacología , Dioxolanos/química , Línea Celular Tumoral , Óxido Nítrico/metabolismo , Estructura Molecular , Donantes de Óxido Nítrico/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Profármacos/farmacología , Profármacos/química , Piperidonas
12.
Sci Rep ; 14(1): 10592, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719900

RESUMEN

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Asunto(s)
Antibacterianos , Cromatografía de Gases y Espectrometría de Masas , Hexanos , Fitoquímicos , Verduras , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/análisis , Verduras/química , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Hexanos/química , Apiaceae/química , Pruebas de Sensibilidad Microbiana , Derivados de Alilbenceno , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ácidos Grasos Insaturados/análisis , Staphylococcus aureus/efectos de los fármacos , Dioxolanos
13.
Phytomedicine ; 130: 155735, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38810557

RESUMEN

BACKGROUND: Gastric cancer (GC) is difficult to treat with currently available treatments. Securinine (SCR) has a lengthy history of use in the treatment of disorders of the nervous system, and its anticancer potential has been gaining attention in recent years. The aim of this study was to explore the repressive effect of SCR on GC and its fundamental mechanism. METHODS: The efficacy of SCR in GC cells was detected by MTT assays. Colony formation, flow cytometry and Transwell assays were used to assess the changes in the proliferation, apoptosis, cell cycle distribution, migration and invasion of GC cells after treatment. AGS (human gastric carcinoma cell)-derived xenografts were used to observe the effect of SCR on tumor growth in vivo. The molecular mechanism of action of SCR in GC was explored via RNA sequencing, bioinformatics analysis, Western blotting, molecular docking, and immunohistochemistry. RESULTS: SCR was first discovered to inhibit the proliferation, migration, and invasion of GC cells while initiating apoptosis and cell cycle arrest in vitro. It was also established that SCR has excellent anticancer effects in vivo. Interestingly, AURKA acts as a crucial target of SCR, and AURKA expression can be blocked by SCR. Moreover, this study revealed that SCR suppresses the cell cycle and the ß-catenin/Akt/STAT3 pathways, which were previously reported to be regulated by AURKA. CONCLUSION: SCR exerts a notable anticancer effect on GC by targeting AURKA and blocking the cell cycle and ß-catenin/Akt/STAT3 pathway. Thus, SCR is a promising pharmacological option for the treatment of GC.


Asunto(s)
Aurora Quinasa A , Azepinas , Proteínas Proto-Oncogénicas c-akt , Factor de Transcripción STAT3 , Neoplasias Gástricas , beta Catenina , Neoplasias Gástricas/tratamiento farmacológico , Humanos , Factor de Transcripción STAT3/metabolismo , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Animales , beta Catenina/metabolismo , Azepinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Compuestos Heterocíclicos de Anillo en Puente/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Dioxolanos/farmacología , Ratones Endogámicos BALB C , Ratones , Antineoplásicos Fitogénicos/farmacología , Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinogénesis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Lactonas , Piperidinas
14.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2117-2127, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812227

RESUMEN

Piperlongumine(PL), a natural alkaloid extracted from Piperis Longi Fructus, has attracted much attention in recent years because of its strong anti-tumor activity, little toxicity to normal cells, and excellent sensitizing effect combined with chemotherapy and radiotherapy, which endow PL with unique advantages as an anti-tumor drug. However, similar to other alkaloids, PL has low water solubility and poor bioavailability. To improve the application of PL in the clinical treatment of tumors, researchers have constructed various nano-drug delivery systems to increase the efficiency of PL delivery. This paper reviewed the physicochemical properties, anti-tumor mechanism, combined therapies, and nano-drug delivery systems of PL in recent years. The review aimed to provide a reference for further research on the anti-tumor effect and nano-drug delivery system of PL. Moreover, this review is expected to provide a reference for the development and application of PL in the anti-tumor therapies.


Asunto(s)
Dioxolanos , Neoplasias , Dioxolanos/química , Humanos , Animales , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Piperidonas
15.
J Biochem Mol Toxicol ; 38(6): e23740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779996

RESUMEN

The current study was focused on the anticancer activity of myristicin against MCF-7 human breast cancer (BC) cells. BC is the most common and leading malignant disease in women worldwide. Now-a-days, various conventional therapies are used against BC and still represent a chief challenge because those treatments fail to differentiate normal cells from malignant cells, and they have severe side effects also. So, there is a need develop new therapies to decrease BC-related morbidity and mortality. Myristicin, a 1­allyl­5­methoxy­3, 4­methylenedioxybenzene, is a main active aromatic compound present in various spices, such as nutmeg, mace, carrot, cinnamon, parsely and some essential oils. Myristicin has a wide range of effects, including antitumor, antioxidative and antimicrobial activity. Nevertheless, the effects of myristicin on human BC cells remain largely unrevealed. The cytotoxicity effect of myristicin on MCF­7 cells was increased dose dependently detected by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Lactate Dehydrogenase assays. Myristicin was found to be significantly inducing the cell apoptosis, as compared to control, using acridine orange/ethidium bromide, Hoechst stain and annexin V. Moreover, it activates cell antimigration, intracellular reactive oxygen species generation and cell cycle arrest in the G1/S phase. In addition, myristicin induces the expression of apoptosis and cell cycle genes (Caspases8, Bax, Bid, Bcl2, PARP, p53, and Cdk1) was demonstrated by quantitative polymerase chain reaction and apoptosis proteins (c-PARP, Caspase 9, Cytochrome C, PDI) expression was also analyzed with western blot. Overall, we illustrated that myristicin could regulate apoptosis signaling pathways in MCF-7 BC cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Humanos , Apoptosis/efectos de los fármacos , Células MCF-7 , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Dioxolanos/farmacología , Compuestos de Bencilo/farmacología , Derivados de Alilbenceno/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
16.
Arch Pharm (Weinheim) ; 357(7): e2300768, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593312

RESUMEN

Piperlongumine, or piplartine (PL), is a bioactive alkaloid isolated from Piper longum L. and a potent phytoconstituent in Indian Ayurveda and traditional Chinese medicine with a lot of therapeutic benefits. Apart from all of its biological activities, it demonstrates multimodal anticancer activity by targeting various cancer-associated pathways and being less toxic to normal cells. According to their structure-activity relationship (SAR), the trimethylphenyl ring (cinnamoyl core) and 5,6-dihydropyridin-2-(1H)-one (piperdine core) are responsible for the potent anticancer activity. However, it has poor intrinsic properties (low aqueous solubility, poor bioavailability, etc.). As a result, pharmaceutical researchers have been trying to optimise or modify the structure of PL to improve the drug-likeness profiles. The present review selected 26 eligible research articles on PL derivatives published between 2012 and 2023, followed by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) format. We have thoroughly summarised the anticancer potency, mode of action, SAR and drug chemistry of the proposed PL-derivatives against different cancer cells. Overall, SAR analyses with respect to anticancer potency and drug-ability revealed that substitution of methoxy to hydroxyl, attachment of ligustrazine and 4-hydroxycoumarin heterocyclic rings in place of phenyl rings, and attachment of heterocyclic rings like indole at the C7-C8 olefin position in native PL can help to improve anticancer activity, aqueous solubility, cell permeability, and bioavailability, making them potential leads. Hopefully, the large-scale collection and critical drug-chemistry analyses will be helpful to pharmaceutical and academic researchers in developing potential, less-toxic and cost-effective PL-derivatives that can be used against different cancers.


Asunto(s)
Antineoplásicos Fitogénicos , Dioxolanos , Neoplasias , Dioxolanos/farmacología , Dioxolanos/química , Dioxolanos/síntesis química , Humanos , Relación Estructura-Actividad , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Estructura Molecular , Piperidonas
17.
Int J Biol Macromol ; 268(Pt 2): 131502, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626834

RESUMEN

Piperlonguminine (PLG) is a major alkaloid found in Piper longum fruits. It has been shown to possess a variety of biological activities, including anti-tumor, anti-hyperlipidemic, anti-renal fibrosis and anti-inflammatory properties. Previous studies have reported that PLG inhibits various CYP450 enzymes. The main objective of this study was to identify reactive metabolites of PLG in vitro and assess its ability to inhibit CYP450. In rat and human liver microsomal incubation systems exposed to PLG, two oxidized metabolites (M1 and M2) were detected. Additionally, in microsomes where N-acetylcysteine was used as a trapping agent, N-acetylcysteine conjugates (M3, M4, M5 and M6) of four isomeric O-quinone-derived reactive metabolites were found. The formation of metabolites was dependent on NADPH. Inhibition and recombinant CYP450 enzyme incubation experiments showed that CYP3A4 was the primary enzyme responsible for the metabolic activation of PLG. This study characterized the O-dealkylated metabolite (M1) through chemical synthesis. The IC50 shift assay showed time-dependent inhibition of CYP3A4, 2C9, 2E1, 2C8 and 2D6 by PLG. This research contributes to the understanding of PLG-induced enzyme inhibition and bioactivation.


Asunto(s)
Activación Metabólica , Citocromo P-450 CYP3A , Dioxolanos , Microsomas Hepáticos , Animales , Humanos , Citocromo P-450 CYP3A/metabolismo , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Ratas , Dioxolanos/farmacología , Dioxolanos/química , Inhibidores del Citocromo P-450 CYP3A/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Masculino , Piperidonas , Benzodioxoles
18.
J Oral Biosci ; 66(2): 430-438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452870

RESUMEN

OBJECTIVES: To elucidate the association between the anticancer activities of piperlongumine (PL) and its potential target, transient receptor potential melastatin 7 channel (TRPM7), in oral squamous cell carcinoma (OSCC). METHODS: The expression levels and electrical characteristics of TRPM7 as well as cell viability in response to various PL treatments were investigated in the OSCC cell line Cal27. RESULTS: PL treatment resulted in a concentration- and time-dependent reduction in TRPM7 mRNA and protein expression in Cal27 cells. Furthermore, PL treatment inhibited TRPM7-like rectifying currents in Cal27 cells; however, this inhibition was less effective than that of the TRPM7 antagonist waixenicin A. Rapid perfusion and washout experiments revealed an immediate inhibitory effect of PL on TRPM7-like currents. The antagonistic effect of PL occurred within 1 min and was not completely reversed following washout. Notably, the extracellular Ca2+ concentration still influenced PL-induced changes in the TRPM7-like current, indicating that PL can directly but gently antagonize the TRPM7 channel. Functional changes in TRPM7 correlated with the observed antiproliferative and cytotoxic effects of PL in Cal27 cells. CONCLUSIONS: These findings suggest that PL exhibits potent inhibitory effects on TRPM7 and exerts its anti-cancer effects by downregulating TRPM7 expression and antagonizing channel currents.


Asunto(s)
Carcinoma de Células Escamosas , Supervivencia Celular , Dioxolanos , Neoplasias de la Boca , Canales Catiónicos TRPM , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/genética , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Dioxolanos/farmacología , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Acetatos , Diterpenos , Piperidonas
19.
Transl Res ; 268: 63-78, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499286

RESUMEN

Cisplatin alone or in combination with 5FU and docetaxel is the preferred chemotherapy regimen for advanced-stage OSCC patients. However, its use has been linked to recurrence and metastasis due to the development of drug resistance. Therefore, sensitization of cancer cells to conventional chemotherapeutics can be an effective strategy to overcome drug resistance. Piperlongumine (PL), an alkaloid, have shown anticancer properties and sensitizes numerous neoplasms, but its effect on OSCC has not been explored. However, low aqueous solubility and poor pharmacokinetics limit its clinical application. Therefore, to improve its therapeutic efficacy, we developed piperlongumine-loaded PLGA-based smart nanoparticles (smart PL-NPs) that can rapidly release PL in an acidic environment of cancer cells and provide optimum drug concentrations to overcome chemoresistance. Our results revealed that smart PL-NPs has high cellular uptake in acidic environment, facilitating the intracellular delivery of PL and sensitizing cancer cells to cisplatin, resulting in synergistic anticancer activity in vitro by increasing DNA damage, apoptosis, and inhibiting drug efflux. Further, we have mechanistically explored the Hippo-YAP signaling pathway, which is the critical mediator of chemoresistance, and investigated the chemosensitizing effect of PL in OSCC. We observed that PL alone and in combination with cisplatin significantly inhibits the activation of YAP and its downstream target genes and proteins. In addition, the combination of cisplatin with smart PL-NPs significantly inhibited tumor growth in two preclinical models (patient-derived cell based nude mice and zebrafish xenograft). Taken together, our findings suggest that smart PL-NPs with cisplatin will be a novel formulation to reverse cisplatin resistance in patients with advanced OSCC.


Asunto(s)
Cisplatino , Dioxolanos , Resistencia a Antineoplásicos , Vía de Señalización Hippo , Neoplasias de la Boca , Nanopartículas , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Humanos , Cisplatino/farmacología , Nanopartículas/química , Dioxolanos/farmacología , Dioxolanos/administración & dosificación , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Pez Cebra , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Factores de Transcripción/metabolismo , Ratones Desnudos , Ratones , Proteínas Señalizadoras YAP , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Piperidonas
20.
J Pharm Pharmacol ; 76(6): 646-655, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38334976

RESUMEN

OBJECTIVES: We examined the antirheumatoid effects of piperlongumine (PLM) on rat adjuvant-induced arthritis (AIA) and explored the underlying mechanisms involved. METHODS: PLM (2.5, 5, and 10 mg/kg) was administered intraperitoneally to AIA rats to assess its effectiveness. Blood, thymus, spleen, ankle joint, and synovial tissue samples were gathered for subsequent analyses, like enzyme-linked immunosorbent assay, thymus/spleen index measurement, ankle joint pathological examination, immunohistochemistry assay, polymerase chain reaction, and western blot assay. Moreover, the involvement of osteoprotegerin (OPG)/receptor activators of nuclear factor κB ligand (RANKL)/nuclear factor-κB (NF-κB) signaling was investigated. KEY FINDINGS: PLM effectively relieved inflammation and joint destruction in AIA rats, as indicated by reductions in hind paw swelling, arthritis index, thymus/spleen index, ankle joint pathological damage, production of TNF-α, IL-1ß, and IL-6 in both serum and synovium, and osteoclast formation. Also, PLM treatment raised OPG production, reduced RANKL expression, and elevated the OPG/RANKL ratio in synovial tissues. Furthermore, PLM prevented IκBα degradation and phosphorylation, resulting in a reduced expression of the nuclear NF-κB p65 protein in AIA rat synovial tissues. CONCLUSIONS: PLM demonstrated strong antiarthritic effects in rats with AIA by influencing the OPG/RANKL/NF-κB signaling pathway, highlighting its potential clinical relevance in treating rheumatoid arthritis.


Asunto(s)
Artritis Experimental , Dioxolanos , FN-kappa B , Osteoprotegerina , Ligando RANK , Transducción de Señal , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/patología , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos , Osteoprotegerina/metabolismo , FN-kappa B/metabolismo , Ratas , Masculino , Dioxolanos/farmacología , Ratas Sprague-Dawley , Antirreumáticos/farmacología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Piperidonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA