Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.166
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 12830, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834656

RESUMEN

Sudden aggravations of chronic inflammatory airway diseases are difficult-to-foresee life-threatening episodes for which advanced prognosis-systems are highly desirable. Here we present an experimental chip-based fluidic system designed for the rapid and sensitive measurement of biomarkers prognostic for potentially imminent asthma or COPD exacerbations. As model biomarkers we chose three cytokines (interleukin-6, interleukin-8, tumor necrosis factor alpha), the bacterial infection marker C-reactive protein and the bacterial pathogen Streptococcus pneumoniae-all relevant factors in exacerbation episodes. Assay protocols established in laboratory environments were adapted to 3D-printed fluidic devices with emphasis on short processing times, low reagent consumption and a low limit of detection in order to enable the fluidic system to be used in point-of-care settings. The final device demonstrator was validated with patient sample material for its capability to detect endogenous as well as exogenous biomarkers in parallel.


Asunto(s)
Biomarcadores , Sistemas de Atención de Punto , Enfermedad Pulmonar Obstructiva Crónica , Streptococcus pneumoniae , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Streptococcus pneumoniae/aislamiento & purificación , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Citocinas/metabolismo , Asma/diagnóstico , Dispositivos Laboratorio en un Chip , Interleucina-6 , Pronóstico , Factor de Necrosis Tumoral alfa/análisis
2.
Mikrochim Acta ; 191(6): 362, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822867

RESUMEN

Rapid and accurate in situ determination of dopamine is of great significance in the study of neurological diseases. In this work, poly (3,4-ethylenedioxythiophene): poly (styrenesulfonic acid) (PEDOT: PSS)/graphene oxide (GO) fibers were fabricated by an effective method based on microfluidic wet spinning technology. The composite microfibers with stratified and dense arrangement were continuously prepared by injecting PEDOT: PSS and GO dispersion solutions into a microfluidic chip. PEDOT: PSS/GO fiber microelectrodes with high electrochemical activity and enhanced electrochemical oxidation activity of dopamine were constructed by controlling the structure composition of the microfibers with varying flow rate. The fabricated fiber microelectrode had a low detection limit (4.56 nM) and wide detection range (0.01-8.0 µM) for dopamine detection with excellent stability, repeatability, and reproducibility. In addition, the PEDOT: PSS/GO fiber microelectrode prepared was successfully used for the detection of dopamine in human serum and PC12 cells. The strategy for the fabrication of multi-component fiber microelectrodes is a new and effective approach for monitoring the intercellular neurotransmitter dopamine and has high potential as an implantable neural microelectrode.


Asunto(s)
Dopamina , Grafito , Microelectrodos , Poliestirenos , Células PC12 , Dopamina/sangre , Humanos , Ratas , Animales , Poliestirenos/química , Grafito/química , Límite de Detección , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Tiofenos/química , Dispositivos Laboratorio en un Chip , Polímeros
3.
Methods Mol Biol ; 2804: 77-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753141

RESUMEN

Extracellular vesicles (EVs) are secreted by cells and found in biological fluids such as blood, with concentration correlated with oncogenic signals, making them attractive biomarkers for liquid biopsy. The current gold-standard method for EVs isolation requires an ultracentrifugation (UC) step among others. The cost and complexity of this technique are forbiddingly high for many researchers, as well as for routine use in biological laboratories and hospitals. This chapter reports on a simple microfluidic method for EVs isolation, based on a microfluidic size sorting technique named Deterministic Lateral Displacement (DLD). With the design of micrometric DLD array, we demonstrated the potential of our DLD devices for the isolation of nano-biological objects such as EVs, with main population size distribution consistent with UC technique.


Asunto(s)
Vesículas Extracelulares , Dispositivos Laboratorio en un Chip , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Cultivo de Célula/métodos , Ultracentrifugación/métodos
4.
Methods Mol Biol ; 2804: 91-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753142

RESUMEN

Circulating tumor cells (CTCs) isolated directly from whole blood opens new perspectives for cancer monitoring and the development of personalized treatments. However, due to their rarity among the multitude of blood cells, it remains a challenge to recover them alive with high level of purity, i.e., with few remaining white blood cells, and in a time frame compatible with the clinical context. Microfluidic chips have emerged as promising tools to address these challenges. We propose a two-step workflow including a pre-enrichment step, performed by a size-based pre-enrichment system, and a purification step, performed by an immunomagnetic chip. Here, we describe the protocol for the fabrication of the immunomagnetic microchip, the preparation of the sample, and the procedure for injection into the microchip allowing the sorting of the CTCs.


Asunto(s)
Separación Inmunomagnética , Dispositivos Laboratorio en un Chip , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patología , Separación Inmunomagnética/métodos , Humanos , Separación Celular/métodos , Separación Celular/instrumentación , Neoplasias/patología , Neoplasias/sangre , Línea Celular Tumoral , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
5.
Methods Mol Biol ; 2804: 65-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753140

RESUMEN

In recent years, the analysis of circulating cell-free DNA (cfDNA) containing tumor-derived DNA has emerged as a noninvasive means for cancer monitoring and personalized medicine. However, the isolation of cfDNA from peripheral blood has remained a challenge due to the low abundance and high fragmentation of these molecules. Here, we present a dynamic Magnetic ExTRactiOn (METRO) protocol using microfluidic fluidized bed technology to isolate circulating cfDNA from raw biological materials such as undiluted serum. This protocol maximizes the surface area for DNA binding within the chip in order to capture short DNA fragments. It uses only a few µL of sample and reagents. The protocol can be automated, and it is fully compatible with sensitive DNA amplification methods such as droplet-based digital PCR (ddPCR).


Asunto(s)
Ácidos Nucleicos Libres de Células , Dispositivos Laboratorio en un Chip , Humanos , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Reacción en Cadena de la Polimerasa/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Magnetismo/métodos , Neoplasias/sangre , Neoplasias/genética , Neoplasias/diagnóstico
6.
Methods Mol Biol ; 2804: 237-251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753152

RESUMEN

Organ-on-a-chip technology allows researchers to precisely monitor drug efficacy in 3D tissue culture systems that are physiologically more relevant to humans compared to 2D cultures and that allow better control over experimental conditions as compared to animal models. Specifically, the high control over microenvironmental conditions combined with the broad range of direct measurements that can be performed in these systems makes organ-on-a-chip devices a versatile tool to investigate tumor targeting and drug delivery. Here, we describe a detailed protocol for studying the cell-selective targeting of protein drugs to tumor cells on an organ-on-a-chip system using a co-culture consisting of BT-474 cancer cells and C5120 human fibroblasts as an example.


Asunto(s)
Técnicas de Cocultivo , Dispositivos Laboratorio en un Chip , Humanos , Técnicas de Cocultivo/métodos , Línea Celular Tumoral , Fibroblastos/metabolismo , Microambiente Tumoral , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Antineoplásicos/farmacología , Microfluídica/métodos , Microfluídica/instrumentación
7.
Nat Commun ; 15(1): 4363, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778087

RESUMEN

Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.


Asunto(s)
Neoplasias de la Mama , Microfluídica , Medicina de Precisión , Ensayos Antitumor por Modelo de Xenoinjerto , Medicina de Precisión/métodos , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Microfluídica/métodos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
8.
Sci Rep ; 14(1): 11765, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782958

RESUMEN

In vitro use of articular cartilage on an organ-on-a-chip (OOAC) via microfluidics is challenging owing to the dense extracellular matrix (ECM) composed of numerous protein moieties and few chondrocytes, which has limited proliferation potential and microscale translation. Hence, this study proposes a novel approach for using a combination of biopolymers and decellularised ECM (dECM) as a bioink additive in the development of scalable OOAC using a microfluidic platform. The bioink was tested with native chondrocytes and mesenchymal stem cell-induced chondrocytes using biopolymers of alginate and chitosan composite hydrogels. Two-dimensional (2D) and three-dimensional (3D) biomimetic tissue construction approaches have been used to characterise the morphology and cellular marker expression (by histology and confocal laser scanning microscopy), viability (cell viability dye using flow cytometry), and genotypic expression of ECM-specific markers (by quantitative PCR). The results demonstrated that the bioink had a significant impact on the increase in phenotypic and genotypic expression, with a statistical significance level of p < 0.05 according to Student's t-test. The use of a cell-laden biopolymer as a bioink optimised the niche conditions for obtaining hyaline-type cartilage under culture conditions, paving the way for testing mechano-responsive properties and translating these findings to a cartilage-on-a-chip microfluidics system.


Asunto(s)
Alginatos , Cartílago Articular , Quitosano , Condrocitos , Matriz Extracelular , Ingeniería de Tejidos , Quitosano/química , Alginatos/química , Cartílago Articular/metabolismo , Cartílago Articular/citología , Animales , Matriz Extracelular/metabolismo , Condrocitos/metabolismo , Condrocitos/citología , Ingeniería de Tejidos/métodos , Biopolímeros/química , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Dispositivos Laboratorio en un Chip , Hidrogeles/química , Células Cultivadas , Supervivencia Celular , Sistemas Microfisiológicos
9.
Biosensors (Basel) ; 14(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38785716

RESUMEN

Electroporation is pivotal in bioelectrochemistry for cellular manipulation, with prominent applications in drug delivery and cell membrane studies. A comprehensive understanding of pore generation requires an in-depth analysis of the critical pore size and the corresponding energy barrier at the onset of cell rupture. However, many studies have been limited to basic models such as artificial membranes or theoretical simulations. Challenging this paradigm, our study pioneers using a microfluidic electroporation chip array. This tool subjects live breast cancer cell species to a diverse spectrum of alternating current electric field conditions, driving electroporation-induced cell rupture. We conclusively determined the rupture voltages across varying applied voltage loading rates, enabling an unprecedented characterization of electric cell rupture dynamics encompassing critical pore radius and energy barrier. Further bolstering our investigation, we probed cells subjected to cholesterol depletion via methyl-ß-cyclodextrin and revealed a strong correlation with electroporation. This work not only elucidates the dynamics of electric rupture in live cell membranes but also sets a robust foundation for future explorations into the mechanisms and energetics of live cell electroporation.


Asunto(s)
Membrana Celular , Electroporación , Humanos , Membrana Celular/metabolismo , Microfluídica , Línea Celular Tumoral , beta-Ciclodextrinas , Colesterol , Dispositivos Laboratorio en un Chip , Neoplasias de la Mama
10.
Biomed Microdevices ; 26(2): 26, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806765

RESUMEN

Three-dimensional (3D) cell culture models have been extensively utilized in various mechanistic studies as well as for drug development studies as superior in vitro platforms than conventional two-dimensional (2D) cell culture models. This is especially the case in cancer biology, where 3D cancer models, such as spheroids or organoids, have been utilized extensively to understand the mechanisms of cancer development. Recently, many sophisticated 3D models such as organ-on-a-chip models are emerging as advanced in vitro models that can more accurately mimic the in vivo tissue functions. Despite such advancements, spheroids are still considered as a powerful 3D cancer model due to the relatively simple structure and compatibility with existing laboratory instruments, and also can provide orders of magnitude higher throughput than complex in vitro models, an extremely important aspects for drug development. However, creating well-defined spheroids remain challenging, both in terms of throughputs in generation as well as reproducibility in size and shape that can make it challenging for drug testing applications. In the past decades, droplet microfluidics utilizing hydrogels have been highlighted due to their potentials. Importantly, core-shell structured gel droplets can avoid spheroid-to-spheroid adhesion that can cause large variations in assays while also enabling long-term cultivation of spheroids with higher uniformity by protecting the core organoid area from external environment while the outer porous gel layer still allows nutrient exchange. Hence, core-shell gel droplet-based spheroid formation can improve the predictivity and reproducibility of drug screening assays. This review paper will focus on droplet microfluidics-based technologies for cancer spheroid production using various gel materials and structures. In addition, we will discuss emerging technologies that have the potential to advance the production of spheroids, prospects of such technologies, and remaining challenges.


Asunto(s)
Hidrogeles , Esferoides Celulares , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Humanos , Hidrogeles/química , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo Tridimensional de Células/instrumentación , Técnicas de Cultivo Tridimensional de Células/métodos , Neoplasias/patología , Neoplasias/metabolismo , Microfluídica/instrumentación , Microfluídica/métodos , Animales
11.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732975

RESUMEN

Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.


Asunto(s)
Técnicas Biosensibles , Glioblastoma , Dispositivos Laboratorio en un Chip , Microambiente Tumoral , Glioblastoma/patología , Humanos , Técnicas Biosensibles/métodos , Neoplasias Encefálicas/patología , Movimiento Celular , Proliferación Celular , Sistemas Microfisiológicos
12.
Biosens Bioelectron ; 259: 116382, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749284

RESUMEN

Small extracellular vesicles (sEVs) reflect the genotype and phenotype of original cells and are biomarkers for early diagnosis and treatment monitoring of tumors. Yet, their small size and low density make them difficult to isolate and detect in body fluid samples. This study proposes a novel acDEP-Exo chip filled with transparent micro-beads, which formed a non-uniform electrical field, and finally achieved rapid, sensitive, and tunable sEVs capture and detection. The method requires only 20-50 µL of sample, achieved a limit of detection (LOD) of 161 particles/µL, and can detect biomarkers within 13 min. We applied the chip to analyze the two markers of sEV's EpCAM and MUC1 in clinical plasma samples from breast cancer (BC) patients and healthy volunteers and found that the combined evaluation of sEV's biomarkers has extremely high sensitivity, specificity and accuracy. The present study introduces an alternative approach to sEVs isolation and detection, has a great potential in real-time sEVs-based liquid biopsy.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Neoplasias de la Mama , Molécula de Adhesión Celular Epitelial , Vesículas Extracelulares , Dispositivos Laboratorio en un Chip , Mucina-1 , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/sangre , Vesículas Extracelulares/química , Femenino , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Mucina-1/sangre , Mucina-1/análisis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/aislamiento & purificación , Límite de Detección , Diseño de Equipo , Electroforesis/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Biopsia Líquida/métodos , Biopsia Líquida/instrumentación
13.
Nanotheranostics ; 8(3): 380-400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751938

RESUMEN

Cancer is a multifactorial disease produced by mutations in the oncogenes and tumor suppressor genes, which result in uncontrolled cell proliferation and resistance to cell death. Cancer progresses due to the escape of altered cells from immune monitoring, which is facilitated by the tumor's mutual interaction with its microenvironment. Understanding the mechanisms involved in immune surveillance evasion and the significance of the tumor microenvironment might thus aid in developing improved therapies. Although in vivo models are commonly utilized, they could be better for time, cost, and ethical concerns. As a result, it is critical to replicate an in vivo model and recreate the cellular and tissue-level functionalities. A 3D cell culture, which gives a 3D architecture similar to that found in vivo, is an appropriate model. Furthermore, numerous cell types can be cocultured, establishing cellular interactions between TME and tumor cells. Moreover, microfluidics perfusion can provide precision flow rates, thus simulating tissue/organ function. Immunotherapy can be used with the perfused 3D cell culture technique to help develop successful therapeutics. Immunotherapy employing nano delivery can target the spot and silence the responsible genes, ensuring treatment effectiveness while minimizing adverse effects. This study focuses on the importance of 3D cell culture in understanding the pathophysiology of 3D tumors and TME, the function of TME in drug resistance, tumor progression, and the development of advanced anticancer therapies for high-throughput drug screening.


Asunto(s)
Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Microambiente Tumoral/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Animales , Línea Celular Tumoral , Perfusión
14.
Lab Chip ; 24(11): 2861-2882, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38751338

RESUMEN

Biopharmaceuticals have emerged as powerful therapeutic agents, revolutionizing the treatment landscape for various diseases, including cancer, infectious diseases, autoimmune and genetic disorders. These biotherapeutics pave the way for precision medicine with their unique and targeted capabilities. The production of high-quality biologics entails intricate manufacturing processes, including cell culture, fermentation, purification, and formulation, necessitating specialized facilities and expertise. These complex processes are subject to rigorous regulatory oversight to evaluate the safety, efficacy, and quality of biotherapeutics prior to clinical approval. Consequently, these drugs undergo extensive purification unit operations to achieve high purity by effectively removing impurities and contaminants. The field of personalized precision medicine necessitates the development of novel and highly efficient technologies. Microfluidic technology addresses unmet needs by enabling precise and compact separation, allowing rapid, integrated and continuous purification modules. Moreover, the integration of intelligent biomanufacturing systems with miniaturized devices presents an opportunity to significantly enhance the robustness of complex downstream processing of biopharmaceuticals, with the benefits of automation and advanced control. This allows seamless data exchange, real-time monitoring, and synchronization of purification steps, leading to improved process efficiency, data management, and decision-making. Integrating autonomous systems into biopharmaceutical purification ensures adherence to regulatory standards, such as good manufacturing practice (GMP), positioning the industry to effectively address emerging market demands for personalized precision nano-medicines. This perspective review will emphasize on the significance, challenges, and prospects associated with the adoption of continuous, integrated, and intelligent methodologies in small-scale downstream processing for various types of biologics. By utilizing microfluidic technology and intelligent systems, purification processes can be enhanced for increased efficiency, cost-effectiveness, and regulatory compliance, shaping the future of biopharmaceutical production and enabling the development of personalized and targeted therapies.


Asunto(s)
Productos Biológicos , Técnicas Analíticas Microfluídicas , Productos Biológicos/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip
15.
Anal Chem ; 96(21): 8648-8656, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38716690

RESUMEN

Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (µIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 µm/min in CA-IEF, 2.5 µm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 µm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. µIPG is a promising and stable technique for studying proteoforms from small volumes.


Asunto(s)
Dimetilpolisiloxanos , Focalización Isoeléctrica , Focalización Isoeléctrica/métodos , Humanos , Dimetilpolisiloxanos/química , Concentración de Iones de Hidrógeno , Electrodos , Técnicas Analíticas Microfluídicas/instrumentación , Fuerza Protón-Motriz , Dispositivos Laboratorio en un Chip , Geles/química
16.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703767

RESUMEN

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Medicina de Precisión , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Medicina de Precisión/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Dispositivos Laboratorio en un Chip , Inmunoterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Línea Celular Tumoral
17.
Toxicol In Vitro ; 98: 105843, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735502

RESUMEN

Traditional experimental methodologies suffer from a few limitations in the toxicological evaluation of the preservatives added to eye drops. In this study, we overcame these limitations by using a microfluidic device. We developed a microfluidic system featuring a gradient concentration generator for preservative dosage control with microvalves and micropumps, automatically regulated by a programmable Arduino board. This system facilitated the simultaneous toxicological evaluation of human corneal epithelial cells against eight different concentrations of preservatives, allowing for quadruplicate experiments in a single run. In our study, the IC50 values for healthy eyes and those affected with dry eyes syndrome showed an approximately twofold difference. This variation is likely attributable to the duration for which the preservative remained in contact with corneal cells before being washed off by the medium, suggesting the significance of exposure time in the cytotoxic effect of preservatives. Our microfluidic system, automated by Arduino, simulated healthy and dry eye environments to study benzalkonium chloride toxicity and revealed significant differences in cell viability, with IC50 values of 0.0033% for healthy eyes and 0.0017% for dry eyes. In summary, we implemented the pinch-to-zoom feature of an electronic tablet in our microfluidic system, offering innovative alternatives for eye research.


Asunto(s)
Compuestos de Benzalconio , Supervivencia Celular , Ensayos Analíticos de Alto Rendimiento , Conservadores Farmacéuticos , Humanos , Conservadores Farmacéuticos/toxicidad , Compuestos de Benzalconio/toxicidad , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Supervivencia Celular/efectos de los fármacos , Síndromes de Ojo Seco/inducido químicamente , Técnicas Analíticas Microfluídicas/instrumentación , Células Epiteliales/efectos de los fármacos , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/instrumentación , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/instrumentación , Soluciones Oftálmicas/toxicidad , Línea Celular , Dispositivos Laboratorio en un Chip , Epitelio Corneal/efectos de los fármacos , Córnea/efectos de los fármacos
18.
Toxicol In Vitro ; 98: 105849, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772494

RESUMEN

Concerns over Bisphenol A (BPA) and its substitute, Bisphenol S (BPS), have led to innovative exploration due to potential adverse health effects. BPS, replacing BPA in some regions to avoid toxic impacts, remains insufficiently studied. Besides this, the organ-on-a-chip technology emerges as a transformative solution in drug discovery and chemiclas toxicity testing, minimizing costs and aligning with ethical standards by reducing reliance on animal models, by integrating diverse tissues and dynamic cell environments enhances precision in predicting organ function. Here, we employ a 3-organ-on-a-chip microfluidic device with skin, intestine, and liver cultures to assess the effects of BPA and BPS via topical and oral administration. Our evaluation focused on gene markers associated with carcinogenicity, systemic toxicity, and endocrine disruption. BPA exhibited expected absorption profiles, causing liver injury and genetic modulation in related pathways. BPS, a safer alternative, induced adverse effects on gene expression, particularly in topical absorption, with distinct absorption patterns. Our findings underscore the urgency of addressing BPA and BPS toxicity concerns, highlighting the crucial role of organ-on-a-chip technology in understanding associated health risks. The study promotes the organ-on-a-chip methodology as a valuable tool for safe drug development and disease treatments, offering a novel liver toxicity screening alternative to traditional animal tests. This contributes to advancing comprehension of the biological effects of these compounds, fostering improved safety assessments in human health.


Asunto(s)
Compuestos de Bencidrilo , Dispositivos Laboratorio en un Chip , Hígado , Fenoles , Piel , Sulfonas , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Sulfonas/toxicidad , Animales , Piel/efectos de los fármacos , Piel/metabolismo , Humanos , Intestinos/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Pruebas de Toxicidad/métodos , Sistemas Microfisiológicos
19.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774761

RESUMEN

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Material Particulado , Especies Reactivas de Oxígeno , Humanos , Material Particulado/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Movimiento Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Invasividad Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Microfluídica/métodos
20.
Mikrochim Acta ; 191(5): 295, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700804

RESUMEN

White blood cells (WBCs) are robust defenders during antigenic challenges and prime immune cell functioning indicators. High-purity WBC separation is vital for various clinical assays and disease diagnosis. Red blood cells (RBCs) are a major hindrance in WBC separation, constituting 1000 times the WBC population. The study showcases a low-cost micropump integrated microfluidic platform to provide highly purified WBCs for point-of-care testing. An integrated user-friendly microfluidic platform was designed to separate WBCs from finger-prick blood (⁓5 µL), employing an inertial focusing technique. We achieved an efficient WBC separation with 86% WBC purity and 99.99% RBC removal rate in less than 1 min. In addition, the microdevice allows lab-on-chip colorimetric evaluation of chronic granulomatous disease (CGD), a rare genetic disorder affecting globally. The assay duration, straight from separation to disease detection, requires only 20 min. Hence, the proposed microfluidic platform can further be implemented to streamline various clinical procedures involving WBCs in healthcare industries.


Asunto(s)
Separación Celular , Enfermedad Granulomatosa Crónica , Dispositivos Laboratorio en un Chip , Leucocitos , Técnicas Analíticas Microfluídicas , Humanos , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/sangre , Leucocitos/citología , Separación Celular/instrumentación , Separación Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA