Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Biol ; 223(6)2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488622

RESUMEN

The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.


Asunto(s)
Núcleo Celular , Señales de Localización Nuclear , Proteínas Señalizadoras YAP , Humanos , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Proteínas/metabolismo , Dominios WW , Proteínas Señalizadoras YAP/química , Proteínas Señalizadoras YAP/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
2.
Protein Sci ; 32(9): e4759, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37574787

RESUMEN

Proteins gain optimal fitness such as foldability and function through evolutionary selection. However, classical studies have found that evolutionarily designed protein sequences alone cannot guarantee foldability, or at least not without considering local contacts associated with the initial folding steps. We previously showed that foldability and function can be restored by removing frustration in the folding energy landscape of a model WW domain protein, CC16, which was designed based on Statistical Coupling Analysis (SCA). Substitutions ensuring the formation of five local contacts identified as "on-path" were selected using the closest homolog native folded sequence, N21. Surprisingly, the resulting sequence, CC16-N21, bound to Group I peptides, while N21 did not. Here, we identified single-point mutations that enable N21 to bind a Group I peptide ligand through structure and dynamic-based computational design. Comparison of the docked position of the CC16-N21/ligand complex with the N21 structure showed that residues at positions 9 and 19 are important for peptide binding, whereas the dynamic profiles identified position 10 as allosterically coupled to the binding site and exhibiting different dynamics between N21 and CC16-N21. We found that swapping these positions in N21 with matched residues from CC16-N21 recovers nature-like binding affinity to N21. This study validates the use of dynamic profiles as guiding principles for affecting the binding affinity of small proteins.


Asunto(s)
Mutación con Ganancia de Función , Proteínas , Ligandos , Dominios WW , Secuencia de Aminoácidos , Proteínas/química , Péptidos/química , Pliegue de Proteína
3.
J Biol Chem ; 298(8): 102145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716775

RESUMEN

Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW-peptide interactions is not always intuitive. The WW domain-containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1-WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.


Asunto(s)
Péptidos , Oxidorreductasa que Contiene Dominios WW , Dominios WW , Secuencias de Aminoácidos , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Oxidorreductasa que Contiene Dominios WW/química
4.
J Chem Inf Model ; 62(24): 6586-6601, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35347992

RESUMEN

Protein-protein interactions often rely on specialized recognition domains, such as WW domains, which bind to specific proline-rich sequences. The specificity of these protein-protein interactions can be increased by tandem repeats, i.e., two WW domains connected by a linker. With a flexible linker, the WW domains can move freely with respect to each other. Additionally, the tandem WW domains can bind in two different orientations to their target sequences. This makes the elucidation of complex structures of tandem WW domains extremely challenging. Here, we identify and characterize two complex structures of the tandem WW domain of human formin-binding protein 21 and a peptide sequence from its natural binding partner, the core-splicing protein SmB/B'. The two structures differ in the ligand orientation and, consequently, also in the relative orientation of the two WW domains. We analyze and probe the interactions in the complexes by molecular simulations and NMR experiments. The workflow to identify the complex structures uses molecular simulations, density-based clustering, and peptide docking. It is designed to systematically generate possible complex structures for repeats of recognition domains. These structures will help us to understand the synergistic and multivalency effects that generate the astonishing versatility and specificity of protein-protein interactions.


Asunto(s)
Péptidos , Humanos , Dominios WW , Ligandos , Secuencia de Aminoácidos , Péptidos/química , Espectroscopía de Resonancia Magnética , Unión Proteica
5.
Commun Biol ; 4(1): 899, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294877

RESUMEN

Neural precursor cell expressed developmentally down-regulated 4 ligase (Nedd4-2) is an E3 ubiquitin ligase that targets proteins for ubiquitination and endocytosis, thereby regulating numerous ion channels, membrane receptors and tumor suppressors. Nedd4-2 activity is regulated by autoinhibition, calcium binding, oxidative stress, substrate binding, phosphorylation and 14-3-3 protein binding. However, the structural basis of 14-3-3-mediated Nedd4-2 regulation remains poorly understood. Here, we combined several techniques of integrative structural biology to characterize Nedd4-2 and its complex with 14-3-3. We demonstrate that phosphorylated Ser342 and Ser448 are the key residues that facilitate 14-3-3 protein binding to Nedd4-2 and that 14-3-3 protein binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Overall, our findings provide the structural glimpse into the 14-3-3-mediated Nedd4-2 regulation and highlight the potential of the Nedd4-2:14-3-3 complex as a pharmacological target for Nedd4-2-associated diseases such as hypertension, epilepsy, kidney disease and cancer.


Asunto(s)
Proteínas 14-3-3/genética , Ratones/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Dominios WW , Proteínas 14-3-3/metabolismo , Animales , Regulación hacia Abajo , Ratones/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Fosforilación , Unión Proteica , Ubiquitinación
6.
J Cancer Res Clin Oncol ; 147(5): 1287-1297, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33580421

RESUMEN

PURPOSE: In the complex tumor scenario, understanding the function of proteins with protumor or antitumor roles is essential to support advances in the cancer clinical area. Among them, the salvador family WW domain-containing protein 1 (SAV1) is highlighted. This protein plays a fundamental role in the tumor suppressor face of the Hippo pathway, which are responsible for controlling cell proliferation, organ size, development and tissue homeostasis. However, the functional dysregulation of this pathway may contribute to tumorigenesis and tumor progression. As SAV1 is a tumor suppressor scaffold protein, we explored the functions performed by SAV1 with its partners, the regulation of its expression, and its antitumor role in various types of cancer. METHODS: We selected and analyzed 80 original articles and reviews from Pubmed that focuses on the study of SAV1 in cancer. RESULTS: SAV1 interacts with several proteins, has different functions and acts as tumor suppressor by other mechanisms besides Hippo pathway. SAV1 expression regulation seems to occur by microRNAs and rarely by mutation or promoter methylation. It is downregulated in different types of cancer, which leads to cancer promotion and progression and is associated with poor prognosis. In vivo models have shown that the loss of SAV1 contributes to tumorigenesis. CONCLUSION: SAV1 plays a relevant role as tumor suppressor in several types of cancer, highlighting SAV1 and the Hippo pathway's importance to cancer. Thus, encouraging further studies to include the SAV1 as a molecular key piece in cancer biology and in clinical approaches to cancer.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Dominios WW/genética , Animales , Carcinogénesis/genética , Proliferación Celular/genética , Humanos , MicroARNs/genética , Transducción de Señal/genética
7.
J Mol Biol ; 433(4): 166776, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33383033

RESUMEN

Multiple copies of WW domains and PPXY motif sequences are often reciprocally presented by regulatory proteins that interact at crucial regulatory steps in the cell life cycle. While biophysical studies of single WW domain-single PPXY motif complexes abound in the literature, the molecular mechanisms of multivalent WW domain-PPXY assemblies are still poorly understood. By way of investigating such assemblies, we characterized the multivalent association of the entire cognate binding domains, two WW sequences and five PPXY motifs respectively, of the Yorkie transcription coactivator and the Warts tumor suppressor. Isothermal titration calorimetry, sedimentation velocity, size-exclusion chromatography coupled to multi-angle light scattering and native-state mass spectrometry of Yorkie WW domains interactions with the full-length Warts PPXY domain, and numerous PPXY motif variants of Warts show that the two proteins assemble via binding of tandem WW domains to adjacent PPXY pairs to produce an ensemble of interconverting complexes of variable stoichiometries, binding energetics and WW domain occupancy. Apparently, the Yorkie tandem WW domains first target the two adjacent PPXY motifs at the C-terminus of the Warts polypeptide and additional WW domains bind unoccupied motifs. Similar ensembles of interconverting conformers may be common in multivalent WW domain-PPXY interactions to promote the adaptability and versatility of WW domain-PPXY mediated cellular processes.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Dominios WW , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Unión Proteica , Termodinámica
8.
Theranostics ; 10(10): 4422-4436, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292505

RESUMEN

YAP1 is a key mediator of the Hippo pathway capable of exerting a profound effect on organ size as well as tumorigenesis. Alternative mRNA splicing of human YAP1 results in at least 8 protein isoforms that differ within the 2nd WW motif and the transcriptional activation domain. Methods: To investigate the isoform-specific differences in their mRNA expression, transcriptional activity and tumor-promoting function, we cloned cDNA encoding all of the eight YAP1 protein isoforms. Then, we examined their mRNA expression, subcellular localization, transcriptional regulation properties, interactions with key regulatory partners, and protein stability in response to changes in cell density, as well as their effects on pancreatic cancer cell malignancy both in vitro and in vivo. Results: Multiple YAP1 mRNA isoforms are expressed in commonly used pancreatic cancer lines as well as human pancreatic cancer PDX lines. Based on the analysis of heterologous reporter and endogenous target genes, all YAP1 isoforms are capable of activating transcription, albeit to a different extent. Importantly, we unveiled a marked discrepancy between the mRNA and protein expression levels of the YAP1-1 and YAP1-2 isoforms. We further discovered that the YAP1-2 isoform, which contains two tandem WW motifs, is less stable at the protein level, particularly at high cell densities. Mechanistically, we found that the presence of the 2nd WW motif in YAP1-2 facilitates the de novo formation of the YAP1-2/AMOT/LATS1 complex and contributes to a stronger binding of YAP1-2 to LATS1 and subsequently increased YAP1-2 ubiquitination and degradation by ß-TRCP. Conclusion: Our data reveals a potent effect of YAP1-1 on pancreatic cancer malignancy in vitro and in vivo and provides novel mechanistic insight into isoform-specific and cell density-dependent regulation of YAP1 stability, as well as its impact on cancer malignancy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Adenocarcinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Dominios WW , Proteínas Señalizadoras YAP , Neoplasias Pancreáticas
9.
EMBO J ; 39(1): e102406, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782549

RESUMEN

The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proliferación Celular , Femenino , Vía de Señalización Hippo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Tasa de Supervivencia , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Células Tumorales Cultivadas , Proteínas de Transporte Vesicular/genética , Dominios WW , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
10.
Biomed Res Int ; 2019: 1791065, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31828091

RESUMEN

OBJECTIVES: Many patients with papillary thyroid cancer (PTC) have a high recurrence risk and poor prognosis, and the main obstacle to the clinical diagnosis and treatment of PTC is lack of effective predictive molecular markers. The purpose of this study was to investigate the clinicopathological and prognostic implications of WW domain binding protein 5 (WBP5) expression in PTC. MATERIALS AND METHODS: Immunohistochemistry of WBP5 was performed using tissue microarrays of 131 patients with PTC who underwent surgery during January 2006 and January 2010 in the Zhejiang Cancer Hospital. Statistical analyses were conducted to evaluate the association between WBP5 expression and the clinicopathological features and to analyze the disease-free survival (DFS) and prognostic factors. RESULTS AND CONCLUSION: The positive expression rate of WBP5 in PTC and the adjacent normal tissues was 42.75% (56/131) and 45.45% (10/22), respectively. WBP5 expression was significantly correlated with bilaterality, capsule invasion, and N-stage, and it was a favorable factor of DFS. Moreover, patients with a high WBP5 expression exhibited reduced risk of disease recurrence compared with that in patients with low WBP5 expression in the univariate analysis, whereas the multivariate analysis suggested that WBP5 was not an independent prognostic factor. Our results indicate that WBP5 might be a favorable prognosis indicator of PTC.


Asunto(s)
Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Dominios WW/fisiología , Biomarcadores de Tumor/metabolismo , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica/métodos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Pronóstico , Estudios Retrospectivos
11.
J Biol Chem ; 294(46): 17383-17394, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31597702

RESUMEN

The second WW domain (WW2) of the kidney and brain scaffolding protein, KIBRA, has an isoleucine (Ile-81) rather than a second conserved tryptophan and is primarily unstructured. However, it adopts the canonical triple-stranded antiparallel ß-sheet structure of WW domains when bound to a two-PPXY motif peptide of the synaptic protein Dendrin. Here, using a series of biophysical experiments, we demonstrate that the WW2 domain remains largely disordered when bound to a 69-residue two-PPXY motif polypeptide of the synaptic and podocyte protein synaptopodin (SYNPO). Isothermal titration calorimetry and CD experiments revealed that the interactions of the disordered WW2 domain with SYNPO are significantly weaker than SYNPO's interactions with the well-folded WW1 domain and that an I81W substitution in the WW2 domain neither enhances binding affinity nor induces substantial WW2 domain folding. In the tandem polypeptide, the two WW domains synergized, enhancing the overall binding affinity with the I81W variant tandem polypeptide 2-fold compared with the WT polypeptide. Solution NMR results showed that SYNPO binding induces small but definite chemical shift perturbations in the WW2 domain, confirming the disordered state of the WW2 domain in this complex. These analyses also disclosed that SYNPO binds the tandem WW domain polypeptide in an antiparallel manner, that is, the WW1 domain binds the second PPXY motif of SYNPO. We propose a binding model consisting of a bipartite interaction mode in which the largely disordered WW2 forms a "fuzzy" complex with SYNPO. This binding mode may be important for specific cellular functions.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de Microfilamentos/química , Unión Proteica/genética , Dominios WW/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Calorimetría , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Isoleucina/genética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/ultraestructura , Péptidos/química , Péptidos/genética , Pliegue de Proteína , Estructura Terciaria de Proteína
12.
Int J Mol Sci ; 20(19)2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31546607

RESUMEN

WWP2 is an E3 ubiquitin ligase that differentially regulates the contextual tumour suppressor/progressor TGFß signalling pathway by alternate isoform expression. WWP2 isoforms select signal transducer Smad2/3 or inhibitor Smad7 substrates for degradation through different compositions of protein-protein interaction WW domains. The WW4 domain-containing WWP2-C induces Smad7 turnover in vivo and positively regulates the metastatic epithelial-mesenchymal transition programme. This activity and the overexpression of these isoforms in human cancers make them candidates for therapeutic intervention. Here, we use NMR spectroscopy to solve the solution structure of the WWP2 WW4 domain and observe the binding characteristics of Smad7 substrate peptide. We also reveal that WW4 has an enhanced affinity for a Smad7 peptide phosphorylated at serine 206 adjacent to the PPxY motif. Using the same approach, we show that the WW3 domain also binds Smad7 and has significantly enhanced Smad7 binding affinity when expressed in tandem with the WW4 domain. Furthermore, and relevant to these biophysical findings, we present evidence for a novel WWP2 isoform (WWP2C-ΔHECT) comprising WW3-WW4 tandem domains and a truncated HECT domain that can inhibit TGFß signalling pathway activity, providing a further layer of complexity and feedback to the WWP2 regulatory apparatus. Collectively, our data reveal a structural platform for Smad substrate selection by WWP2 isoform WW domains that may be significant in the context of WWP2 isoform switching linked to tumorigenesis.


Asunto(s)
Proteína smad7/química , Proteína smad7/metabolismo , Ubiquitina-Proteína Ligasas/química , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Transducción de Señal , Proteína smad7/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Dominios WW/genética
13.
Biotechnol J ; 14(11): e1800559, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31283091

RESUMEN

Affinity-triggered assemblies rely on affinity interactions as the driving force to assemble physically crosslinked networks. WW domains are small hydrophobic proteins binding to proline-rich peptides that are typically produced in the insoluble form. Previous works attempted the biological production of the full WW domain in tandem to generate multivalent components for affinity-triggered hydrogels. In this work, an alternative approach is followed by engineering a 13-mer minimal version of the WW domain that retains the ability to bind to target proline-rich peptides. Both ligand and target peptides are produced chemically and conjugated to multivalent polyethylene glycol, yielding two components. Upon mixing together, they form soft biocompatible affinity-triggered assemblies, stable in stem cell culture media, and display mechanical properties in the same order of magnitude as for those hydrogels formed with the full WW protein in tandem.


Asunto(s)
Péptidos/química , Dominios Proteicos Ricos en Prolina , Dominios WW , Materiales Biocompatibles , Medios de Cultivo , Hidrogeles/química , Ligandos , Prolina/química , Unión Proteica , Reología
14.
J Chem Phys ; 150(22): 225103, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31202245

RESUMEN

We inquire to what extent can the geometry of protein peptide plane and side chain atoms be reconstructed from the knowledge of Cα time evolution. Due to the lack of experimental data, we analyze all atom molecular dynamics trajectories from the Anton supercomputer, and for clarity, we limit our attention to the peptide plane O atoms and side chain Cß atoms. We reconstruct their positions using four different approaches. Three of these are the publicly available reconstruction programs Pulchra, Remo, and Scwrl4. The fourth, Statistical Method, builds entirely on the statistical analysis of Protein Data Bank structures. All four methods place the O and Cß atoms accurately along the Anton trajectories; the Statistical Method gives results that are closest to the Anton data. The results suggest that when a protein moves under physiological conditions, its all atom structures can be reconstructed with high accuracy from the knowledge of the Cα atom positions. This can help to better understand and improve all atom force fields, and advance reconstruction and refinement methods for reduced protein structures. The results provide impetus for the development of effective coarse grained force fields in terms of reduced coordinates.


Asunto(s)
Proteínas de Microfilamentos/química , Péptidos/química , Algoritmos , Simulación de Dinámica Molecular , Estructura Molecular , Probabilidad , Factores de Tiempo , Dominios WW
15.
J Phys Chem Lett ; 10(6): 1272-1278, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30821977

RESUMEN

Pin1 is a two-domain peptidyl-prolyl isomerase (PPIase) associated with neurodegeneration and tumorigenesis. The two domains, a WW and a PPIase domain, are connected by a flexible linker, making Pin1 adopt various conformations ranging from compact to extended, wherein Pin1 exhibits different extents of interdomain contact. Previous studies have shown that weakening interdomain contact increases the isomerase activity of Pin1. Here, we propose an NMR chemical shift correlation-analysis-based method that will be general for two-domain proteins to gauge two-state populations of Pin1, and we report a linker-modified mutant of Pin1 with enhanced interdomain contact and increased isomerase activity, with the latter suggesting an uncorrelated effect of interdomain contact on isomerase activity. Thus, although bindings of different substrates in the WW domain impose opposite effects on interdomain contact, in both cases, it may promote isomerization, implying cooperativity between substrate binding in the WW domain and isomerization in the PPIase domain.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/química , Secuencia de Aminoácidos , Humanos , Isomerismo , Modelos Moleculares , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Alineación de Secuencia , Especificidad por Sustrato , Dominios WW
17.
Org Biomol Chem ; 16(46): 8933-8939, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30444518

RESUMEN

Hydrocarbon stapling and PEGylation are distinct strategies for enhancing the conformational stability and/or pharmacokinetic properties of peptide and protein drugs. Here we combine these approaches by incorporating asparagine-linked O-allyl PEG oligomers at two positions within the ß-sheet protein WW, followed by stapling of the PEGs via olefin metathesis. The impact of stapling two sites that are close in primary sequence is small relative to the impact of PEGylation alone and depends strongly on PEG length. In contrast, stapling of two PEGs that are far apart in primary sequence but close in tertiary structure provides substantially more stabilization, derived mostly from an entropic effect. Comparison of PEGylation + stapling vs. alkylation + stapling at the same positions in WW reveals that both approaches provide similar overall levels of conformational stability.


Asunto(s)
Asparagina/análogos & derivados , Entropía , Péptidos/química , Polietilenglicoles/química , Proteínas/química , Alquenos/química , Modelos Moleculares , Conformación Proteica , Conformación Proteica en Lámina beta , Estabilidad Proteica , Dominios WW
18.
J Biol Chem ; 293(43): 16697-16708, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30213861

RESUMEN

The Nedd4 family E3 ligases Itch and WWP1/2 play crucial roles in the regulation of cell cycle progression and apoptosis and are closely correlated with cancer development and metastasis. It has been recently shown that the ligase activities of Itch and WWP1/2 are tightly regulated, with the HECT domain sequestered intramolecularly by a linker region connecting WW2 and WW3. Here, we show that a similar autoinhibitory mechanism is utilized by the Drosophila ortholog of Itch and WWP1/2, Suppressor of Deltex (Su(dx)). We show that Su(dx) adopts an inactive steady state with the WW domain region interacting with the HECT domain. We demonstrate that both the linker and preceding WW2 are required for the efficient binding and regulation of Su(dx) HECT. Recruiting the multiple-PY motif-containing adaptor dNdfip via WW domains relieves the inhibitory state of Su(dx) and leads to substrate (e.g. Notch) ubiquitination. Our study demonstrates an evolutionarily conservative mechanism governing the regulation and activation of some Nedd4 family E3 ligases. Our results also suggest a dual regulatory mechanism for specific Notch down-regulation via dNdfip-Su(dx)-mediated Notch ubiquitination.


Asunto(s)
Proteínas de Drosophila/química , Drosophila/enzimología , Ubiquitina-Proteína Ligasas/química , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Drosophila/química , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Dominios WW
19.
Med Sci Monit ; 24: 6673-6679, 2018 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-30242144

RESUMEN

BACKGROUND The aim of this study was to compare the expression levels of mRNA of the B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) and the WW domain-containing oxidoreductase (WWOX) genes and their protein products in tissues from patients with liver cancer with normal liver tissues from patients without liver cancer. MATERIAL AND METHODS The liver cancer group (N=56) included patients with available tissue samples of histologically confirmed liver cancer. The control group (N=24) included histologically confirmed normal liver tissue samples. Immunofluorescence staining and Western blot were used to detect and compare protein expression of Bmi-1 and WWOX in liver tissues in the liver cancer group and the control group. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect and compare mRNA expression of BMI-1 and WWOX in liver tissues in the liver cancer group and the control group. Expression levels of the protein and mRNA levels and the clinicopathological features including patient prognosis in liver cancer were evaluated statistically using analysis of variance (ANOVA). RESULTS There were significant differences in the expression levels of protein and mRNA of BMI-1 and WWOX between the liver cancer group and the control group. BMI-1 mRNA and protein expression were significantly increased, and WWOX mRNA and protein expression were significantly reduced in liver cancer tissue, compared with normal liver tissue (p<0.05). CONCLUSIONS In liver cancer tissue compared with normal liver, the expression of BMI-1 and WWOX mRNA and their protein products were upregulated and down-regulated, respectively.


Asunto(s)
Neoplasias Hepáticas/genética , Complejo Represivo Polycomb 1/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , Adulto , Anciano , Carcinoma Hepatocelular/genética , China , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Hígado/citología , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Virus de la Leucemia Murina de Moloney , Oxidorreductasas , Complejo Represivo Polycomb 1/metabolismo , Pronóstico , ARN Mensajero , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/metabolismo , Dominios WW
20.
FEBS Lett ; 592(18): 3082-3091, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30079475

RESUMEN

In Alzheimer's, the disease-related protein Tau is hyperphosphorylated and aggregates into neurofibrillary tangles (NFT). The cis isomer of the phosphorylated Thr231-Pro232 has been proposed as a precursor of aggregation ('Cistauosis'), but this aggregation scheme is not yet completely accepted. Here, we synthesized peptides comprising a phosphorylated region including Thr231-Pro232 and an aggregation-core region R1 to investigate isomer-specific-aggregation of Tau. The phosphorylated peptide formed amyloid-like aggregation. This aggregation was observed even in the presence of the catalytic domain of the peptidyl-prolyl-isomerase Pin1, which preferentially converts the cis isomer to the trans isomer, but decreased drastically in the presence of the WW domain of Pin1 selectively binding to the trans isomer. These results indicate that the trans isomer is aggregation-prone and that the WW domain of Pin1 effectively inhibits its aggregation.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/química , Péptidos/química , Agregación Patológica de Proteínas , Dominios WW , Proteínas tau/química , Amiloide/química , Amiloide/metabolismo , Sitios de Unión/genética , Dominio Catalítico , Humanos , Espectroscopía de Resonancia Magnética , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA