Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.839
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Discov ; 13(12): OF17, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37861283

RESUMEN

Intrinsically disordered regions (IDR) of ARID1A/B control cBAF condensation and protein-protein interactions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Dominios y Motivos de Interacción de Proteínas , Humanos , Proteínas Intrínsecamente Desordenadas/química
2.
Adv Mater ; 35(29): e2300947, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37027309

RESUMEN

Membraneless organelles are important for spatial organization of proteins and regulation of intracellular processes. Proteins can be recruited to these condensates by specific protein-protein or protein-nucleic acid interactions, which are often regulated by post-translational modifications. However, the mechanisms behind these dynamic, affinity-based protein recruitment events are not well understood. Here, a coacervate system that incorporates the 14-3-3 scaffold protein to study enzymatically regulated recruitment of 14-3-3-binding proteins is presented, which mostly bind in a phosphorylation-dependent manner. Synthetic coacervates are efficiently loaded with 14-3-3, and phosphorylated binding partners, such as the c-Raf pS233/pS259 peptide (c-Raf), show 14-3-3-dependent sequestration with up to 161-fold increase in local concentration. The c-Raf domain is fused to green fluorescent protein (GFP-c-Raf) to demonstrate recruitment of proteins. In situ phosphorylation of GFP-c-Raf by a kinase leads to enzymatically regulated uptake. The introduction of a phosphatase into coacervates preloaded with the phosphorylated 14-3-3-GFP-c-Raf complex results in a significant cargo efflux mediated by dephosphorylation. Finally, the general applicability of this platform to study protein-protein interactions is demonstrated by the phosphorylation-dependent and 14-3-3-mediated active reconstitution of a split-luciferase inside artificial cells. This work presents an approach to study dynamically regulated protein recruitment in condensates, using native interaction domains.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Células Artificiales , Proteínas 14-3-3/química , Péptidos/química , Fosforilación
3.
J Mol Biol ; 435(6): 167972, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690069

RESUMEN

Deficient nucleocytoplasmic transport is emerging as a pathogenic feature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), including in ALS caused by mutations in Fused in Sarcoma (FUS). Recently, both wild-type and ALS-linked mutant FUS were shown to directly interact with the phenylalanine-glycine (FG)-rich nucleoporin 62 (Nup62) protein, where FUS WT/ Nup62 interactions were enriched within the nucleus but ALS-linked mutant FUS/ Nup62 interactions were enriched within the cytoplasm of cells. Nup62 is a central channel Nup that has a prominent role in forming the selectivity filter within the nuclear pore complex and in regulating effective nucleocytoplasmic transport. Under conditions where FUS phase separates into liquid droplets in vitro, the addition of Nup62 caused the synergistic formation of amorphous assemblies containing both FUS and Nup62. Here, we examined the molecular determinants of this process using recombinant FUS and Nup62 proteins and biochemical approaches. We demonstrate that the structured C-terminal domain of Nup62 containing an alpha-helical coiled-coil region plays a dominant role in binding FUS and is sufficient for inducing the formation of FUS/Nup62 amorphous assemblies. In contrast, the natively unstructured, F/G repeat-rich N-terminal domain of Nup62 modestly contributed to FUS/Nup62 phase separation behavior. Expression of individual Nup62 domain constructs in human cells confirmed that the Nup62 C-terminal domain is essential for localization of the protein to the nuclear envelope. Our results raise the possibility that interactions between FUS and the C-terminal domain of Nup62 can influence the function of Nup62 under physiological and/or pathological conditions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Glicoproteínas de Membrana , Proteínas de Complejo Poro Nuclear , Dominios y Motivos de Interacción de Proteínas , Proteína FUS de Unión a ARN , Humanos , Transporte Activo de Núcleo Celular/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Citoplasma/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Mutación , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119430, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638846

RESUMEN

The Striatin family of proteins constitutes Striatin, SG2NA, and Zinedin. Members of this family of proteins act as a signaling scaffold due to the presence of multiple protein-protein interaction domains. At least two members of this family, namely Zinedin and SG2NA, have a proven role in cancer cell proliferation. SG2NA, the second member of this family, undergoes alternative splicing and gives rise to several isoforms which are differentially regulated in a tissue-dependent manner. SG2NA evolved earlier than the other two members of the family, and SG2NA undergoes not only alternative splicing but also other posttranscriptional gene regulation. Striatin also undergoes alternative splicing, and as a result, it gives rise to multiple isoforms. It has been shown that this family of proteins plays a significant role in estrogen signaling, neuroprotection, cancer as well as in cell cycle regulation. Members of the striatin family form a complex network of signaling hubs with different kinases and phosphatases, and other signaling proteins named STRIPAK. Here, in the present manuscript, we thoroughly reviewed the findings on striatin family members to elaborate on the overall structural and functional idea of this family of proteins. We also commented on the involvement of these proteins in STRIPAK complexes and their functional relevance.


Asunto(s)
Transducción de Señal , Factores de Transcripción , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/química
5.
Basic Clin Pharmacol Toxicol ; 133(4): 295-300, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36585032

RESUMEN

An elusive problem in the adhesion G protein-coupled receptor (AGPCR) field is full understanding of the activation mechanisms of the 33-member receptor class. With the recent solution of active-state structures of nearly one quarter of AGPCRs, clarity has been brought to how AGPCRs are activated in response to endogenous full agonists. AGPCRs are self-activated via a tethered peptide agonist (TA) that transitions from a concealed or encrypted location to a decrypted state that binds to a typical GPCR orthosteric binding pocket. Here, we summarize the key milestones that led to the discovery of the AGPCR TA activation mechanism and discuss how extracellular shear forces may initiate TA decryption in physiological contexts. We compare the new active-state AGPCR structures and note that the orthosteric site-engaged TAs adopt a remarkably similar partial α-helical hook-like conformation, despite divergence of overall receptor similarity. Further, we contrast the TA-bound AGPCR structures to a partially active AGPCR structure to highlight the transitions AGPCRs may undergo during activation. Finally, we provide commentary on the validity of alternative AGPCR activation mechanisms.


Asunto(s)
Péptidos , Receptores Acoplados a Proteínas G , Adhesión Celular , Relación Estructura-Actividad , Receptores Acoplados a Proteínas G/metabolismo , Dominios y Motivos de Interacción de Proteínas
6.
Chembiochem ; 24(1): e202200553, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36300584

RESUMEN

The transcription factors STAT5a and STAT5b are constitutively active in many human tumors. Combined inhibition of both STAT5 proteins is a valuable approach with promising applications in tumor biology. We recently reported resorcinol bisphosphate as a moderately active inhibitor of the protein-protein interaction domains, the SH2 domains, of both STAT5a and STAT5b. Here, we describe the development of resorcinol bisphosphate to Stafiba, a phosphatase-stable inhibitor of STAT5a and STAT5b with activity in the low micromolar concentration range. Our data provide insights into the structure-activity relationships of resorcinol bisphosphates and the corresponding bisphosphonates for use as inhibitors of both STAT5a and STAT5b.


Asunto(s)
Resorcinoles , Factor de Transcripción STAT5 , Humanos , Dominios y Motivos de Interacción de Proteínas , Dominios Homologos src
7.
Cells ; 11(23)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36496998

RESUMEN

Colorectal tumorigenesis is driven by alterations in genes and proteins responsible for cancer initiation, progression, and invasion. This multistage process is based on a dense network of protein-protein interactions (PPIs) that become dysregulated as a result of changes in various cell signaling effectors. PPIs in signaling and regulatory networks are known to be mediated by short linear motifs (SLiMs), which are conserved contiguous regions of 3-10 amino acids within interacting protein domains. SLiMs are the minimum sequences required for modulating cellular PPI networks. Thus, several in silico approaches have been developed to predict and analyze SLiM-mediated PPIs. In this review, we focus on emerging evidence supporting a crucial role for SLiMs in driver pathways that are disrupted in colorectal cancer (CRC) tumorigenesis and related PPI network alterations. As a result, SLiMs, along with short peptides, are attracting the interest of researchers to devise small molecules amenable to be used as novel anti-CRC targeted therapies. Overall, the characterization of SLiMs mediating crucial PPIs in CRC may foster the development of more specific combined pharmacological approaches.


Asunto(s)
Neoplasias Colorrectales , Proteínas , Humanos , Bases de Datos de Proteínas , Dominios y Motivos de Interacción de Proteínas , Proteínas/metabolismo , Péptidos , Neoplasias Colorrectales/genética
8.
J Mol Biol ; 434(22): 167833, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36174765

RESUMEN

The intrinsically disordered protein MYC belongs to the family of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors (TFs). In complex with its cognate binding partner MAX, MYC preferentially binds to E-Box promotor sequences where it controls fundamental cellular processes such as cell cycle progression, metabolism, and apoptosis. Intramolecular regulation of MYC:MAX has not yet been investigated in detail. In this work, we use Nuclear Magnetic Resonance (NMR) spectroscopy to identify and map interactions between the disordered MAX N-terminus and the MYC:MAX DNA binding domain (DBD). We find that this binding event is mainly driven by electrostatic interactions and that it is competitive with DNA binding. Using NMR spectroscopy and Surface Plasmon Resonance (SPR), we demonstrate that the MAX N-terminus serves to accelerate DNA binding kinetics of MYC:MAX and MAX:MAX dimers, while it simultaneously provides specificity for E-Box DNA. We also establish that these effects are further enhanced by Casein Kinase 2-mediated phosphorylation of two serine residues in the MAX N-terminus. Our work provides new insights how bHLH-LZ TFs are regulated by intramolecular interactions between disordered regions and the folded DNA binding domain.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Proteínas Intrínsecamente Desordenadas , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc , Quinasa de la Caseína II/química , ADN/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Proto-Oncogénicas c-myc/química , Serina/química , Mapeo de Interacción de Proteínas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Unión Proteica , Fosforilación
9.
J Biol Chem ; 298(8): 102232, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798140

RESUMEN

Tyrosine sulfation, a post-translational modification, can determine and often enhance protein-protein interaction specificity. Sulfotyrosyl residues (sTyrs) are formed by the enzyme tyrosyl-protein sulfotransferase during protein maturation in the Golgi apparatus and most often occur singly or as a cluster within a six-residue span. With both negative charge and aromatic character, sTyr facilitates numerous atomic contacts as visualized in binding interface structural models, thus there is no discernible binding site consensus. Found exclusively in secreted proteins, in this review, we discuss the four broad sequence contexts in which sTyr has been observed: first, a solitary sTyr has been shown to be critical for diverse high-affinity interactions, such as between peptide hormones and their receptors, in both plants and animals. Second, sTyr clusters within structurally flexible anionic segments are essential for a variety of cellular processes, including coreceptor binding to the HIV-1 envelope spike protein during virus entry, chemokine interactions with receptors, and leukocyte rolling cell adhesion. Third, a subcategory of sTyr clusters is found in conserved acidic sequences termed hirudin-like motifs that enable proteins to interact with thrombin; consequently, many proven and potential therapeutic proteins derived from blood-consuming invertebrates depend on sTyrs for their activity. Finally, several proteins that interact with collagen or similar proteins contain one or more sTyrs within an acidic residue array. Refined methods to direct sTyr incorporation in peptides synthesized both in vitro and in vivo, together with continued advances in mass spectrometry and affinity detection, promise to accelerate discoveries of sTyr occurrence and function.


Asunto(s)
Péptidos , Dominios y Motivos de Interacción de Proteínas , Tirosina , Animales , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
10.
J Biol Chem ; 298(5): 101898, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378126

RESUMEN

Protein-protein interactions drive various biological processes in healthy as well as disease states. The transcription factor c-Myc plays a crucial role in maintaining cellular homeostasis, and its deregulated expression is linked to various human cancers; therefore, it can be considered a viable target for cancer therapeutics. However, the structural heterogeneity of c-Myc due to its disordered nature poses a major challenge to drug discovery. In the present study, we used an in silico alanine scanning mutagenesis approach to identify "hot spot" residues within the c-Myc/Myc-associated factor X interface, which is highly disordered and has not yet been systematically analyzed for potential small molecule binding sites. We then used the information gained from this analysis to screen potential inhibitors using a conformation ensemble approach. The fluorescence-based biophysical experiments showed that the identified hit molecules displayed noncovalent interactions with these hot spot residues, and further cell-based experiments showed substantial in vitro potency against diverse c-Myc-expressing cancer/stem cells by deregulating c-Myc activity. These biophysical and computational studies demonstrated stable binding of the hit compounds with the disordered c-Myc protein. Collectively, our data indicated effective drug targeting of the disordered c-Myc protein via the determination of hot spot residues in the c-Myc/Myc-associated factor X heterodimer.


Asunto(s)
Descubrimiento de Drogas , Factor X , Técnicas Genéticas , Proteínas Proto-Oncogénicas c-myc , Factor X/metabolismo , Humanos , Conformación Molecular , Mutagénesis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-myc/química
11.
Proc Natl Acad Sci U S A ; 119(11): e2106098119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259013

RESUMEN

SignificanceThe pseudokinase integrin-linked kinase (ILK) is a central component of focal adhesions, cytoplasmic multiprotein complexes that integrate and transduce biochemical and mechanical signals from the extracellular environment into the cell and vice versa. However, the precise molecular functions, particularly the mechanosensory properties of ILK and the significance of retained adenosine triphosphate (ATP) binding, are still unclear. Combining molecular-dynamics simulations with cell biology, we establish a role for ATP binding to pseudokinases. We find that ATP promotes the structural stability of ILK, allosterically influences the interaction between ILK and its binding partner parvin at adhesions, and enhances the mechanoresistance of this complex. On the cellular level, ATP binding facilitates efficient traction force buildup, focal adhesion stabilization, and efficient cell migration.


Asunto(s)
Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Regulación Alostérica , Sitios de Unión , Adhesión Celular , Movimiento Celular , Estabilidad de Enzimas , Adhesiones Focales , Mecanotransducción Celular , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Conformación Molecular , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Proc Natl Acad Sci U S A ; 119(11): e2121979119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259019

RESUMEN

SignificancePARP is an important target in the treatment of cancers, particularly in patients with breast, ovarian, or prostate cancer that have compromised homologous recombination repair (i.e., BRCA-/-). This review about inhibitors of PARP (PARPi) is for readers interested in the development of next-generation drugs for the treatment of cancer, providing insights into structure-activity relationships, in vitro vs. in vivo potency, PARP trapping, and synthetic lethality.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Reparación del ADN , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Mutaciones Letales Sintéticas
13.
Biomed Pharmacother ; 148: 112756, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35228064

RESUMEN

The 2019 corona virus disease (COVID-19) has caused a global chaos, where a novel Omicron variant has challenged the healthcare system, followed by which it has been referred to as a variant of concern (VOC) by the World Health Organization (WHO), owing to its alarming transmission and infectivity rate. The large number of mutations in the receptor binding domain (RBD) of the spike protein is responsible for strengthening of the spike-angiotensin-converting enzyme 2 (ACE2) interaction, thereby explaining the elevated threat. This is supplemented by enhanced resistance of the variant towards pre-existing antibodies approved for the COVID-19 therapy. The manuscript brings into light failure of existing therapies to provide the desired effect, however simultaneously discussing the novel possibilities on the verge of establishing suitable treatment portfolio. The authors entail the risks associated with omicron resistance against antibodies and vaccine ineffectiveness on one side, and novel approaches and targets - kinase inhibitors, viral protease inhibitors, phytoconstituents, entry pathways - on the other. The manuscript aims to provide a holistic picture about the Omicron variant, by providing comprehensive discussions related to multiple aspects of the mutated spike variant, which might aid the global researchers and healthcare experts in finding an optimised solution to this pandemic.


Asunto(s)
COVID-19/fisiopatología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Catepsinas/metabolismo , Receptores ErbB/antagonistas & inhibidores , Humanos , Esquemas de Inmunización , Inmunización Secundaria , Fitoterapia/métodos , Plantas Medicinales , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Elementos Estructurales de las Proteínas/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Inhibidores de Proteasa Viral/farmacología , Inhibidores de Proteasa Viral/uso terapéutico
14.
Sci Rep ; 12(1): 1848, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115608

RESUMEN

WDR5 nucleates the assembly of histone-modifying complexes and acts outside this context in a range of chromatin-centric processes. WDR5 is also a prominent target for pharmacological inhibition in cancer. Small-molecule degraders of WDR5 have been described, but most drug discovery efforts center on blocking the WIN site of WDR5, an arginine binding cavity that engages MLL/SET enzymes that deposit histone H3 lysine 4 methylation (H3K4me). Therapeutic application of WIN site inhibitors is complicated by the disparate functions of WDR5, but is generally guided by two assumptions-that WIN site inhibitors disable all functions of WDR5, and that changes in H3K4me drive the transcriptional response of cancer cells to WIN site blockade. Here, we test these assumptions by comparing the impact of WIN site inhibition versus WDR5 degradation on H3K4me and transcriptional processes. We show that WIN site inhibition disables only a specific subset of WDR5 activity, and that H3K4me changes induced by WDR5 depletion do not explain accompanying transcriptional responses. These data recast WIN site inhibitors as selective loss-of-function agents, contradict H3K4me as a relevant mechanism of action for WDR5 inhibitors, and indicate distinct clinical applications of WIN site inhibitors and WDR5 degraders.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Linfoma de Células B/tratamiento farmacológico , Sitios de Unión , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Metilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Transducción de Señal , Transcripción Genética
15.
Viruses ; 14(2)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216007

RESUMEN

Various adenoviruses are being used as viral vectors for the generation of vaccines against chronic and emerging diseases (e.g., AIDS, COVID-19). Here, we report the improved capsid structure for one of these vectors, human adenovirus D26 (HAdV-D26), at 3.4 Å resolution, by reprocessing the previous cryo-electron microscopy dataset and obtaining a refined model. In addition to overall improvements in the model, the highlights of the structure include (1) locating a segment of the processed peptide of VIII that was previously believed to be released from the mature virions, (2) reorientation of the helical appendage domain (APD) of IIIa situated underneath the vertex region relative to its counterpart observed in the cleavage defective (ts1) mutant of HAdV-C5 that resulted in the loss of interactions between the APD and hexon bases, and (3) the revised conformation of the cleaved N-terminal segments of pre-protein VI (pVIn), located in the hexon cavities, is highly conserved, with notable stacking interactions between the conserved His13 and Phe18 residues. Taken together, the improved model of HAdV-D26 capsid provides a better understanding of protein-protein interactions in HAdV capsids and facilitates the efforts to modify and/or design adenoviral vectors with altered properties. Last but not least, we provide some insights into clotting factors (e.g., FX and PF4) binding to AdV vectors.


Asunto(s)
Adenovirus Humanos/química , Cápside/química , Cápside/ultraestructura , Microscopía por Crioelectrón/métodos , Adenovirus Humanos/genética , Proteínas de la Cápside/genética , Humanos , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ensamble de Virus , Internalización del Virus
16.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35058363

RESUMEN

Gram-positive organisms with their thick envelope cannot be lysed by complement alone. Nonetheless, antibody-binding on the surface can recruit complement and mark these invaders for uptake and killing by phagocytes, a process known as opsonophagocytosis. The crystallizable fragment of immunoglobulins (Fcγ) is key for complement recruitment. The cell surface of S. aureus is coated with Staphylococcal protein A (SpA). SpA captures the Fcγ domain of IgG and interferes with opsonization by anti-S. aureus antibodies. In principle, the Fcγ domain of therapeutic antibodies could be engineered to avoid the inhibitory activity of SpA. However, the SpA-binding site on Fcγ overlaps with that of the neonatal Fc receptor (FcRn), an interaction that is critical for prolonging the half-life of serum IgG. This evolutionary adaptation poses a challenge for the exploration of Fcγ mutants that can both weaken SpA-IgG interactions and retain stability. Here, we use both wild-type and transgenic human FcRn mice to identify antibodies with enhanced half-life and increased opsonophagocytic killing in models of S. aureus infection and demonstrate that antibody-based immunotherapy can be improved by modifying Fcγ. Our experiments also show that by competing for FcRn-binding, staphylococci effectively reduce the half-life of antibodies during infection. These observations may have profound impact in treating cancer, autoimmune, and asthma patients colonized or infected with S. aureus and undergoing monoclonal antibody treatment.


Asunto(s)
Anticuerpos Antibacterianos/genética , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Opsonización/inmunología , Ingeniería de Proteínas , Secuencia de Aminoácidos , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Activación de Complemento , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta Inmunológica , Humanos , Fagocitosis/inmunología , Unión Proteica , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/inmunología , Receptores Fc/genética , Proteína Estafilocócica A/inmunología , Staphylococcus aureus/inmunología
17.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046037

RESUMEN

SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Supresoras de Tumor/química , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Unión Proteica , Estrés Fisiológico , Relación Estructura-Actividad , Proteínas Supresoras de Tumor/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046043

RESUMEN

Receptor usage defines cell tropism and contributes to cell entry and infection. Coxsackievirus B (CVB) engages coxsackievirus and adenovirus receptor (CAR), and selectively utilizes the decay-accelerating factor (DAF; CD55) to infect cells. However, the differential receptor usage mechanism for CVB remains elusive. This study identified VP3-234 residues (234Q/N/V/D/E) as critical population selection determinants during CVB3 virus evolution, contributing to diverse binding affinities to CD55. Cryoelectron microscopy (cryo-EM) structures of CD55-binding/nonbinding isolates and their complexes with CD55 or CAR were obtained under both neutral and acidic conditions, and the molecular mechanism of VP3-234 residues determining CD55 affinity/specificity for naturally occurring CVB3 strains was elucidated. Structural and biochemical studies in vitro revealed the dynamic entry process of CVB3 and the function of the uncoating receptor CAR with different pH preferences. This work provides detailed insight into the molecular mechanism of CVB infection and contributes to an in-depth understanding of enterovirus attachment receptor usage.


Asunto(s)
Antígenos CD55/metabolismo , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/virología , Enterovirus Humano B/fisiología , Interacciones Huésped-Patógeno , Receptores Virales/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Enterovirus Humano B/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Receptores Virales/química , Relación Estructura-Actividad , Acoplamiento Viral
19.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063133

RESUMEN

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Nucleares/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Supervivencia Celular , Células HEK293 , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Células K562 , Cinética , Simulación del Acoplamiento Molecular , Proteínas Nucleares/genética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Biochem J ; 479(3): 289-304, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35037691

RESUMEN

Ubiquitination and ADP-ribosylation are post-translational modifications that play major roles in pathways including the DNA damage response and viral infection. The enzymes responsible for these modifications are therefore potential targets for therapeutic intervention. DTX3L is an E3 Ubiquitin ligase that forms a heterodimer with PARP9. In addition to its ubiquitin ligase activity, DTX3L-PARP9 also acts as an ADP-ribosyl transferase for Gly76 on the C-terminus of ubiquitin. NAD+-dependent ADP-ribosylation of ubiquitin by DTX3L-PARP9 prevents ubiquitin from conjugating to protein substrates. To gain insight into how DTX3L-PARP9 generates these post-translational modifications, we produced recombinant forms of DTX3L and PARP9 and studied their physical interactions. We show the DTX3L D3 domain (230-510) mediates the interaction with PARP9 with nanomolar affinity and an apparent 1 : 1 stoichiometry. We also show that DTX3L and PARP9 assemble into a higher molecular weight oligomer, and that this is mediated by the DTX3L N-terminal region (1-200). Lastly, we show that ADP-ribosylation of ubiquitin at Gly76 is reversible in vitro by several Macrodomain-type hydrolases. Our study provides a framework to understand how DTX3L-PARP9 mediates ADP-ribosylation and ubiquitination through both intra- and inter-subunit interactions.


Asunto(s)
Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Multimerización de Proteína/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , ADP-Ribosilación/genética , Adenosina Difosfato Ribosa/metabolismo , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Neoplasias/genética , Poli(ADP-Ribosa) Polimerasas/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Transfección , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA