Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Commun Biol ; 7(1): 162, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38332126

RESUMEN

Modulation of cell death is a powerful strategy employed by pathogenic bacteria to evade host immune clearance and occupy profitable replication niches during infection. Intracellular pathogens employ the type III secretion system (T3SS) to deliver effectors, which interfere with regulated cell death pathways to evade immune defenses. Here, we reveal that poly(ADP-ribose) polymerase-1 (PARP1)-dependent cell death restrains Edwardsiella piscicida's proliferation in mouse monocyte macrophages J774A.1, of which PARP1 activation results in the accumulation of poly(ADP-ribose) (PAR) and enhanced inflammatory response. Moreover, E. piscicida, an important intracellular pathogen, leverages a T3SS effector YfiD to impair PARP1's activity and inhibit PAR accumulation. Once translocated into the host nucleus, YfiD binds to the ADP-ribosyl transferase (ART) domain of PARP1 to suppress its PARylation ability as the pharmacological inhibitor of PARP1 behaves. Furthermore, the interaction between YfiD and ART mainly relies on the complete unfolding of the helical domain, which releases the inhibitory effect on ART. In addition, YfiD impairs the inflammatory response and cell death in macrophages and promotes in vivo colonization and virulence of E. piscicida. Collectively, our results establish the functional mechanism of YfiD as a potential PARP1 inhibitor and provide more insights into host defense against bacterial infection.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Animales , Ratones , Sistemas de Secreción Tipo III/metabolismo , Poli Adenosina Difosfato Ribosa , Virulencia , Edwardsiella/metabolismo
2.
Cell Microbiol ; 22(7): e13193, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32068939

RESUMEN

The type III secretion system effector EseJ plays a regulatory role inside bacteria. It suppresses the adherence of Edwardsiella piscicida (E. piscicida) to host epithelial cells by down regulating type 1 fimbriae. In this study, we observed that more macrophages infected with ΔeseJ strain of E. piscicida detached as compared with those infected with the wild-type (WT) strain. Terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining and cleaved caspase-3 examination revealed that the detachment is due to increased apoptosis, suggesting that EseJ suppresses macrophage apoptosis. However, apoptosis inhibition by EseJ is not relative to a type III secretion system (T3SS) and is not related to EseJ's translocation. Since EseJ negatively regulates type 1 fimbriae, murine J774A.1 cells were infected with ΔeseJΔfimA or ΔeseJΔfimH strains. It was demonstrated that ΔeseJ stimulates macrophage apoptosis through type 1 fimbriae. Moreover, we found that infecting J774A.1 cells with the ΔeseJ strain increased levels of cleaved caspase-8, caspase-9, and caspase-3, demonstrating that EseJ inhibits apoptosis through either an extrinsic or a combination of extrinsic and intrinsic pathways. Pre-treatment of macrophages with caspase-8 inhibitor prior to infection with the ΔeseJ strain decreased the levels of cleaved caspase-8, caspase-9, and caspase-3, indicating that the ΔeseJ strain stimulates apoptosis, mainly through an extrinsic pathway by up regulating type 1 fimbriae. Zebrafish larvae or blue gourami fish infected with the ΔeseJ strain consistently exhibited higher apoptosis than those infected with the E. piscicida WT strain or ΔeseJΔfimA strain. Taken together, we revealed that the T3SS protein EseJ of E. piscicida inhibits host apoptosis, mainly through an extrinsic pathway by down regulating type 1 fimbriae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caspasa 8/metabolismo , Edwardsiella/metabolismo , Fimbrias Bacterianas/metabolismo , Animales , Apoptosis , Caspasa 3 , Caspasa 9 , Línea Celular , Edwardsiella/patogenicidad , Infecciones por Enterobacteriaceae/metabolismo , Epítopos , Enfermedades de los Peces/microbiología , Interacciones Huésped-Patógeno/fisiología , Larva , Lipopolisacáridos , Macrófagos , Ratones , Sistemas de Secreción Tipo III/metabolismo , Pez Cebra
3.
Cell Microbiol ; 20(1)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29024267

RESUMEN

Bacterium usually utilises type III secretion systems (T3SS) to deliver effectors directly into host cells with the aids of chaperones. Hence, it is very important to identify bacterial T3SS effectors and chaperones for better understanding of host-pathogen interactions. Edwardsiella piscicida is an invasive enteric bacterium, which infects a wide range of hosts from fish to human. Given E. piscicida encodes a functional T3SS to promote infection, very few T3SS effectors and chaperones have been identified in this bacterium so far. Here, we reported that EseK is a new T3SS effector protein translocated by E. piscicida. Bioinformatic analysis indicated that escH and escS encode two putative class I T3SS chaperones. Further investigation indicated that EscH and EscS can enhance the secretion and translocation of EseK. EscH directly binds EseK through undetermined binding domains, whereas EscS binds EseK via its N-terminal α-helix. We also found that EseK has an N-terminal chaperone-binding domain, which binds EscH and EscS to form a ternary complex. Zebrafish infection experiments showed that EseK and its chaperones EscH and EscS are necessary for bacterial colonisation in zebrafish. This work identified a new T3SS effector, EseK, and its two T3SS chaperones, EscH and EscS, in E. piscicida, which enriches our knowledge of bacterial T3SS effector-chaperone interaction and contributes to our understanding of bacterial pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Edwardsiella/patogenicidad , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , Animales , Línea Celular Tumoral , Edwardsiella/metabolismo , Edwardsiella tarda/clasificación , Infecciones por Enterobacteriaceae/patología , Enfermedades de los Peces/microbiología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Factores de Virulencia/genética , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA