Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.970
Filtrar
Más filtros











Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(6): e14782, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828651

RESUMEN

BACKGROUND: The thalamus system plays critical roles in the regulation of reversible unconsciousness induced by general anesthetics, especially the arousal stage of general anesthesia (GA). But the function of thalamus in GA-induced loss of consciousness (LOC) is little known. The thalamic reticular nucleus (TRN) is the only GABAergic neurons-composed nucleus in the thalamus, which is composed of parvalbumin (PV) and somatostatin (SST)-expressing GABAergic neurons. The anterior sector of TRN (aTRN) is indicated to participate in the induction of anesthesia, but the roles remain unclear. This study aimed to reveal the role of the aTRN in propofol and isoflurane anesthesia. METHODS: We first set up c-Fos straining to monitor the activity variation of aTRNPV and aTRNSST neurons during propofol and isoflurane anesthesia. Subsequently, optogenetic tools were utilized to activate aTRNPV and aTRNSST neurons to elucidate the roles of aTRNPV and aTRNSST neurons in propofol and isoflurane anesthesia. Electroencephalogram (EEG) recordings and behavioral tests were recorded and analyzed. Lastly, chemogenetic activation of the aTRNPV neurons was applied to confirm the function of the aTRN neurons in propofol and isoflurane anesthesia. RESULTS: c-Fos straining showed that both aTRNPV and aTRNSST neurons are activated during the LOC period of propofol and isoflurane anesthesia. Optogenetic activation of aTRNPV and aTRNSST neurons promoted isoflurane induction and delayed the recovery of consciousness (ROC) after propofol and isoflurane anesthesia, meanwhile chemogenetic activation of the aTRNPV neurons displayed the similar effects. Moreover, optogenetic and chemogenetic activation of the aTRN neurons resulted in the accumulated burst suppression ratio (BSR) during propofol and isoflurane GA, although they represented different effects on the power distribution of EEG frequency. CONCLUSION: Our findings reveal that the aTRN GABAergic neurons play a critical role in promoting the induction of propofol- and isoflurane-mediated GA.


Asunto(s)
Anestesia General , Estado de Conciencia , Neuronas GABAérgicas , Isoflurano , Propofol , Propofol/farmacología , Isoflurano/farmacología , Animales , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Ratones , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Masculino , Electroencefalografía , Anestésicos por Inhalación/farmacología , Núcleos Talámicos Anteriores/efectos de los fármacos , Núcleos Talámicos Anteriores/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Anestésicos Intravenosos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Optogenética
2.
Neurology ; 102(12): e209428, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38843489

RESUMEN

BACKGROUND AND OBJECTIVES: Current practice in clinical neurophysiology is limited to short recordings with conventional EEG (days) that fail to capture a range of brain (dys)functions at longer timescales (months). The future ability to optimally manage chronic brain disorders, such as epilepsy, hinges upon finding methods to monitor electrical brain activity in daily life. We developed a device for full-head subscalp EEG (Epios) and tested here the feasibility to safely insert the electrode leads beneath the scalp by a minimally invasive technique (primary outcome). As secondary outcome, we verified the noninferiority of subscalp EEG in measuring physiologic brain oscillations and pathologic discharges compared with scalp EEG, the established standard of care. METHODS: Eight participants with pharmacoresistant epilepsy undergoing intracranial EEG received in the same surgery subscalp electrodes tunneled between the scalp and the skull with custom-made tools. Postoperative safety was monitored on an inpatient ward for up to 9 days. Sleep-wake, ictal, and interictal EEG signals from subscalp, scalp, and intracranial electrodes were compared quantitatively using windowed multitaper transforms and spectral coherence. Noninferiority was tested for pairs of neighboring subscalp and scalp electrodes with a Bland-Altman analysis for measurement bias and calculation of the interclass correlation coefficient (ICC). RESULTS: As primary outcome, up to 28 subscalp electrodes could be safely placed over the entire head through 1-cm scalp incisions in a ∼1-hour procedure. Five of 10 observed perioperative adverse events were linked to the investigational procedure, but none were serious, and all resolved. As a secondary outcome, subscalp electrodes advantageously recorded EEG percutaneously without requiring any maintenance and were noninferior to scalp electrodes for measuring (1) variably strong, stage-specific brain oscillations (alpha in wake, delta, sigma, and beta in sleep) and (2) interictal spikes peak-potentials and ictal signals coherent with seizure propagation in different brain regions (ICC >0.8 and absence of bias). DISCUSSION: Recording full-head subscalp EEG for localization and monitoring purposes is feasible up to 9 days in humans using minimally invasive techniques and noninferior to the current standard of care. A longer prospective ambulatory study of the full system will be necessary to establish the safety and utility of this innovative approach. TRIAL REGISTRATION INFORMATION: clinicaltrials.gov/study/NCT04796597.


Asunto(s)
Electrodos Implantados , Electroencefalografía , Estudios de Factibilidad , Humanos , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/fisiopatología , Adulto Joven , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Cuero Cabelludo , Encéfalo/cirugía , Encéfalo/fisiopatología
3.
BMC Anesthesiol ; 24(1): 167, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702608

RESUMEN

The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.


Asunto(s)
Anestésicos por Inhalación , Dexmedetomidina , Electroencefalografía , Ketamina , Propofol , Sevoflurano , Animales , Ratones , Ketamina/farmacología , Ketamina/administración & dosificación , Sevoflurano/farmacología , Sevoflurano/administración & dosificación , Dexmedetomidina/farmacología , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Propofol/farmacología , Propofol/administración & dosificación , Masculino , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/administración & dosificación , Reflejo de Enderezamiento/efectos de los fármacos , Reflejo de Enderezamiento/fisiología , Ratones Endogámicos C57BL , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/administración & dosificación , Anestésicos Intravenosos/farmacología , Anestésicos Intravenosos/administración & dosificación , Anestesia/métodos
4.
PeerJ ; 12: e17342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737745

RESUMEN

Background: N-Ethylmaleimide (NEM), an agonist of the potassium chloride cotransporters 2 (KCC2) receptor, has been correlated with neurosuppressive outcomes, including decreased pain perception and the prevention of epileptic seizures. Nevertheless, its relationship with sleep-inducing effects remains unreported. Objective: The present study aimed to investigate the potential enhancement of NEM on the sleep-inducing properties of alprazolam (Alp). Methods: The test of the righting reflex was used to identify the appropriate concentrations of Alp and NEM for inducing sleep-promoting effects in mice. Total sleep duration and sleep quality were evaluated through EEG/EMG analysis. The neural mechanism underlying the sleep-promoting effect was examined through c-fos immunoreactivity in the brain using immunofluorescence. Furthermore, potential CNS-side effects of the combination Alp and NEM were assessed using LABORAS automated home-cage behavioral phenotyping. Results: Combination administration of Alp (1.84 mg/kg) and NEM (1.0 mg/kg) significantly decreased sleep latency and increased sleep duration in comparison to administering 1.84 mg/kg Alp alone. This effect was characterized by a notable increase in REM duration. The findings from c-fos immunoreactivity indicated that NEM significantly suppressed neuron activation in brain regions associated with wakefulness. Additionally, combination administration of Alp and NEM showed no effects on mouse neural behaviors during automated home cage monitoring. Conclusions: This study is the first to propose and demonstrate a combination therapy involving Alp and NEM that not only enhances the hypnotic effect but also mitigates potential CNS side effects, suggesting its potential application in treating insomnia.


Asunto(s)
Alprazolam , Sinergismo Farmacológico , Sueño , Animales , Alprazolam/farmacología , Alprazolam/administración & dosificación , Ratones , Masculino , Sueño/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Reflejo de Enderezamiento/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/administración & dosificación
5.
Neurosciences (Riyadh) ; 29(2): 71-76, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740401

RESUMEN

Epilepsia partialis continua (EPC) is a rare type of focal motor seizure characterized by continuous, involuntary muscle contractions in a specific part of the body. These contractions usually involve rhythmic, twitching movements and can last for several hours to days. The seizures are usually limited to one part of the body and can be clonic or dystonic. EPC can affect people of all ages but is more common in children and adolescents. The pathophysiology of EPC is complex and depends on the cause. There are several possible causes of EPC including structural brain abnormalities, infections, metabolic and genetic disorders, inflammatory conditions, traumatic brain injury, and vascular causes. The work-up of EPC includes electroencephalography (EEG), magnetic resonance imaging (MRI) of the brain, position emission tomography (PET) scan of the brain, autoimmune antibodies, infection work-up, and metabolic and genetic work-up. The management of EPC can be challenging. Antiseizure medications (ASDs) including benzodiazepines are an integral part of the management of EPC. Immunotherapy trials are recommended in resistant cases. Epilepsy surgery is one of the effective modalities in some surgically amenable cases. This article reviews the topic of EPC and summarizes diagnostic and .treatment recommendations.


Asunto(s)
Epilepsia Parcial Continua , Humanos , Epilepsia Parcial Continua/etiología , Epilepsia Parcial Continua/terapia , Epilepsia Parcial Continua/fisiopatología , Electroencefalografía , Anticonvulsivantes/uso terapéutico , Epilepsias Parciales/terapia , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/diagnóstico
6.
J Neurosci Methods ; 407: 110154, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38697518

RESUMEN

BACKGROUND: Thanks to its unrivalled spatial and temporal resolutions and signal-to-noise ratio, intracranial EEG (iEEG) is becoming a valuable tool in neuroscience research. To attribute functional properties to cortical tissue, it is paramount to be able to determine precisely the localization of each electrode with respect to a patient's brain anatomy. Several software packages or pipelines offer the possibility to localize manually or semi-automatically iEEG electrodes. However, their reliability and ease of use may leave to be desired. NEW METHOD: Voxeloc (voxel electrode locator) is a Matlab-based graphical user interface to localize and visualize stereo-EEG electrodes. Voxeloc adopts a semi-automated approach to determine the coordinates of each electrode contact, the user only needing to indicate the deep-most contact of each electrode shaft and another point more proximally. RESULTS: With a deliberately streamlined functionality and intuitive graphical user interface, the main advantages of Voxeloc are ease of use and inter-user reliability. Additionally, oblique slices along the shaft of each electrode can be generated to facilitate the precise localization of each contact. Voxeloc is open-source software and is compatible with the open iEEG-BIDS (Brain Imaging Data Structure) format. COMPARISON WITH EXISTING METHODS: Localizing full patients' iEEG implants was faster using Voxeloc than two comparable software packages, and the inter-user agreement was better. CONCLUSIONS: Voxeloc offers an easy-to-use and reliable tool to localize and visualize stereo-EEG electrodes. This will contribute to democratizing neuroscience research using iEEG.


Asunto(s)
Programas Informáticos , Interfaz Usuario-Computador , Humanos , Electrodos Implantados , Electroencefalografía/métodos , Electroencefalografía/instrumentación , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Electrocorticografía/métodos , Electrocorticografía/instrumentación , Reproducibilidad de los Resultados
7.
Sci Rep ; 14(1): 10887, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740844

RESUMEN

Epilepsy surgery is effective for patients with medication-resistant seizures, however 20-40% of them are not seizure free after surgery. Aim of this study is to evaluate the role of linear and non-linear EEG features to predict post-surgical outcome. We included 123 paediatric patients who underwent epilepsy surgery at Bambino Gesù Children Hospital (January 2009-April 2020). All patients had long term video-EEG monitoring. We analysed 1-min scalp interictal EEG (wakefulness and sleep) and extracted 13 linear and non-linear EEG features (power spectral density (PSD), Hjorth, approximate entropy, permutation entropy, Lyapunov and Hurst value). We used a logistic regression (LR) as feature selection process. To quantify the correlation between EEG features and surgical outcome we used an artificial neural network (ANN) model with 18 architectures. LR revealed a significant correlation between PSD of alpha band (sleep), Mobility index (sleep) and the Hurst value (sleep and awake) with outcome. The fifty-four ANN models gave a range of accuracy (46-65%) in predicting outcome. Within the fifty-four ANN models, we found a higher accuracy (64.8% ± 7.6%) in seizure outcome prediction, using features selected by LR. The combination of PSD of alpha band, mobility and the Hurst value positively correlate with good surgical outcome.


Asunto(s)
Electroencefalografía , Aprendizaje Automático , Humanos , Electroencefalografía/métodos , Niño , Femenino , Masculino , Preescolar , Adolescente , Epilepsia/cirugía , Epilepsia/fisiopatología , Epilepsia/diagnóstico , Redes Neurales de la Computación , Resultado del Tratamiento , Lactante , Sueño/fisiología
8.
Acta Neurochir (Wien) ; 166(1): 210, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735896

RESUMEN

PURPOSE: To evaluate the safety and efficacy of stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) for drug-resistant focal epilepsy and investigate the relationship between post-RFTC remission duration and delayed excision surgery effectiveness. METHODS: We conducted a retrospective analysis of 43 patients with drug-resistant focal epilepsy who underwent RFTC via SEEG electrodes. After excluding three, the remaining 40 were classified into subgroups based on procedures and outcomes. Twenty-four patients (60%) underwent a secondary excision surgery. We determined the predictive value of RFTC outcome upon subsequent surgical outcome by categorizing the delayed secondary surgery outcome as success (Engel I/II) versus failure (Engel III/IV). Demographic information, epilepsy characteristics, and the duration of seizure freedom after RFTC were assessed. RESULTS: Among 40 patients, 20% achieved Engel class I with RFTC alone, while 24 underwent delayed secondary excision surgery. Overall, 41.7% attained Engel class I, with a 66.7% success rate combining RFTC with delayed surgery. Seizure freedom duration was significantly longer in the success group (mean 4.9 months, SD = 2.7) versus the failure group (mean 1.9 months, SD = 1.1; P = 0.007). A higher proportion of RFTC-only and delayed surgical success group patients had preoperative lesional findings (p = 0.01), correlating with a longer time to seizure recurrence (p < 0.05). Transient postoperative complications occurred in 10%, resolving within a year. CONCLUSION: This study demonstrates that SEEG-guided RFTC is a safe and potential treatment option for patients with drug-resistant focal epilepsy. A prolonged duration of seizure freedom following RFTC may serve as a predictive marker for the success of subsequent excision surgery.


Asunto(s)
Epilepsia Refractaria , Electrocoagulación , Electroencefalografía , Epilepsias Parciales , Humanos , Masculino , Femenino , Adulto , Electrocoagulación/métodos , Electroencefalografía/métodos , Estudios Retrospectivos , Epilepsia Refractaria/cirugía , Resultado del Tratamiento , Epilepsias Parciales/cirugía , Epilepsias Parciales/fisiopatología , Adulto Joven , Persona de Mediana Edad , Adolescente , Pronóstico , Técnicas Estereotáxicas , Niño
10.
Zhonghua Er Ke Za Zhi ; 62(6): 559-564, 2024 Jun 02.
Artículo en Chino | MEDLINE | ID: mdl-38763879

RESUMEN

Objective: To analyze the clinical features of children with refractory N-methyl-D-aspartate (NMDA) receptor antibody encephalitis treated with tocilizumab. Methods: Demographic and clinical manifeatations, immunotherapy and prognosis data of 9 children with refractory NMDA receptor antibody encephalitis who received tocilizumab in the Department of Pediatrics Neurology, XiangYa Hospital of Central South University from August 2021 to September 2023 were collected retrospectively. Prognosis was evaluated using the modified Rankin scale at initial diagnosis, at the initiation of tocilizumab treatment, and at the last follow-up. Treatment related complications, neuroimaging, and electroencephalography data were analyzed. Results: Among the 9 children, 6 were male and 3 were female, with an onset age of 4.2 (2.8, 8.7) years. At the onset of the disease, 9 children had a modified Rankin scale score of 5. When tocilizumab treatment was initiated, 7 children had a score of 5, and 2 children had a score of 4. The interval between the onset and initiation of tocilizumab treatment was 12 (5, 27) months, and the treatment frequency was 8 (5, 13) times. The follow-up time was 2.8 (1.5, 3.7) years. At the last follow-up, the symptoms of 9 children, including movement disorder, sleep disorder, consciousness disorder, silence and autonomic dysfunction, were improved to varying degrees, and none of them had seizures. At the last follow-up, 4 cases with a modified Rankin scale score of 0, 1 case with a score of 1, 2 cases with a score of 3, 1 case with a score of 4 and 1 case with a score of 5. The modified Rankin scale at the last follow-up was significantly different from that at the start of tocilizumab (Z=-2.56, P=0.014). All children had no serious adverse reactions during the treatment. Conclusions: After treatment with tocilizumab, the symptoms in patients with refractory NMDA receptor antibody encephalitis, including movement disorder, sleep disorder, consciousness disorder, silence and autonomic dysfunction were improved, and none of them had seizures. The modified Rankin scale were improved, and the safety was good.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Anticuerpos Monoclonales Humanizados , Electroencefalografía , Humanos , Femenino , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Niño , Preescolar , Estudios Retrospectivos , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Pronóstico , Resultado del Tratamiento , Receptores de N-Metil-D-Aspartato/inmunología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
11.
Epilepsy Res ; 203: 107367, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703703

RESUMEN

BACKGROUND: Hippocampal sclerosis (HS) is a common surgical substrate in adult epilepsy surgery cohorts but variably reported in various pediatric cohorts. OBJECTIVE: We aimed to study the epilepsy phenotype, radiological and pathological variability, seizure and neurocognitive outcomes in children with drug-resistant epilepsy and hippocampal sclerosis (HS) with or without additional subtle signal changes in anterior temporal lobe who underwent surgery. METHODS: This retrospective study enrolled children with drug-resistant focal epilepsy and hippocampal sclerosis with or without additional subtle T2-Fluid Attenuated Inversion Recovery (FLAR)/Proton Density (PD) signal changes in anterior temporal lobe who underwent anterior temporal lobectomy with amygdalohippocampectomy. Their clinical, EEG, neuropsychological, radiological and pathological data were reviewed and summarized. RESULTS: Thirty-six eligible patients were identified. The mean age at seizure onset was 3.7 years; 25% had daily seizures at time of surgery. Isolated HS was noted in 22 (61.1%) cases and additional subtle signal changes in ipsilateral temporal lobe in 14 (38.9%) cases. Compared to the normative population, the group mean performance in intellectual functioning and most auditory and visual memory tasks were significantly lower than the normative sample. The mean age at surgery was 12.3 years; 22 patients (61.1%) had left hemispheric surgeries. ILAE class 1 outcomes was seen in 28 (77.8%) patients after a mean follow up duration of 2.3 years. Hippocampal sclerosis was noted pathologically in 32 (88.9%) cases; type 2 (54.5%) was predominant subtype where further classification was possible. Additional pathological abnormalities were seen in 11 cases (30.6%); these had had similar rates of seizure freedom as compared to children with isolated hippocampal sclerosis/gliosis (63.6% vs 84%, p=0.21). Significant reliable changes were observed across auditory and visual memory tasks at an individual level post surgery. CONCLUSIONS: Favourable seizure outcomes were seen in most children with isolated radiological hippocampal sclerosis. Patients with additional pathological abnormalities had similar rates of seizure freedom as compared to children with isolated hippocampal sclerosis/gliosis.


Asunto(s)
Epilepsia Refractaria , Hipocampo , Esclerosis , Humanos , Hipocampo/patología , Hipocampo/cirugía , Esclerosis/cirugía , Masculino , Femenino , Niño , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/patología , Adolescente , Estudios Retrospectivos , Resultado del Tratamiento , Preescolar , Imagen por Resonancia Magnética , Electroencefalografía/métodos , Pruebas Neuropsicológicas , Lobectomía Temporal Anterior/métodos , Esclerosis del Hipocampo
12.
J Integr Neurosci ; 23(5): 99, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38812385

RESUMEN

OBJECTIVE: The alterations of the functional network (FN) in anti-N-methyl-Daspartate receptor (NMDAR) encephalitis have been recognized by functional magnetic resonance imaging studies. However, few studies using the electroencephalogram (EEG) have been performed to explore the possible FN changes in anti-NMDAR encephalitis. In this study, the aim was to explore any FN changes in patients with anti-NMDAR encephalitis. METHODS: Twenty-nine anti-NMDAR encephalitis patients and 29 age- and gender-matched healthy controls (HC) were assessed using 19-channel EEG examination. For each participant, five 10-second epochs of resting state EEG with eyes closed were extracted. The cortical source signals of 84 Brodmann areas were calculated using the exact low resolution brain electromagnetic tomography (eLORETA) inverse solution by LORETA-KEY. Phase Lag Index (PLI) matrices were then obtained and graph and relative band power (RBP) analyses were performed. RESULTS: Compared with healthy controls, functional connectivity (FC) in the delta, theta, beta 1 and beta 2 bands significantly increased within the 84 cortical source signals of anti-NMDAR encephalitis patients (p < 0.05) and scalp FC in the alpha band decreased within the 19 electrodes. Additionally, the anti-NMDAR encephalitis group exhibited higher local efficiency and clustering coefficient compared to the healthy control group in the four bands. The slowing band RBP increased while the fast band RBP decreased in multiple-lobes and some of these changes in RBP were correlated with the modified Rankin Scale (mRS) and Mini-mental State Examination (MMSE) in anti-NMDAR encephalitis patients. CONCLUSIONS: This study further deepens the understanding of related changes in the abnormal brain network and power spectrum of anti-NMDA receptor encephalitis. The decreased scalp alpha FC may indicate brain dysfunction, while the increased source beta FC may indicate a compensatory mechanism for brain function in anti-NMDAR encephalitis patients. These findings extend understanding of how the brain FN changes from a cortical source perspective. Further studies are needed to detect correlations between altered FNs and clinical features and characterize their potential value for the management of anti-NMDAR encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Electroencefalografía , Red Nerviosa , Humanos , Encefalitis Antirreceptor N-Metil-D-Aspartato/fisiopatología , Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico por imagen , Femenino , Masculino , Adulto , Adulto Joven , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Ondas Encefálicas/fisiología , Adolescente , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Conectoma
13.
Neurobiol Dis ; 197: 106529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740349

RESUMEN

Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.


Asunto(s)
Ritmo beta , Sincronización Cortical , Estimulación Encefálica Profunda , Dedos , Levodopa , Corteza Motora , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Estimulación Encefálica Profunda/métodos , Anciano , Ritmo beta/fisiología , Corteza Motora/fisiopatología , Corteza Motora/fisiología , Sincronización Cortical/fisiología , Levodopa/uso terapéutico , Núcleo Subtalámico/fisiopatología , Antiparkinsonianos/uso terapéutico , Electroencefalografía
14.
Neuroimage Clin ; 42: 103614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754325

RESUMEN

BACKGROUND: Previous studies have raised concerns regarding neurodevelopmental impacts of early exposures to general anesthesia and surgery. Electroencephalography (EEG) can be used to study ontogeny of brain networks during infancy. As a substudy of an ongoing study, we examined measures of functional connectivity in awake infants with prior early and prolonged anesthetic exposures and in control infants. METHODS: EEG functional connectivity was assessed using debiased weighted phase lag index at source and sensor levels and graph theoretical measures for resting state activity in awake infants in the early anesthesia (n = 26 at 10 month visit, median duration of anesthesia = 4 [2, 7 h]) and control (n = 38 at 10 month visit) groups at ages approximately 2, 4 and 10 months. Theta and low alpha frequency bands were of primary interest. Linear mixed models incorporated impact of age and cumulative hours of general anesthesia exposure. RESULTS: Models showed no significant impact of cumulative hours of general anesthesia exposure on debiased weighted phase lag index, characteristic path length, clustering coefficient or small-worldness (conditional R2 0.05-0.34). An effect of age was apparent in many of these measures. CONCLUSIONS: We could not demonstrate significant impact of general anesthesia in the first months of life on early development of resting state brain networks over the first postnatal year. Future studies will explore these networks as these infants grow older.


Asunto(s)
Anestesia General , Encéfalo , Electroencefalografía , Red Nerviosa , Humanos , Lactante , Masculino , Femenino , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Anestesia General/efectos adversos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/efectos de los fármacos , Red Nerviosa/crecimiento & desarrollo , Desarrollo Infantil/efectos de los fármacos , Desarrollo Infantil/fisiología
15.
Neurology ; 102(9): e209216, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38560817

RESUMEN

BACKGROUND AND OBJECTIVES: High-frequency oscillations (HFOs; ripples 80-250 Hz; fast ripples [FRs] 250-500 Hz) recorded with intracranial electrodes generated excitement and debate about their potential to localize epileptogenic foci. We performed a systematic review and meta-analysis on the prognostic value of complete resection of the HFOs-area (crHFOs-area) for epilepsy surgical outcome in intracranial EEG (iEEG) accessing multiple subgroups. METHODS: We searched PubMed, Embase, and Web of Science for original research from inception to October 27, 2022. We defined favorable surgical outcome (FSO) as Engel class I, International League Against Epilepsy class 1, or seizure-free status. The prognostic value of crHFOs-area for FSO was assessed by (1) the pooled FSO proportion after crHFOs-area; (2) FSO for crHFOs-area vs without crHFOs-area; and (3) the predictive performance. We defined high combined prognostic value as FSO proportion >80% + FSO crHFOs-area >without crHFOs-area + area under the curve (AUC) >0.75 and examined this for the clinical subgroups (study design, age, diagnostic type, HFOs-identification method, HFOs-rate thresholding, and iEEG state). Temporal lobe epilepsy (TLE) was compared with extra-TLE through dichotomous variable analysis. Individual patient analysis was performed for sex, affected hemisphere, MRI findings, surgery location, and pathology. RESULTS: Of 1,387 studies screened, 31 studies (703 patients) met our eligibility criteria. Twenty-seven studies (602 patients) analyzed FRs and 20 studies (424 patients) ripples. Pooled FSO proportion after crHFOs-area was 81% (95% CI 76%-86%) for FRs and 82% (73%-89%) for ripples. Patients with crHFOs-area achieved more often FSO than those without crHFOs-area (FRs odds ratio [OR] 6.38, 4.03-10.09, p < 0.001; ripples 4.04, 2.32-7.04, p < 0.001). The pooled AUCs were 0.81 (0.77-0.84) for FRs and 0.76 (0.72-0.79) for ripples. Combined prognostic value was high in 10 subgroups: retrospective, children, long-term iEEG, threshold (FRs and ripples) and automated detection and interictal (FRs). FSO after complete resection of FRs-area (crFRs-area) was achieved less often in people with TLE than extra-TLE (OR 0.37, 0.15-0.89, p = 0.006). Individual patient analyses showed that crFRs-area was seen more in patients with FSO with than without MRI lesions (p = 0.02 after multiple correction). DISCUSSION: Complete resection of the brain area with HFOs is associated with good postsurgical outcome. Its prognostic value holds, especially for FRs, for various subgroups. The use of HFOs for extra-TLE patients requires further evidence.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Niño , Humanos , Electrocorticografía , Pronóstico , Electroencefalografía/métodos , Estudios Retrospectivos , Epilepsia/diagnóstico , Epilepsia/cirugía
16.
J Neurosurg ; 140(4): 1129-1136, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564812

RESUMEN

OBJECTIVE: Stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) has the advantage of producing a lesion in the epileptogenic zone (EZ) at the end of SEEG. The majority of published SEEG-guided RFTCs have been bipolar and usually performed between contiguous contacts of the same electrode. In the present study, the authors evaluate the safety, efficacy, and benefits of monopolar RFTC at the end of SEEG. METHODS: This study included a series of 31 consecutive patients who had undergone RFTC at the end of SEEG for drug-resistant focal epilepsy in the period of January 2013-December 2019. Post-RFTC seizure control was assessed after 2 months and at the last follow-up visit. Twenty-one patients underwent resective epilepsy surgery after the SEEG-guided RFTC, and the postoperative seizure outcome among these patients was compared with the post-RFTC seizure outcome. RESULTS: Four hundred forty-six monopolar RFTCs were done in the 31 patients. Monopolar RFTCs were performed in all cortical areas, including the insular cortex in 11 patients (56 insular RFTCs). There were 31 noncontiguous lesions (7.0%) because of vascular constraints. The volume of one monopolar RFTC, as measured on T2-weighted MRI immediately after the procedure, was between 44 and 56 mm3 (mean 50 mm3). The 2-month post-RFTC seizure outcomes were as follows: seizure freedom in 13 patients (41.9%), ≥ 50% reduced seizure frequency in 11 (35.5%), and no significant change in 7 (22.6%). Seizure outcome at the last follow-up visit (mean 18 months, range 2-54 months) showed seizure freedom in 2 patients (6.5%) and ≥ 50% reduced seizure frequency in 20 patients (64.5%). Seizure freedom after monopolar RFTC was not significantly associated with the number or location of coagulated contacts. Seizure response after monopolar RFTC had a high positive predictive value (93.8%) but a low negative predictive value (40%) for seizure outcome after subsequent resective surgery. In this series, the only complication (3.2%) was a limited intraventricular hematoma following RFTC performed in the hippocampal head, with spontaneous resolution and no sequelae. CONCLUSIONS: The use of monopolar SEEG-guided RFTC provides more freedom in terms of choosing the SEEG contacts for thermocoagulation and a larger thermolesion volume. Monopolar thermocoagulation seems particularly beneficial in cases with an insular EZ, in which vascular constraints could be partially avoided by making noncontiguous lesions within the EZ.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Resultado del Tratamiento , Electroencefalografía/métodos , Epilepsia/cirugía , Convulsiones/etiología , Técnicas Estereotáxicas/efectos adversos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocoagulación/métodos , Imagen por Resonancia Magnética/efectos adversos , Estudios Retrospectivos
17.
Tomography ; 10(4): 609-617, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668403

RESUMEN

Central nervous system tumors produce adverse outcomes in daily life, although low-grade gliomas are rare in adults. In neurological clinics, the state of impairment of executive functions goes unnoticed in the examinations and interviews carried out. For this reason, the objective of this study was to describe the executive function of a 59-year-old adult neurocancer patient. This study is novel in integrating and demonstrating biological effects and outcomes in performance evaluated by a neuropsychological instrument and psychological interviews. For this purpose, pre- and post-evaluations were carried out of neurological and neuropsychological functioning through neuroimaging techniques (iRM, spectroscopy, electroencephalography), hospital medical history, psychological interviews, and the Wisconsin Card Classification Test (WCST). There was evidence of deterioration in executive performance, as evidenced by the increase in perseverative scores, failure to maintain one's attitude, and an inability to learn in relation to clinical samples. This information coincides with the evolution of neuroimaging over time. Our case shows that the presence of the tumor is associated with alterations in executive functions that are not very evident in clinical interviews or are explicit in neuropsychological evaluations. In this study, we quantified the degree of impairment of executive functions in a patient with low-grade glioma in a middle-income country where research is scarce.


Asunto(s)
Neoplasias Encefálicas , Función Ejecutiva , Glioma , Pruebas Neuropsicológicas , Humanos , Función Ejecutiva/fisiología , Persona de Mediana Edad , Glioma/patología , Glioma/diagnóstico por imagen , Glioma/psicología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/psicología , Masculino , Imagen por Resonancia Magnética/métodos , Electroencefalografía , Femenino
18.
Brain Res Bull ; 211: 110945, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608544

RESUMEN

Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.


Asunto(s)
Región CA1 Hipocampal , Ritmo Delta , Complicaciones Cognitivas Postoperatorias , Privación de Sueño , Ritmo Teta , Animales , Privación de Sueño/fisiopatología , Privación de Sueño/complicaciones , Ratones , Ritmo Teta/fisiología , Masculino , Ritmo Delta/fisiología , Región CA1 Hipocampal/fisiopatología , Ratones Endogámicos C57BL , Electroencefalografía/métodos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Sueño/fisiología , Envejecimiento/fisiología
19.
Hum Brain Mapp ; 45(6): e26687, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38651629

RESUMEN

The unprecedented increase in life expectancy presents a unique opportunity and the necessity to explore both healthy and pathological aspects of ageing. Electroencephalography (EEG) has been widely used to identify neuromarkers of cognitive ageing due to its affordability and richness in information. However, despite the growing volume of data and methodological advancements, the abundance of contradictory and non-reproducible findings has hindered clinical translation. To address these challenges, our study introduces a comprehensive workflow expanding on previous EEG studies and investigates various static and dynamic power and connectivity estimates as potential neuromarkers of cognitive ageing in a large dataset. We also assess the robustness of our findings by testing their susceptibility to band specification. Finally, we characterise our findings using functionally annotated brain networks to improve their interpretability and multi-modal integration. Our analysis demonstrates the effect of methodological choices on findings and that dynamic rather than static neuromarkers are not only more sensitive but also more robust. Consequently, they emerge as strong candidates for cognitive ageing neuromarkers. Moreover, we were able to replicate the most established EEG findings in cognitive ageing, such as alpha oscillation slowing, increased beta power, reduced reactivity across multiple bands, and decreased delta connectivity. Additionally, when considering individual variations in the alpha band, we clarified that alpha power is characteristic of memory performance rather than ageing, highlighting its potential as a neuromarker for cognitive ageing. Finally, our approach using functionally annotated source reconstruction allowed us to provide insights into domain-specific electrophysiological mechanisms underlying memory performance and ageing. HIGHLIGHTS: We provide an open and reproducible pipeline with a comprehensive workflow to investigate static and dynamic EEG neuromarkers. Neuromarkers related to neural dynamics are sensitive and robust. Individualised alpha power characterises cognitive performance rather than ageing. Functional annotation allows cross-modal interpretation of EEG findings.


Asunto(s)
Electroencefalografía , Envejecimiento Saludable , Humanos , Electroencefalografía/métodos , Envejecimiento Saludable/fisiología , Anciano , Masculino , Adulto , Femenino , Persona de Mediana Edad , Adulto Joven , Envejecimiento Cognitivo/fisiología , Biomarcadores , Red Nerviosa/fisiología , Ondas Encefálicas/fisiología , Ritmo alfa/fisiología , Memoria/fisiología , Envejecimiento/fisiología , Anciano de 80 o más Años
20.
JAMA Neurol ; 81(5): 499-506, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557864

RESUMEN

Importance: Interdisciplinary practice parameters recommend that patients with drug-resistant epilepsy (DRE) undergo comprehensive neurodiagnostic evaluation, including presurgical assessment. Reporting from specialized centers suggests long delays to referral and underuse of surgery; however, longitudinal data are limited to characterize neurodiagnostic evaluation among patients with DRE in more diverse US settings and populations. Objective: To examine the rate and factors associated with neurodiagnostic studies and comprehensive evaluation among patients with DRE within 3 US cohorts. Design, Setting, and Participants: A retrospective cross-sectional study was conducted using the Observational Medical Outcomes Partnership Common Data Model including US multistate Medicaid data, commercial claims data, and Columbia University Medical Center (CUMC) electronic health record data. Patients meeting a validated computable phenotype algorithm for DRE between January 1, 2015, and April 1, 2020, were included. No eligible participants were excluded. Exposure: Demographic and clinical variables were queried. Main Outcomes and Measures: The proportion of patients receiving a composite proxy for comprehensive neurodiagnostic evaluation, including (1) magnetic resonance or other advanced brain imaging, (2) video electroencephalography, and (3) neuropsychological evaluation within 2 years of meeting the inclusion criteria. Results: A total of 33 542 patients with DRE were included in the Medicaid cohort, 22 496 in the commercial insurance cohort, and 2741 in the CUMC database. A total of 31 516 patients (53.6%) were women. The proportion of patients meeting the comprehensive evaluation main outcome in the Medicaid cohort was 4.5% (n = 1520); in the commercial insurance cohort, 8.0% (n = 1796); and in the CUMC cohort, 14.3% (n = 393). Video electroencephalography (24.9% Medicaid, 28.4% commercial, 63.2% CUMC) and magnetic resonance imaging of the brain (35.6% Medicaid, 43.4% commercial, 52.6% CUMC) were performed more regularly than neuropsychological evaluation (13.0% Medicaid, 16.6% commercial, 19.2% CUMC) or advanced imaging (3.2% Medicaid, 5.4% commercial, 13.1% CUMC). Factors independently associated with greater odds of evaluation across all 3 data sets included the number of inpatient and outpatient nonemergency epilepsy visits and focal rather than generalized epilepsy. Conclusions and Relevance: The findings of this study suggest there is a gap in the use of diagnostic studies to evaluate patients with DRE. Care setting, insurance type, frequency of nonemergency visits, and epilepsy type are all associated with evaluation. A common data model can be used to measure adherence with best practices across a variety of observational data sources.


Asunto(s)
Epilepsia Refractaria , Humanos , Femenino , Masculino , Adulto , Epilepsia Refractaria/diagnóstico , Estudios Transversales , Estudios Retrospectivos , Persona de Mediana Edad , Adulto Joven , Estados Unidos , Electroencefalografía , Adolescente , Imagen por Resonancia Magnética , Neuroimagen , Medicaid/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA