Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2320995121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865271

RESUMEN

Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.


Asunto(s)
Emparejamiento Cromosómico , Intercambio Genético , Meiosis , Ubiquitina-Proteína Ligasas , Animales , Ratones , Masculino , Femenino , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Ratones Noqueados , Humanos , Ligasas
2.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696471

RESUMEN

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Asunto(s)
Proteína BRCA1 , Proteínas de Ciclo Celular , Ratones Noqueados , Oocitos , Oocitos/metabolismo , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Femenino , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Roturas del ADN de Doble Cadena , Emparejamiento Cromosómico/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Recombinación Genética , Recombinación Homóloga , Inestabilidad Genómica
3.
Nucleic Acids Res ; 52(10): 5596-5609, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38520405

RESUMEN

Chromosome pairing constitutes an important level of genome organization, yet the mechanisms that regulate pairing in somatic cells and the impact on 3D chromatin organization are still poorly understood. Here, we address these questions in Drosophila, an organism with robust somatic pairing. In Drosophila, pairing preferentially occurs at loci consisting of numerous architectural protein binding sites (APBSs), suggesting a role of architectural proteins (APs) in pairing regulation. Amongst these, the anti-pairing function of the condensin II subunit CAP-H2 is well established. However, the factors that regulate CAP-H2 localization and action at APBSs remain largely unknown. Here, we identify two factors that control CAP-H2 occupancy at APBSs and, therefore, regulate pairing. We show that Z4, interacts with CAP-H2 and is required for its localization at APBSs. We also show that hyperosmotic cellular stress induces fast and reversible unpairing in a Z4/CAP-H2 dependent manner. Moreover, by combining the opposite effects of Z4 depletion and osmostress, we show that pairing correlates with the strength of intrachromosomal 3D interactions, such as active (A) compartment interactions, intragenic gene-loops, and polycomb (Pc)-mediated chromatin loops. Altogether, our results reveal new players in CAP-H2-mediated pairing regulation and the intimate interplay between inter-chromosomal and intra-chromosomal 3D interactions.


Asunto(s)
Adenosina Trifosfatasas , Cromatina , Emparejamiento Cromosómico , Proteínas de Unión al ADN , Proteínas de Drosophila , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Sitios de Unión , Cromatina/metabolismo , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/genética , Presión Osmótica , Unión Proteica , Dedos de Zinc
4.
Elife ; 122024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189348

RESUMEN

Allopolyploidization is a frequent evolutionary transition in plants that combines whole-genome duplication (WGD) and interspecific hybridization. The genome of an allopolyploid species results from initial interactions between parental genomes and long-term evolution. Distinguishing the contributions of these two phases is essential to understanding the evolutionary trajectory of allopolyploid species. Here, we compared phenotypic and transcriptomic changes in natural and resynthesized Capsella allotetraploids with their diploid parental species. We focused on phenotypic traits associated with the selfing syndrome and on transcription-level phenomena such as expression-level dominance (ELD), transgressive expression (TRE), and homoeolog expression bias (HEB). We found that selfing syndrome, high pollen, and seed quality in natural allotetraploids likely resulted from long-term evolution. Similarly, TRE and most down-regulated ELD were only found in natural allopolyploids. Natural allotetraploids also had more ELD toward the self-fertilizing parental species than resynthesized allotetraploids, mirroring the establishment of the selfing syndrome. However, short-term changes mattered, and 40% of the cases of ELD in natural allotetraploids were already observed in resynthesized allotetraploids. Resynthesized allotetraploids showed striking variation of HEB among chromosomes and individuals. Homoeologous synapsis was its primary source and may still be a source of genetic variation in natural allotetraploids. In conclusion, both short- and long-term mechanisms contributed to transcriptomic and phenotypic changes in natural allotetraploids. However, the initial gene expression changes were largely reshaped during long-term evolution leading to further morphological changes.


Asunto(s)
Capsella , Humanos , Capsella/genética , Emparejamiento Cromosómico , Diploidia , Perfilación de la Expresión Génica , Síndrome , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
5.
DNA Repair (Amst) ; 130: 103553, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572577

RESUMEN

DNA double strand breaks (DSBs) are common lesions whose misrepair are drivers of oncogenic transformations. The non-homologous end joining (NHEJ) pathway repairs the majority of these breaks in vertebrates by directly ligating DNA ends back together. Upon formation of a DSB, a multiprotein complex is assembled on DNA ends which tethers them together within a synaptic complex. Synapsis is a critical step of the NHEJ pathway as loss of synapsis can result in mispairing of DNA ends and chromosome translocations. As DNA ends are commonly incompatible for ligation, the NHEJ machinery must also process ends to enable rejoining. This review describes how recent progress in single-molecule approaches and cryo-EM have advanced our molecular understanding of DNA end synapsis during NHEJ and how synapsis is coordinated with end processing to determine the fidelity of repair.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN , Animales , Proteínas de Unión al ADN/metabolismo , Roturas del ADN de Doble Cadena , Emparejamiento Cromosómico , Reparación del ADN
6.
PLoS Genet ; 19(4): e1010708, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37058535

RESUMEN

During meiotic prophase, the essential events of homolog pairing, synapsis, and recombination are coordinated with meiotic progression to promote fidelity and prevent aneuploidy. The conserved AAA+ ATPase PCH-2 coordinates these events to guarantee crossover assurance and accurate chromosome segregation. How PCH-2 accomplishes this coordination is poorly understood. Here, we provide evidence that PCH-2 decelerates pairing, synapsis and recombination in C. elegans by remodeling meiotic HORMADs. We propose that PCH-2 converts the closed versions of these proteins, which drive these meiotic prophase events, to unbuckled conformations, destabilizing interhomolog interactions and delaying meiotic progression. Further, we find that PCH-2 distributes this regulation among three essential meiotic HORMADs in C. elegans: PCH-2 acts through HTP-3 to regulate pairing and synapsis, HIM-3 to promote crossover assurance, and HTP-1 to control meiotic progression. In addition to identifying a molecular mechanism for how PCH-2 regulates interhomolog interactions, our results provide a possible explanation for the expansion of the meiotic HORMAD family as a conserved evolutionary feature of meiosis. Taken together, our work demonstrates that PCH-2's remodeling of meiotic HORMADs has functional consequences for the rate and fidelity of homolog pairing, synapsis, recombination and meiotic progression, ensuring accurate meiotic chromosome segregation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Meiosis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Profase , Emparejamiento Cromosómico/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Ciclo Celular/genética
7.
Elife ; 122023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847348

RESUMEN

The shuffling of genetic material facilitated by meiotic crossovers is a critical driver of genetic variation. Therefore, the number and positions of crossover events must be carefully controlled. In Arabidopsis, an obligate crossover and repression of nearby crossovers on each chromosome pair are abolished in mutants that lack the synaptonemal complex (SC), a conserved protein scaffold. We use mathematical modelling and quantitative super-resolution microscopy to explore and mechanistically explain meiotic crossover pattering in Arabidopsis lines with full, incomplete, or abolished synapsis. For zyp1 mutants, which lack an SC, we develop a coarsening model in which crossover precursors globally compete for a limited pool of the pro-crossover factor HEI10, with dynamic HEI10 exchange mediated through the nucleoplasm. We demonstrate that this model is capable of quantitatively reproducing and predicting zyp1 experimental crossover patterning and HEI10 foci intensity data. Additionally, we find that a model combining both SC- and nucleoplasm-mediated coarsening can explain crossover patterning in wild-type Arabidopsis and in pch2 mutants, which display partial synapsis. Together, our results reveal that regulation of crossover patterning in wild-type Arabidopsis and SC-defective mutants likely acts through the same underlying coarsening mechanism, differing only in the spatial compartments through which the pro-crossover factor diffuses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Complejo Sinaptonémico/genética , Intercambio Genético , Arabidopsis/genética , Meiosis , Emparejamiento Cromosómico , Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética
8.
Curr Top Dev Biol ; 151: 317-344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681475

RESUMEN

Sexual reproduction and the specialized cell division it relies upon, meiosis, are biological processes that present an incredible degree of both evolutionary conservation and divergence. One clear example of this paradox is the role of the evolutionarily ancient PCH-2/HORMAD module during meiosis. On one hand, the complex, and sometimes disparate, meiotic defects observed when PCH-2 and/or the meiotic HORMADS are mutated in different model systems have prevented a straightforward characterization of their conserved functions. On the other hand, these functional variations demonstrate the impressive molecular rewiring that accompanies evolution of the meiotic processes these factors are involved in. While the defects observed in pch-2 mutants appear to vary in different systems, in this review, I argue that PCH-2 has a conserved meiotic function: to coordinate meiotic recombination with synapsis to ensure an appropriate number and distribution of crossovers. Further, given the dramatic variation in how the events of recombination and synapsis are themselves regulated in different model systems, the mechanistic differences in PCH-2 and meiotic HORMAD function make biological sense when viewed as species-specific elaborations layered onto this fundamental, conserved role.


Asunto(s)
Adenosina Trifosfatasas , Meiosis , Adenosina Trifosfatasas/genética , Meiosis/genética , Emparejamiento Cromosómico
9.
Curr Top Dev Biol ; 151: 91-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36681479

RESUMEN

Chromosomes adopt specific conformations to regulate various cellular processes. A well-documented chromosome configuration is the highly compacted chromosome structure during metaphase. More regional chromatin conformations have also been reported, including topologically associated domains encompassing mega-bases of DNA and local chromatin loops formed by kilo-bases of DNA. In this review, we discuss the changes in chromatin conformation taking place between somatic and meiotic cells, with a special focus on the establishment of a proteinaceous structure, called the chromosome axis, at the beginning of meiosis. The chromosome axis is essential to support key meiotic processes such as chromosome pairing, homologous recombination, and balanced chromosome segregation to transition from a diploid to a haploid stage. We review the role of the chromosome axis in meiotic chromatin organization and provide a detailed description of its protein composition. We also review the conserved and distinct roles between species of axis proteins in meiotic recombination, which is a major factor contributing to the creation of genetic diversity and genome evolution. Finally, we discuss situations where the chromosome axis is deregulated and evaluate the effects on genome integrity and the consequences from protein deregulation in meiocytes exposed to heat stress, and aberrant expression of genes encoding axis proteins in mammalian somatic cells associated with certain types of cancers.


Asunto(s)
Neoplasias , Complejo Sinaptonémico , Animales , Meiosis/genética , Emparejamiento Cromosómico , Cromatina/genética , Neoplasias/genética , Mamíferos/genética
10.
Plant J ; 113(3): 536-545, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36534091

RESUMEN

Polyploidy is a common mode of evolution in flowering plants. Both the natural tetraploid Thinopyrum elongatum and the diploid one from the same population show a diploid-like pairing in meiosis. However, debate on the chromosome composition and origin of the tetraploid Th. elongatum is ongoing. In the present study, we obtained the induced tetraploid Th. elongatum and found that the induced and natural tetraploids are morphologically close, except for slower development and lower seed setting. Using probes developed from single chromosome microdissection and a Fosmid library, obvious differentiations were discovered between two chromosome sets (E1 and E2 ) of the natural tetraploid Th. elongatum but not the induced one. Interestingly, hybrid F1 derived from the two different wheat-tetraploid Th. elongatum amphiploids 8802 and 8803 produced seeds well. More importantly, analysis of meiosis in F2 individuals revealed that chromosomes from E1 and E2 could pair well on the durum wheat background with the presence of Ph1. No chromosome set differentiation on the FISH level was discovered from the S1 to S4 generations in the induced one. In metaphase of the meiosis first division in the natural tetraploid, more pairings were bivalents and fewer quadrivalents with ratio of 13.94 II + 0.03 IV (n = 31). Chromosome pairing configuration in the induced tetraploid is 13.05 II + 0.47 IV (n = 19), with the quadrivalent ratio being only slightly higher than the ratio in the natural tetraploid. Therefore, the natural tetraploid Th. elongatum is of autoploid origin and the induced tetraploid Th. elongatum evolutionarily underwent rapid diploidization in the low generation.


Asunto(s)
Cromosomas de las Plantas , Tetraploidía , Cromosomas de las Plantas/genética , Poaceae/genética , Triticum/genética , Meiosis/genética , Emparejamiento Cromosómico/genética
11.
Nucleic Acids Res ; 50(22): 12924-12937, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36504011

RESUMEN

Chromosome axis-associated HORMA domain proteins (HORMADs), e.g. ASY1 in Arabidopsis, are crucial for meiotic recombination. ASY1, as other HORMADs, is assembled on the axis at early meiosis and depleted when homologous chromosomes synapse. Puzzlingly, both processes are catalyzed by AAA+ ATPase PCH2 together with its cofactor COMET. Here, we show that the ASY1 remodeling complex is temporally and spatially differently assembled. While PCH2 and COMET appear to directly interact in the cytoplasm in early meiosis, PCH2 is recruited by the transverse filament protein ZYP1 and brought to the ASY1-bound COMET assuring the timely removal of ASY1 during chromosome synapsis. Since we found that the PCH2 homolog TRIP13 also binds to the ZYP1 homolog SYCP1 in mouse, we postulate that this mechanism is conserved among eukaryotes. Deleting the PCH2 binding site of ZYP1 led to a failure of ASY1 removal. Interestingly, the placement of one obligatory crossover per homologous chromosome pair, compromised by ZYP1 depletion, is largely restored in this separation-of-function zyp1 allele suggesting that crossover assurance is promoted by synapsis. In contrast, this zyp1 allele, similar to the zyp1 null mutant, showed elevated type I crossover numbers indicating that PCH2-mediated eviction of ASY1 from the axis restricts crossover formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Emparejamiento Cromosómico , Animales , Ratones , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios de Unión , Emparejamiento Cromosómico/genética , Meiosis/genética , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
12.
Commun Biol ; 5(1): 921, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071143

RESUMEN

Meiosis protein TEX12 is an essential component of the synaptonemal complex (SC), which mediates homologous chromosome synapsis. It is also recruited to centrosomes in meiosis, and aberrantly in certain cancers, leading to centrosome dysfunction. Within the SC, TEX12 forms an intertwined complex with SYCE2 that undergoes fibrous assembly, driven by TEX12's C-terminal tip. However, we hitherto lack structural information regarding SYCE2-independent functions of TEX12. Here, we report X-ray crystal structures of TEX12 mutants in three distinct conformations, and utilise solution light and X-ray scattering to determine its wild-type dimeric four-helical coiled-coil structure. TEX12 undergoes conformational change upon C-terminal tip mutations, indicating that the sequence responsible for driving SYCE2-TEX12 assembly within the SC also controls the oligomeric state and conformation of isolated TEX12. Our findings provide the structural basis for SYCE2-independent roles of TEX12, including the possible regulation of SC assembly, and its known functions in meiotic centrosomes and cancer.


Asunto(s)
Meiosis , Complejo Sinaptonémico , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Emparejamiento Cromosómico , Conformación Molecular , Complejo Sinaptonémico/metabolismo
13.
Science ; 376(6599): eabh3104, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35549308

RESUMEN

A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope through microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet." Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery and extends throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies and suggests that cilia can control chromosomal dynamics.


Asunto(s)
Emparejamiento Cromosómico , Cilios , Oocitos , Oogénesis , Ovario , Animales , Centrómero/genética , Centrómero/fisiología , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Cilios/fisiología , Femenino , Fertilidad/fisiología , Ratones , Morfogénesis , Oocitos/crecimiento & desarrollo , Oogénesis/genética , Oogénesis/fisiología , Ovario/crecimiento & desarrollo , Telómero/genética , Telómero/fisiología , Pez Cebra/genética , Pez Cebra/fisiología
14.
Mol Biol Cell ; 33(5): ar37, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35274968

RESUMEN

Homologous recombination (HR) is an essential meiotic process that contributes to the genetic variation of offspring and ensures accurate chromosome segregation. Recombination is facilitated by the formation and repair of programmed DNA double-strand breaks. These DNA breaks are repaired via recombination between maternal and paternal homologous chromosomes and a subset result in the formation of crossovers. HR and crossover formation is facilitated by synapsis of homologous chromosomes by a proteinaceous scaffold structure known as the synaptonemal complex (SC). Recent studies in yeast and worms have indicated that polo-like kinases (PLKs) regulate several events during meiosis, including DNA recombination and SC dynamics. Mammals express four active PLKs (PLK1-4), and our previous work assessing localization and kinase function in mouse spermatocytes suggested that PLK1 coordinates nuclear events during meiotic prophase. Therefore, we conditionally mutated Plk1 in early prophase spermatocytes and assessed stages of HR, crossover formation, and SC processes. Plk1 mutation resulted in increased RPA foci and reduced RAD51/DMC1 foci during zygonema, and an increase of both class I and class II crossover events. Furthermore, the disassembly of SC lateral elements was aberrant. Our results highlight the importance of PLK1 in regulating HR and SC disassembly during spermatogenesis.


Asunto(s)
Proteínas de Ciclo Celular , Recombinación Homóloga , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Espermatogénesis , Complejo Sinaptonémico , Animales , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico , ADN , Masculino , Mamíferos , Meiosis , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
15.
Biol Reprod ; 107(1): 168-182, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35284939

RESUMEN

During male meiosis, the constitutively unsynapsed XY chromosomes undergo meiotic sex chromosome inactivation (MSCI), and the DNA damage response (DDR) pathway is critical for MSCI establishment. Our previous study showed that UHRF1 (ubiquitin-like, with PHD and ring finger domains 1) deletion led to meiotic arrest and male infertility; however, the underlying mechanisms of UHRF1 in the regulation of meiosis remain unclear. Here, we report that UHRF1 is required for MSCI and cooperates with the DDR pathway in male meiosis. UHRF1-deficient spermatocytes display aberrant pairing and synapsis of homologous chromosomes during the pachytene stage. In addition, UHRF1 deficiency leads to aberrant recruitment of ATR and FANCD2 on the sex chromosomes and disrupts the diffusion of ATR to the XY chromatin. Furthermore, we show that UHRF1 acts as a cofactor of BRCA1 to facilitate the recruitment of DDR factors onto sex chromosomes for MSCI establishment. Accordingly, deletion of UHRF1 leads to the failure of meiotic silencing on sex chromosomes, resulting in meiotic arrest. In addition to our previous findings, the present study reveals that UHRF1 participates in MSCI, ensuring the progression of male meiosis. This suggests a multifunctional role of UHRF1 in the male germline.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Emparejamiento Cromosómico , Cromosomas Sexuales , Ubiquitina-Proteína Ligasas , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Daño del ADN , Masculino , Meiosis/genética , Ratones , Cromosomas Sexuales/genética , Espermatocitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
PLoS Genet ; 18(2): e1010041, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192603

RESUMEN

Histone methylation and demethylation play important roles in plant growth and development, but the involvement of histone demethylation during meiosis is poorly understood. Here we show that disruption of Arabidopsis thaliana INCREASE IN BONSAI METHYLATION 1 (IBM1) causes incomplete synapsis, chromosome entanglement and reduction of recombination during meiosis, leading to sterility. Interestingly, these ibm1 meiotic defects are rescued by mutations in either SUVH4/KYP or CMT3. Using transcriptomic analyses we show that mutation of IBM1 down-regulates thousands of genes expressed in meiocytes, and that expression of about 38% of these genes are restored to wild type levels in ibm1 cmt3 double mutants. Changes in the expression of 437 of these, including the ARABIDOPSIS MEI2-LIKE AML3-5 genes, are correlated with a significant reduction of gene body CHG methylation. Consistently, the aml3 aml4 aml5 triple have defects in synapsis and chromosome entanglement similar to ibm1. Genetic analysis shows that aml3 aml4 aml5 ibm1 quadruple mutants resembles the ibm1 single mutant. Strikingly, over expression of AML5 in ibm1 can partially rescue the ibm1 meiotic defects. Taken together, our results demonstrate that histone demethylase IBM1 is required for meiosis likely via coordinated regulation of meiocyte gene expression during meiosis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Emparejamiento Cromosómico/genética , Cromosomas/metabolismo , Metilación de ADN/genética , Expresión Génica , Histona Demetilasas/genética , Histonas/genética , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Meiosis/genética , Mutación , Recombinación Genética
17.
Trends Genet ; 38(5): 419-421, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34776276

RESUMEN

Polyploids must correctly segregate homologous chromosomes. We propose that this process is dictated not just by sequence similarity, but is also under strong genetic control that may vary between lineages. We also highlight how factors like partner availability and genome structure may influence sequence similarity needed for crossover formation.


Asunto(s)
Emparejamiento Cromosómico , Meiosis , Emparejamiento Cromosómico/genética , Cromosomas/genética , Humanos , Poliploidía
18.
Plant Physiol ; 188(2): 1210-1228, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34927688

RESUMEN

Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole-genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5°C-28°C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.


Asunto(s)
Arabidopsis/genética , Emparejamiento Cromosómico/fisiología , Recombinación Homóloga/fisiología , Calor/efectos adversos , Meiosis/fisiología , Oryza/genética , Poliploidía , Arabidopsis/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Variación Genética , Genotipo , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Oryza/fisiología
19.
PLoS Genet ; 17(10): e1009870, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34669718

RESUMEN

Reduction of genome ploidy from diploid to haploid necessitates stable pairing of homologous chromosomes into bivalents before the start of the first meiotic division. Importantly, this chromosome pairing must avoid interlocking of non-homologous chromosomes. In spermatocytes of Drosophila melanogaster, where homolog pairing does not involve synaptonemal complex formation and crossovers, associations between non-homologous chromosomes are broken up by chromosome territory formation in early spermatocytes. Extensive non-homologous associations arise from the coalescence of the large blocks of pericentromeric heterochromatin into a chromocenter and from centromere clustering. Nevertheless, during territory formation, bivalents are moved apart into spatially separate subnuclear regions. The condensin II subunits, Cap-D3 and Cap-H2, have been implicated, but the remarkable separation of bivalents during interphase might require more than just condensin II. For further characterization of this process, we have applied time-lapse imaging using fluorescent markers of centromeres, telomeres and DNA satellites in pericentromeric heterochromatin. We describe the dynamics of the disruption of centromere clusters and the chromocenter in normal spermatocytes. Mutations in Cap-D3 and Cap-H2 abolish chromocenter disruption, resulting in excessive chromosome missegregation during M I. Chromocenter persistence in the mutants is not mediated by the special system, which conjoins homologs in compensation for the absence of crossovers in Drosophila spermatocytes. However, overexpression of Cap-H2 precluded conjunction between autosomal homologs, resulting in random segregation of univalents. Interestingly, Cap-D3 and Cap-H2 mutant spermatocytes displayed conspicuous stretching of the chromocenter, as well as occasional chromocenter disruption, suggesting that territory formation might involve forces unrelated to condensin II. While the molecular basis of these forces remains to be clarified, they are not destroyed by inhibitors of F actin and microtubules. Our results indicate that condensin II activity promotes chromosome territory formation in co-operation with additional force generators and that careful co-ordination with alternative homolog conjunction is crucial.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Complejos Multiproteicos/genética , Espermatocitos/fisiología , Animales , Centrómero/genética , Cromatina/genética , Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Drosophila melanogaster/metabolismo , Femenino , Heterocromatina/genética , Interfase/genética , Masculino
20.
Genes (Basel) ; 12(9)2021 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-34573341

RESUMEN

We analyzed the synapsis and recombination between Z and W chromosomes in the oocytes of nine neognath species: domestic chicken Gallus gallus domesticus, grey goose Anser anser, black tern Chlidonias niger, common tern Sterna hirundo, pale martin Riparia diluta, barn swallow Hirundo rustica, European pied flycatcher Ficedula hypoleuca, great tit Parus major and white wagtail Motacilla alba using immunolocalization of SYCP3, the main protein of the lateral elements of the synaptonemal complex, and MLH1, the mismatch repair protein marking mature recombination nodules. In all species examined, homologous synapsis occurs in a short region of variable size at the ends of Z and W chromosomes, where a single recombination nodule is located. The remaining parts of the sex chromosomes undergo synaptic adjustment and synapse non-homologously. In 25% of ZW bivalents of white wagtail, synapsis and recombination also occur at the secondary pairing region, which probably resulted from autosome-sex chromosome translocation. Using FISH with a paint probe specific to the germline-restricted chromosome (GRC) of the pale martin on the oocytes of the pale martin, barn swallow and great tit, we showed that both maternally inherited songbird chromosomes (GRC and W) share common sequences.


Asunto(s)
Aves/genética , Emparejamiento Cromosómico/fisiología , Recombinación Genética , Cromosomas Sexuales , Animales , Pollos/genética , Femenino , Hibridación Fluorescente in Situ , Homólogo 1 de la Proteína MutL/genética , Oocitos/fisiología , Fase Paquiteno/genética , Passeriformes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA