Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 7(1): 223, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28303005

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) charge tRNAs with their cognate amino acid, an essential precursor step to loading of charged tRNAs onto the ribosome and addition of the amino acid to the growing polypeptide chain during protein synthesis. Because of this important biological function, aminoacyl-tRNA synthetases have been the focus of anti-infective drug development efforts and two aaRS inhibitors have been approved as drugs. Several researchers in the scientific community requested aminoacyl-tRNA synthetases to be targeted in the Seattle Structural Genomics Center for Infectious Disease (SSGCID) structure determination pipeline. Here we investigate thirty-one aminoacyl-tRNA synthetases from infectious disease organisms by co-crystallization in the presence of their cognate amino acid, ATP, and/or inhibitors. Crystal structures were determined for a CysRS from Borrelia burgdorferi bound to AMP, GluRS from Borrelia burgdorferi and Burkholderia thailandensis bound to glutamic acid, a TrpRS from the eukaryotic pathogen Encephalitozoon cuniculi bound to tryptophan, a HisRS from Burkholderia thailandensis bound to histidine, and a LysRS from Burkholderia thailandensis bound to lysine. Thus, the presence of ligands may promote aaRS crystallization and structure determination. Comparison with homologous structures shows conformational flexibility that appears to be a recurring theme with this enzyme class.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Borrelia burgdorferi/enzimología , Burkholderia/enzimología , Encephalitozoon cuniculi/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Enfermedades Transmisibles/microbiología , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica
2.
Angew Chem Int Ed Engl ; 55(36): 10899-903, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27511141

RESUMEN

The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox.


Asunto(s)
Caperuzas de ARN/química , ARN Mensajero/química , Química Clic , Encephalitozoon cuniculi/enzimología , Eucariontes/genética , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Metiltransferasas/metabolismo , Microscopía Confocal , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , S-Adenosilmetionina/análogos & derivados
3.
Proc Natl Acad Sci U S A ; 109(30): 11999-2004, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778422

RESUMEN

The heterohexameric minichromosome maintenance (MCM2-7) complex is an ATPase that serves as the central replicative helicase in eukaryotes. During initiation, the ring-shaped MCM2-7 particle is thought to open to facilitate loading onto DNA. The conformational state accessed during ring opening, the interplay between ATP binding and MCM2-7 architecture, and the use of these events in the regulation of DNA unwinding are poorly understood. To address these issues in isolation from the regulatory complexity of existing eukaryotic model systems, we investigated the structure/function relationships of a naturally minimized MCM2-7 complex from the microsporidian parasite Encephalitozoon cuniculi. Electron microscopy and small-angle X-ray scattering studies show that, in the absence of ATP, MCM2-7 spontaneously adopts a left-handed, open-ring structure. Nucleotide binding does not promote ring closure but does cause the particle to constrict in a two-step process that correlates with the filling of high- and low-affinity ATPase sites. Our findings support the idea that an open ring forms the default conformational state of the isolated MCM2-7 complex, and they provide a structural framework for understanding the multiphasic ATPase kinetics observed in different MCM2-7 systems.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Encephalitozoon cuniculi/enzimología , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Adenosina Trifosfato/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Activación Enzimática , Microscopía Electrónica , Complejos Multiproteicos/química , Dispersión del Ángulo Pequeño
5.
J Biol Chem ; 280(21): 20404-12, 2005 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15760890

RESUMEN

The Encephalitozoon cuniculi mRNA cap (guanine N-7) methyltransferase Ecm1 has been characterized structurally but not biochemically. Here we show that purified Ecm1 is a monomeric protein that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to GTP. The reaction is cofactor-independent and optimal at pH 7.5. Ecm1 also methylates GpppA, GDP, and dGTP but not ATP, CTP, UTP, ITP, or m(7)GTP. The affinity of Ecm1 for the cap dinucleotide GpppA (K 0.1 mm) is higher than that for GTP (K(m) 1 mm) or GDP (K(m) 2.4 mm). Methylation of GTP by Ecm1 in the presence of 5 microm AdoMet is inhibited by the reaction product AdoHcy (IC(50) 4 microm) and by substrate analogs sinefungin (IC(50) 1.5 microm), aza-AdoMet (IC(50) 100 microm), and carbocyclic aza-AdoMet (IC(50) 35 microm). The crystal structure of an Ecm1.aza-AdoMet binary complex reveals that the inhibitor occupies the same site as AdoMet. Structure-function analysis of Ecm1 by alanine scanning and conservative substitutions identified functional groups necessary for methyltransferase activity in vivo. Amino acids Lys-54, Asp-70, Asp-78, and Asp-94, which comprise the AdoMet-binding site, and Phe-141, which contacts the cap guanosine, are essential for cap methyltransferase activity in vitro.


Asunto(s)
Adenosina/análogos & derivados , Encephalitozoon cuniculi/enzimología , Inhibidores Enzimáticos/farmacología , Metiltransferasas/química , Metiltransferasas/metabolismo , Mutagénesis , S-Adenosilmetionina/análogos & derivados , Adenosina/farmacología , Animales , Sitios de Unión , Cristalización , Guanosina Trifosfato/metabolismo , Concentración de Iones de Hidrógeno , Metilación , Metiltransferasas/genética , Modelos Moleculares , Estructura Molecular , Mutación Missense , Proteínas Recombinantes/metabolismo , S-Adenosilhomocisteína/farmacología , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacología , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Sci China C Life Sci ; 48(6): 565-73, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16483135

RESUMEN

Several groups of parasitic protozoa, as represented by Giardia, Trichomonas, Entamoeba and Microsporida, were once widely considered to be the most primitive extant eukaryotic group--Archezoa. The main evidence for this is their 'lacking mitochondria' and possessing some other primitive features between prokaryotes and eukaryotes, and being basal to all eukaryotes with mitochondria in phylogenies inferred from many molecules. Some authors even proposed that these organisms diverged before the endosymbiotic origin of mitochondria within eukaryotes. This view was once considered to be very significant to the study of origin and evolution of eukaryotic cells (eukaryotes). However, in recent years this has been challenged by accumulating evidence from new studies. Here the sequences of DNA topoisomerase II in G lamblia, T. vaginalis and E. histolytica were identified first by PCR and sequencing, then combining with the sequence data of the microsporidia Encephalitozoon cunicul and other eukaryotic groups of different evolutionary positions from GenBank, phylogenetic trees were constructed by various methods to investigate the evolutionary positions of these amitochondriate protozoa. Our results showed that since the characteristics of DNA topoisomerase II make it avoid the defect of 'long-branch attraction' appearing in the previous phylogenetic analyses, our trees can not only reflect effectively the relationship of different major eukaryotic groups, which is widely accepted, but also reveal phylogenetic positions for these amitochondriate protozoa, which is different from the previous phylogenetic trees. They are not the earliest-branching eukaryotes, but diverged after some mitochondriate organisms such as kinetoplastids and mycetozoan; they are not a united group but occupy different phylogenetic positions. Combining with the recent cytological findings of mitochondria-like organelles in them, we think that though some of them (e.g. diplomonads, as represented by Giardia) may occupy a very low evolutionary position, generally these organisms are not as extremely primitive as was thought before; they should be polyphyletic groups diverging after the endosymbiotic origin of mitochondrion to adapt themselves to anaerobic parasitic life.


Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , Eucariontes/clasificación , Eucariontes/genética , Filogenia , Animales , Secuencia de Bases , ADN Protozoario/química , ADN Protozoario/aislamiento & purificación , Encephalitozoon cuniculi/clasificación , Encephalitozoon cuniculi/enzimología , Encephalitozoon cuniculi/genética , Entamoeba histolytica/clasificación , Entamoeba histolytica/enzimología , Entamoeba histolytica/genética , Eucariontes/enzimología , Genes Protozoarios , Giardia lamblia/clasificación , Giardia lamblia/enzimología , Giardia lamblia/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Reacción en Cadena de la Polimerasa , ARN Protozoario/aislamiento & purificación , Trichomonas vaginalis/clasificación , Trichomonas vaginalis/enzimología , Trichomonas vaginalis/genética
7.
Parasitol Int ; 53(4): 277-85, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15464436

RESUMEN

A gene encoding a protein kinase was identified by homology-based PCR amplification in Encephalitozoon intestinalis, a microsporidian parasite pathogenic to humans, and its orthologue has been identified by database mining in the genome of the related species E. cuniculi, whose sequence has been recently published. Phylogenetic analysis revealed that the proteins encoded by these genes are homologues of the cAMP-dependent protein kinase catalytic subunits (PKAc). Southern blot analysis indicated that the EiPKAc gene is present in two copies in the E. intestinalis genome, whereas the E. cuniculi orthologue (EcPKAc) is a single copy gene. RT-PCR data showed that the EiPKAc gene is expressed in at least one of the intracellular stages during infection of the mammalian host cell by E. intestinalis.


Asunto(s)
Dominio Catalítico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Encephalitozoon cuniculi/enzimología , Encephalitozoon/enzimología , Genes Protozoarios , Filogenia , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Encephalitozoon/genética , Encephalitozoon/patogenicidad , Encephalitozoon cuniculi/genética , Datos de Secuencia Molecular , Fosforilación , Conejos , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
Biochemistry ; 43(22): 7111-20, 2004 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-15170348

RESUMEN

Fcp1 is an essential protein serine phosphatase that dephosphorylates Ser2 or Ser5 of the RNA polymerase II carboxyl-terminal domain (CTD) heptad repeat Y(1)S(2)P(3)T(4)S(5)P(6)S(7). The CTD of the microsporidian parasite Encephalitozoon cuniculi consists of 15 heptad repeats, which approximates the minimal CTD length requirement for cell viability in yeast. Here we show that E. cuniculi encodes a minimized 411-aa Fcp1-like protein (EcFcp1), which consists of a DxDx(T/V) phosphatase domain and a BRCA1 carboxyl terminus (BRCT) domain but lacks the large N- and C-terminal domains found in fungal and metazoan Fcp1 enzymes. Nonetheless, EcFcp1 can function in lieu of Saccharomyces cerevisiae Fcp1 to sustain yeast cell growth. Recombinant EcFcp1 is a monomeric enzyme with intrinsic phosphatase activity against nonspecific (p-nitrophenyl phosphate) and specific (CTD-PO(4)) substrates. EcFcp1 dephosphorylates CTD positions Ser2 and Ser5 with similar efficacy in vitro. We exploit synthetic CTD Ser2-PO(4) and Ser5-PO(4) peptides to define minimized substrates for EcFcp1 and to illuminate the importance of CTD primary structure in Ser2 and Ser5 phosphatase activity.


Asunto(s)
Encephalitozoon cuniculi/enzimología , Fragmentos de Péptidos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/metabolismo , Serina/metabolismo , Secuencia de Aminoácidos , Animales , Proteína BRCA1/química , Sitios de Unión , División Celular , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fosfoproteínas Fosfatasas/química , Fosforilación , ARN Polimerasa II/química , Secuencias Repetitivas de Aminoácido , Saccharomyces cerevisiae/enzimología , Homología de Secuencia de Aminoácido
9.
J Biol Chem ; 277(1): 96-103, 2002 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-11687593

RESUMEN

A scheme of eukaryotic phylogeny has been suggested based on the structure and physical linkage of the enzymes that catalyze mRNA cap formation. Here we show that the intracellular parasite Encephalitozoon cuniculi encodes a complete mRNA capping apparatus consisting of separate triphosphatase (EcCet1), guanylyltransferase (EcCeg1), and methyltransferase (Ecm1) enzymes, which we characterize biochemically and genetically. The triphosphatase EcCet1 belongs to a metal-dependent phosphohydrolase family that includes the triphosphatase components of the capping apparatus of fungi, DNA viruses, and the malaria parasite Plasmodium falciparum. These enzymes are structurally and mechanistically unrelated to the metal-independent cysteine phosphatase-type RNA triphosphatases found in metazoans and plants. Our findings support the proposed evolutionary connection between microsporidia and fungi, and they place fungi and protozoa in a common lineage distinct from that of metazoans and plants. RNA triphosphatase presents an attractive target for antiprotozoal/antifungal drug development.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Encephalitozoon cuniculi/enzimología , Nucleotidiltransferasas/metabolismo , Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/genética , Secuencia de Aminoácidos , Animales , Encephalitozoon cuniculi/genética , Datos de Secuencia Molecular , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Relación Estructura-Actividad
10.
Exp Parasitol ; 98(4): 171-9, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11560410

RESUMEN

Phospholipid metabolism of the microsporidian Encephalitozoon cuniculi, an obligate intracellular parasite, has been investigated. Labeled precursor incorporation experiments have shown that phosphatidylserine decarboxylase and phosphatidylethanolamine N-methyltransferase are more active in cells infected by E. cuniculi than in uninfected cells. In contrast, no difference was observed in the activity of Kennedy pathway's enzymes, the mammalian pathway. This suggests the occurrence in microsporidia of a bacteria- and fungi-typical pathway for phospholipid synthesis, which is supported by the identification of two genes implicated in this pathway, the cds gene encoding the key enzyme CDP-diacylglycerol synthase (E.C. 2.7.7.41) and the pss gene for CDP-alcohol phosphatidyltransferase. The pss gene could encode phosphatidylserine synthase (E.C. 2.7.8.8.), which catalyses the de novo synthesis of phosphatidylserine in bacteria and fungi. The complete CDP-diacylglycerol synthase messenger has been isolated and shows very short 5' and 3' untranslated regions. This is strong evidence for the functionality of a metabolic pathway which could be a potential target against microsporidia which infect humans.


Asunto(s)
Encephalitozoon cuniculi/metabolismo , Fosfolípidos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/química , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Carboxiliasas/metabolismo , Colina/metabolismo , Encephalitozoon cuniculi/enzimología , Encephalitozoon cuniculi/genética , Etanolamina/metabolismo , Metionina/metabolismo , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Fosfatidiletanolamina N-Metiltransferasa , Fosfolípidos/biosíntesis , Serina/metabolismo
11.
J Eukaryot Microbiol ; 48(3): 374-81, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11411847

RESUMEN

Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.


Asunto(s)
Poliaminas Biogénicas/biosíntesis , Encephalitozoon cuniculi/metabolismo , Acetiltransferasas/análisis , Adenosilmetionina Descarboxilasa/análisis , Animales , Poliaminas Biogénicas/antagonistas & inhibidores , Poliaminas Biogénicas/metabolismo , Carboxiliasas/análisis , Centrifugación por Gradiente de Densidad , Eflornitina/farmacología , Encephalitozoon cuniculi/enzimología , Encephalitozoon cuniculi/ultraestructura , Metionina/metabolismo , Microscopía Electrónica , Ornitina/metabolismo , Ornitina Descarboxilasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA