Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.755
Filtrar
Más filtros











Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 204: 106068, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277415

RESUMEN

The insecticidal crystalline (Cry) and vegetative insecticidal (Vip) proteins derived from Bacillus thuringiensis (Bt) are used globally to manage insect pests, including the cotton bollworm, Helicoverpa armigera, one of the world's most damaging agricultural pests. Cry proteins bind to the ATP-binding cassette transporter C2 (ABCC2) receptor on the membrane surface of larval midgut cells, resulting in Cry toxin pores, and ultimately leading to cell swelling and/or lysis. Insect aquaporin (AQP) proteins within the membranes of larval midgut cells are proposed to allow the rapid influx of water into enterocytes following the osmotic imbalance triggered by the formation of Cry toxin pores. Here, we examined the involvement of H. armigera AQPs in Cry1Ac-induced osmotic cell swelling. We identified and characterized eight H. armigera AQPs and demonstrated that five are functional water channel proteins. Three of these (HaDrip1, HaPrip, and HaEglp1) were found to be expressed in the larval midgut. Xenopus laevis oocytes co-expressing the known Cry1Ac receptor HaABCC2 and each of the three HaAQPs displayed abnormal morphology and were lysed following exposure to Cry1Ac, suggesting a rapid influx of water was induced after Cry1Ac pore formation. In contrast, oocytes producing either HaABCC2 or HaAQP alone failed to swell or lyse after treatment with Cry1Ac, implying that both Cry1Ac pore formation and HaAQP function are needed for osmotic cell swelling. However, CRISPR/Cas9-mediated knockout of any one of the three HaAQP genes failed to cause significant changes in susceptibility to the Bt toxins Cry1Ac, Cry2Ab, or Vip3Aa. Our findings suggest that the multiple HaAQPs produced in larval midgut cells compensate for each other in allowing for the rapid influx of water in H. armigera midgut cells following Cry toxin pore formation, and that mutations affecting a single HaAQP are unlikely to confer resistance to Bt proteins.


Asunto(s)
Acuaporinas , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Larva , Mariposas Nocturnas , Animales , Toxinas de Bacillus thuringiensis/toxicidad , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Endotoxinas/toxicidad , Endotoxinas/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/genética , Larva/efectos de los fármacos , Larva/metabolismo , Acuaporinas/metabolismo , Acuaporinas/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Xenopus laevis , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Insecticidas/toxicidad , Insecticidas/farmacología , Ósmosis , Helicoverpa armigera
2.
Pestic Biochem Physiol ; 204: 106096, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277420

RESUMEN

Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized pest control. However, the evolution of resistance by target pests poses a significant threat to the long-term success of Bt crops. Understanding the genetics and mechanisms underlying Bt resistance is crucial for developing resistance detection methods and management tactics. The T92C mutation in a tetraspanin gene (HaTSPAN1), resulting in the L31S substitution, is associated with dominant resistance to Cry1Ac in a major pest, Helicoverpa armigera. Previous studies using CRISPR/Cas9 technique have demonstrated that knockin of the HaTSPAN1 T92C mutation confers a 125-fold resistance to Cry1Ac in the susceptible SCD strain of H. armigera. In this study, we employed the piggyBac transposon system to create two transgenic H. armigera strains based on SCD: one expressing the wild-type HaTSPAN1 gene (SCD-TSPANwt) and another expressing the T92C mutant form of HaTSPAN1 (SCD-TSPANmt). The SCD-TSPANmt strain exhibited an 82-fold resistance to Cry1Ac compared to the recipient SCD strain, while the SCD-TSPANwt strain remained susceptible. The Cry1Ac resistance followed an autosomal dominant inheritance mode and was genetically linked with the transgene locus in the SCD-TSPANmt strain of H. armigera. Our results further confirm the causal association between the T92C mutation of HaTSPAN1 and dominant resistance to Cry1Ac in H. armigera. Additionally, they suggest that the piggyBac-mediated transformation system we used in H. armigera is promising for functional investigations of candidate Bt resistance genes from other lepidopteran pests.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas , Mariposas Nocturnas , Animales , Endotoxinas/genética , Endotoxinas/farmacología , Toxinas de Bacillus thuringiensis/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/toxicidad , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Resistencia a los Insecticidas/genética , Proteínas Bacterianas/genética , Alelos , Plantas Modificadas Genéticamente/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Bacillus thuringiensis/genética , Insecticidas/farmacología , Insecticidas/toxicidad , Helicoverpa armigera
3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39344677

RESUMEN

Infectious disease caused by exposure to Gram-negative bacterial endotoxin lipopolysaccharide (LPS) is recognized to suppress female fertility. However, the effect of varying low-dose endotoxin exposure during distinct stages of follicle development on immune response, reproductive performance, and lamb performance has yet to be elucidated. Therefore, the objective of this study was to evaluate acute phase response, mRNA abundance of inflammatory markers, reproductive performance and lamb growth characteristics of ewes challenged with subclinical doses of LPS. Rambouillet ewes (n = 36; 68.2 ± 1.1 kg; age 3 to 7 yr) stratified by body weight (BW) and age were assigned to treatment groups. Ewes received subcutaneous injections of saline (CON, n = 12), 1.5 µg/kg BW LPS (LOW, n = 12), or 3.0 µg/kg BW LPS (HIGH, n = 12) on days 5, 10, and 15 of a synchronized follicular wave. Ewes were subsequently placed with a raddle-painted ram on day 16 for a 35-d breeding season. On treatment days 5 and 15, blood samples, peripheral blood leukocytes, and rectal temperature were collected before and at regular intervals for 12 h after LPS challenge. Immune response to LPS was confirmed by increased temperature and serum cortisol concentrations on days 5 and 15. Endotoxin increased circulating plasma concentration of the acute phase protein, haptoglobin by greater than 15%, in both LPS-treated groups on days 5 and 15 at 12 h compared with control (P≤ 0.05). Pro- and anti-inflammatory mRNA gene expression demonstrated no differences in expression for tumor necrosis factor-α or peroxisome proliferator-activated receptor gamma among treatment groups (P > 0.10). Likewise, Toll-like receptor 4 (TLR4), interleukin-8 (IL-8), and superoxide dismutase 2 (SOD2) expression was similar among treatment groups on day 5. However, ewes challenged with LPS on day 15 displayed greater mRNA expression for TLR4 from 2 to 6 h (P < 0.05), a 7-fold increase for IL-8 from 1.5 to 2.5 h (P < 0.05), and 8-fold induction for SOD2 from 2 to 6 h (P < 0.05) as compared with controls. First service conception rates were 90% for control ewes and 75% for both treated groups (P â€…= 0.84). Treated ewes demonstrated a reduction in lamb birth weight compared with controls (P ≤ 0.05) and a tendency for reduction of 60-d adjusted weaning weight (P = 0.09). Data suggest that subacute endotoxin exposure aligning with key follicle and oocyte maturation events results in detrimental growth performance of the subsequent lamb.


During disease states, bacterial endotoxins act locally and systemically, negatively impacting reproductive capacity and economic productivity. The present study investigated the impacts of repeated low-dose endotoxin exposure during follicular development on the immune response and subsequent reproductive and lamb growth variables. Results indicate that bacterial endotoxin challenge during follicular development and oocyte maturation leads to reduced lamb birth weight and 60-d adjusted weaning weight.


Asunto(s)
Lipopolisacáridos , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/administración & dosificación , Femenino , Ovinos , Reproducción/efectos de los fármacos , Endotoxinas/farmacología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Masculino
4.
Curr Microbiol ; 81(11): 376, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39322786

RESUMEN

Tobacco Etch virus (TEV) protease is one of the most common tools for removing fusion tags, but no study has shown that TEV can be expressed at high levels in the GRAS host strain Bacillus subtilis and purified for further application. In this study, the fusion protein BsLysSN-TEV C/S-His-TEV consisting of a fusion tag, N-terminal domain of a lysyl-tRNA synthetase (BsLysSN) coded by B. subtilis lysS gene, placed at the N-terminus followed by an endoprotease TEV cleavage site and then the expression of this fusion protein in the cytoplasm of B. subtilis was investigated. The SDS-PAGE and Western-blot analysis demonstrated that His-TEV was overexpressed under the induction of IPTG. This result infers that His-TEV protease showed promising activity in the B. subtilis cytoplasm by the cleavage of the fusion protein. These cleavage products could be purified using the Ni-NTA column, which effectively cleaved the purified recombinant protein substrate, which can be applied in the protein purification process to remove the fusion tag. Significantly, since both His-TEV protease and the fusion recombinant protein substrate are expressed in the endotoxin-free host strain, the tag removal and purified product should be theoretically endotoxin-free, which could be a promising approach for producing therapeutic proteins and also for other relevant biomedical applications.


Asunto(s)
Bacillus subtilis , Endopeptidasas , Proteínas Recombinantes de Fusión , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Endotoxinas/genética , Endotoxinas/metabolismo , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Lisina-ARNt Ligasa/química , Expresión Génica
5.
Am J Physiol Endocrinol Metab ; 327(4): E422-E429, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140976

RESUMEN

Tissues often experience hypoxia at sites of inflammation due to malperfusion, massive immune cell recruitment, and increased oxygen consumption. Organisms adapt to these hypoxic conditions through the transcriptional activation of various genes. In fact, there is significant crosstalk between the transcriptional responses to hypoxia and inflammatory processes. This interaction, named inflammatory hypoxia, plays a crucial role in various diseases including malignancies, chronic inflammatory lung diseases, and sepsis. To further elucidate the crosstalk between hypoxia and inflammation in vivo and assess its potential for innovative therapies, our study aimed at investigating the impact of acute hypoxic conditions on inflammation-induced immune responses. To this end, we exposed healthy human subjects to hypoxia either before (hypoxia priming) or after a single intravenous (i.v.) injection of 0.4 ng/kg LPS. Our data show that hypoxia exposure prior to LPS injection (hypoxia priming) amplified the proinflammatory response. This was reflected by an increase in body temperature, plasma noradrenaline levels, and the production of proinflammatory cytokines (i.e., IL-6 and TNF-α), compared with LPS control conditions. These effects were not observed when participants were exposed to hypoxia after LPS administration, demonstrating that the interaction between hypoxia and inflammation highly depends on the timing of both stimuli. Our findings suggest that acute hypoxia (i.e., hypoxia priming) modulates transient inflammation, leading to an enhanced proinflammatory response in healthy human subjects. This highlights the need for further investigations to understand the pathology of various hypoxia-inducible factor (HIF)-associated inflammatory diseases and to develop suitable, innovative therapies.NEW & NOTEWORTHY To our knowledge, this is the first in vivo study investigating the effects of hypoxia preceding (hypoxia priming) or following LPS administration on the endotoxin-induced inflammatory response in healthy human subjects. The data show that hypoxia priming amplified the proinflammatory response, reflected by an increased body temperature, increased plasma noradrenaline levels, and higher production of proinflammatory cytokines (i.e., IL-6 and TNF-α) compared with LPS control conditions.


Asunto(s)
Citocinas , Voluntarios Sanos , Hipoxia , Inflamación , Lipopolisacáridos , Humanos , Masculino , Adulto , Lipopolisacáridos/farmacología , Hipoxia/metabolismo , Adulto Joven , Inflamación/metabolismo , Inflamación/inmunología , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangre , Factor de Necrosis Tumoral alfa/metabolismo , Norepinefrina/sangre , Temperatura Corporal/efectos de los fármacos , Endotoxinas
6.
Mol Plant ; 17(10): 1504-1519, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39148293

RESUMEN

Root-knot nematodes (RKNs) are plant pests that infect the roots of host plants. Bacillus thuringiensis (Bt) nematicidal proteins exhibited toxicity to nematodes. However, the application of nematicidal proteins for plant protection is hampered by the lack of effective delivery systems in transgenic plants. In this study, we discovered the accumulation of leucoplasts (root plastids) in galls and RKN-induced giant cells. RKN infection causes the degradation of leucoplasts into small vesicle-like structures, which are responsible for delivering proteins to RKNs, as observed through confocal microscopy and immunoelectron microscopy. We showed that different-sized proteins from leucoplasts could be taken up by Meloidogyne incognita female. To further explore the potential applications of leucoplasts, we introduced the Bt crystal protein Cry5Ba2 into tobacco and tomato leucoplasts by fusing it with a transit peptide. The transgenic plants showed significant resistance to RKNs. Intriguingly, RKN females preferentially took up Cry5Ba2 protein when delivered through plastids rather than the cytosol. The decrease in progeny was positively correlated with the delivery efficiency of the nematicidal protein. In conclusion, this study offers new insights into the feeding behavior of RKNs and their ability to ingest leucoplast proteins, and demonstrates that root leucoplasts can be used for delivering nematicidal proteins, thereby offering a promising approach for nematode control.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Proteínas Hemolisinas , Raíces de Plantas , Plantas Modificadas Genéticamente , Plastidios , Solanum lycopersicum , Tylenchoidea , Animales , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Tylenchoidea/efectos de los fármacos , Tylenchoidea/fisiología , Solanum lycopersicum/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Femenino , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Plastidios/metabolismo , Endotoxinas/metabolismo , Endotoxinas/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/parasitología , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Enfermedades de las Plantas/parasitología , Antinematodos/farmacología , Antinematodos/metabolismo
7.
Microb Cell Fact ; 23(1): 222, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118114

RESUMEN

BACKGROUND: A cost-effective Escherichia coli expression system has gained popularity for producing virus-like particle (VLP) vaccines. However, the challenge lies in balancing the endotoxin residue and removal costs, as residual endotoxins can cause inflammatory reactions in the body. RESULTS: In this study, porcine parvovirus virus-like particles (PPV-VLPs) were successfully assembled from Decreased Endotoxic BL21 (BL21-DeE), and the effect of structural changes in the lipid A of BL21 on endotoxin activity, immunogenicity, and safety was investigated. The lipopolysaccharide purified from BL21-DeE produced lower IL-6 and TNF-α than that from wild-type BL21 (BL21-W) in both RAW264.7 cells and BALB/c mice. Additionally, mice immunized with PPV-VLP derived form BL21-DeE (BL21-DeE-VLP) showed significantly lower production of inflammatory factors and a smaller increase in body temperature within 3 h than those immunized with VLP from BL21-W (BL21-W-VLP) and endotoxin-removed VLP (ReE-VLP). Moreover, mice in the BL21-DeE-VLP immunized group had similar levels of serum antibodies as those in the BL21-W-VLP group but significantly higher levels than those in the ReE-VLP group. Furthermore, the liver, lungs, and kidneys showed no pathological damage compared with the BL21-W-VLP group. CONCLUSION: Overall, this study proposes a method for producing VLP with high immunogenicity and minimal endotoxin activity without chemical or physical endotoxin removal methods. This method could address the issue of endotoxin residues in the VLP and provide production benefits.


Asunto(s)
Endotoxinas , Escherichia coli , Lípido A , Ratones Endogámicos BALB C , Parvovirus Porcino , Vacunas de Partículas Similares a Virus , Animales , Ratones , Escherichia coli/genética , Escherichia coli/metabolismo , Parvovirus Porcino/inmunología , Parvovirus Porcino/genética , Vacunas de Partículas Similares a Virus/inmunología , Endotoxinas/inmunología , Células RAW 264.7 , Lípido A/inmunología , Lípido A/análogos & derivados , Interleucina-6/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Femenino , Porcinos , Lipopolisacáridos/inmunología
8.
J Agric Food Chem ; 72(33): 18708-18719, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106049

RESUMEN

The extensive use of Bacillus thuringiensis (Bt) in pest management has driven the evolution of pest resistance to Bt toxins, particularly Cry1Ac. Effective management of Bt resistance necessitates a good understanding of which pest proteins interact with Bt toxins. In this study, we screened a Helicoverpa armigera larval midgut cDNA library and captured 208 potential Cry1Ac-interacting proteins. Among these, we further examined the interaction between Cry1Ac and a previously unknown Cry1Ac-interacting protein, HaDALP (H. armigera death-associated LIM-only protein), as well as its role in toxicology. The results revealed that HaDALP specifically binds to both the Cry1Ac protoxin and activated toxin, significantly enhancing cell and larval tolerance to Cry1Ac. Additionally, HaDALP was overexpressed in a Cry1Ac-resistant H. armigera strain. These findings reveal a greater number of Cry1Ac-interacting proteins than previously known and demonstrate, for the first time, that HaDALP reduces Cry1Ac toxicity by sequestering both the protoxin and activated toxin.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insectos , Insecticidas , Larva , Mariposas Nocturnas , Animales , Toxinas de Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/toxicidad , Toxinas de Bacillus thuringiensis/química , Endotoxinas/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidad , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/genética , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/genética , Insecticidas/toxicidad , Insecticidas/farmacología , Insecticidas/química , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/genética , Resistencia a los Insecticidas/genética , Control Biológico de Vectores , Helicoverpa armigera
9.
Sci Rep ; 14(1): 19645, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179637

RESUMEN

Sepsis, one of the leading causes of death, is still lacking specific treatment. OXIRIS (BAXTER, Deerfield, IL, USA) is the first device allowing combined removal of endotoxins, inflammatory mediators and uremic toxins, alongside fluid balance control. Available data is very limited. This retrospective propensity score-matched cohort study of adult patients with septic shock aimed to evaluate septic shock duration and mortality in patients treated with either standard of care renal replacement therapy (RRT) or RRT with combined hemoadsorption, who were admitted to the interdisciplinary surgical intensive care unit at Heidelberg University Hospital during the years 2018 through 2021. Main outcomes were duration of shock, thirty-day mortality and plasma interleukin-6 levels before and after initiation of hemoadsorption. Included were 117 patients (female, 33%; male 67%); median age: 67 (16) years. After matching: 42 patients (female, 33%; male, 67%); mean age: 59.1 ± 13.8 years. There was no statistically significant difference in septic shock duration (p = 0.94; hazard ratio (HR) 0.97 (95% CI, 0.48-1.97)). Thirty-day survival analysis showed a non-statistically significant survival difference. (p = 0.063; HR 0.43 (95% CI, 0.17-1.09)). A post-hoc 90-day survival analysis revealed statistically significant longer survival and lower death hazard ratio in patients treated with RRT + HA (p = 0.037; HR = 0.42 (95% CI, 0.18-0.99). In conclusion, RRT with combined hemoadsorption of endotoxins, inflammatory mediators and uremic toxins is a modality worth further investigation.


Asunto(s)
Endotoxinas , Mediadores de Inflamación , Unidades de Cuidados Intensivos , Terapia de Reemplazo Renal , Choque Séptico , Tóxinas Urémicas , Humanos , Choque Séptico/mortalidad , Choque Séptico/sangre , Choque Séptico/terapia , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Endotoxinas/sangre , Mediadores de Inflamación/sangre , Tóxinas Urémicas/sangre , Terapia de Reemplazo Renal/métodos , Interleucina-6/sangre
10.
BMC Oral Health ; 24(1): 1019, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215289

RESUMEN

BACKGROUND: Periodontal disease results in oral dysbiosis, increasing plaque virulence and oxidative stress. Stannous fluoride (SnF2) binds lipopolysaccharides to reduce plaque virulence. This study prospectively assessed SnF2 effects on oxidative stress in adults with gingivitis. METHODS: This was a 2-month, single-center, single-treatment clinical trial. Twenty "disease" (> 20 bleeding sites with ≥ 3 pockets 3 mm-4 mm deep) and 20 "healthy" (≤ 3 bleeding sites with pockets ≤ 2 mm deep) adults were enrolled. All participants were instructed to use SnF2 dentifrice twice daily for 2 months. An oral examination, Modified Gingival Index (MGI) examination and Gingival Bleeding Index (GBI) examination were conducted at baseline, 1 month and 2 months. Gingival crevicular fluid (GCF), saliva, oral lavage and supragingival plaque were collected at each visit to evaluate: Endotoxins, Protein Carbonyls, L-lactate dehydrogenase (LDH), Ferric reducing antioxidant power (FRAP), Oxidized low density lipoproteins (oxi-LDL), IL-6 and C-reactive protein (CRP). A subset-analysis examined participants considered at higher risk of cardiovascular disease. Change-from-baseline analyses within each group were of primary interest. RESULTS: The disease group showed statistically significant reductions in GBI at Month 1 (67%) and Month 2 (85%) and in MGI at Month 1 (36%) and Month 2 (51%) versus baseline (p < 0.001). At baseline, the disease group showed greater LDH in GCF and oxi-LDL levels in saliva versus the healthy group (p ≤ 0.01). Total antioxidant capacity (FRAP) in saliva increased versus baseline for the disease group at Months 1 and 2 (p < 0.05), and levels for the disease group were greater than the healthy group at both timepoints (p < 0.05). SnF2 treatment reduced endotoxins (lavage) for both disease and healthy groups at Month 2 (p ≤ 0.021) versus baseline. There was a reduction in oxidative stress markers, namely protein carbonyl in saliva, at Months 1 and 2 (p < 0.001) for both groups and a reduction in cytokine IL-6 (lavage) in the disease group at Month 2 (p = 0.005). A subset analysis of participants at higher coronary disease risk showed reductions in endotoxins in lavage, oxi-LDL, and CRP in saliva at Month 2 (p ≤ 0.04). CONCLUSION: SnF2 dentifrice use reversed gingival inflammation, suppressed endotoxins and reduced some harmful oxidant products in saliva and gingiva. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov NCT05326373, registered on 13/04/2022.


Asunto(s)
Biomarcadores , Proteína C-Reactiva , Dentífricos , Líquido del Surco Gingival , Gingivitis , Interleucina-6 , Estrés Oxidativo , Índice Periodontal , Saliva , Fluoruros de Estaño , Humanos , Estrés Oxidativo/efectos de los fármacos , Estudios Prospectivos , Fluoruros de Estaño/uso terapéutico , Gingivitis/prevención & control , Femenino , Masculino , Adulto , Saliva/química , Dentífricos/uso terapéutico , Líquido del Surco Gingival/química , Interleucina-6/análisis , Interleucina-6/metabolismo , Proteína C-Reactiva/análisis , Biomarcadores/análisis , Carbonilación Proteica/efectos de los fármacos , Endotoxinas/análisis , Antioxidantes/uso terapéutico , Persona de Mediana Edad , L-Lactato Deshidrogenasa/análisis , Placa Dental/prevención & control , Lipoproteínas LDL , Estudios de Seguimiento , Adulto Joven
11.
J Agric Food Chem ; 72(36): 19689-19698, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189874

RESUMEN

Synergistic factors can enhance the toxicity of Bt toxins and delay the development of Bt resistance. Previous research has demonstrated that a Helicoverpa armigera cadherin fragment (HaCad-TBR) increased the toxicity of Cry1Ac in Plutella xylostella larvae but did not have a synergistic effect on Cry1B, Cry1C, and Cry1F toxins. In this study, a fusion protein (HaCad-TBR-2D3 VL) derived from HaCad-TBR and a Bt Cry1-specific antibody peptide was expressed in Escherichia coli. The HaCad-TBR-2D3 VL enhanced Cry1Ac toxicity more efficiently in insects and Sf9 cells than HaCad-TBR and also significantly increased the toxicity of Cry1B, Cry1C, and Cry1F toxins in insects. Further investigation indicated that the improved stability in insect midguts and higher binding capacity with Bt toxins contributed to the enhanced synergism of HaCad-TBR-2D3 VL over HaCad-TBR. This study suggested that Bt antibody fragments can potentially broaden the synergistic range of Bt receptor fragments, providing a theoretical foundation for developing broad-spectrum synergists for other biopesticides.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Cadherinas , Endotoxinas , Proteínas Hemolisinas , Proteínas de Insectos , Larva , Mariposas Nocturnas , Proteínas Recombinantes de Fusión , Animales , Cadherinas/genética , Cadherinas/metabolismo , Cadherinas/inmunología , Cadherinas/química , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/inmunología , Proteínas Hemolisinas/genética , Endotoxinas/inmunología , Endotoxinas/química , Endotoxinas/farmacología , Endotoxinas/metabolismo , Endotoxinas/genética , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/farmacología , Mariposas Nocturnas/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Insectos/inmunología , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Péptidos/química , Péptidos/inmunología , Péptidos/farmacología , Anticuerpos/inmunología , Anticuerpos/química , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Insecticidas/química , Insecticidas/farmacología , Control Biológico de Vectores
12.
J Autoimmun ; 148: 103300, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116634

RESUMEN

The mechanisms of endotoxin tolerance (ET), which down-regulate inflammation, are well described in response to exogenous toll-like receptor ligands, but few studies have focused on ET-associated mechanisms in inflammatory disease. As blocking TNF can attenuate the development of ET, the effect of anti-TNF on the expression of key ET-associated molecules in inflammatory auto-immune disease was measured; changes in inflammatory gene expression were confirmed using an ET bioassay. The expression of immunomodulatory molecules was measured in a murine model of arthritis treated with anti-TNF and the expression of ET-associated molecules was measured in whole blood in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients, before and after therapy. The expression of ET-associated genes was also measured in RA patient monocytes before and after therapy, in anti-TNF responders and non-responders. Tnfaip3, Ptpn6 and Irak3 were differentially expressed in affected paws, spleens, lymph nodes and circulating leucocytes in experimental murine arthritis treated with anti-TNF. Prior to therapy, the expression of TNFAIP3, INPP5D, PTPN6, CD38 and SIGIRR in whole blood differed between human healthy controls and RA or AS patients. In blood monocytes from RA patients, the expression of TNFAIP3 was significantly reduced by anti-TNF therapy in non-responders. Prior to therapy, anti-TNF non-responders had higher expression of TNFAIP3 and SLPI, compared to responders. Although the expression of TNFAIP3 was significantly higher in RA non-responders prior to treatment, the post-treatment reduction to a level similar to responders did not coincide with a clinical response to therapy.


Asunto(s)
Artritis Reumatoide , Endotoxinas , Tolerancia Inmunológica , Espondilitis Anquilosante , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Endotoxinas/inmunología , Espondilitis Anquilosante/tratamiento farmacológico , Espondilitis Anquilosante/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/genética , Femenino , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Artritis Experimental/inmunología , Artritis Experimental/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Persona de Mediana Edad , Adulto , Inflamación/inmunología , Modelos Animales de Enfermedad
13.
Biomolecules ; 14(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39062509

RESUMEN

Cry toxins, produced by the bacterium Bacillus thuringiensis, are of significant agronomic value worldwide due to their potent and highly specific activity against various insect orders. However, some of these pore-forming toxins display specific activity against a range of human cancer cells whilst possessing no known insecticidal activity; Cry41Aa is one such toxin. Cry41Aa has similarities to its insecticidal counterparts in both its 3-domain toxic core structure and pore-forming abilities, but how it has evolved to target human cells is a mystery. This work shows that some insecticidal Cry toxins can enhance the toxicity of Cry41Aa against hepatocellular carcinoma cells, despite possessing no intrinsic toxicity themselves. This interesting crossover is not limited to human cancer cells, as Cry41Aa was found to inhibit some Aedes-active Cry toxins in mosquito larval assays. Here, we present findings that suggest that Cry41Aa shares a receptor with several insecticidal toxins, indicating a stronger evolutionary relationship than their divergent activities might suggest.


Asunto(s)
Toxinas de Bacillus thuringiensis , Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Humanos , Endotoxinas/química , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Animales , Insecticidas/química , Insecticidas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Aedes/efectos de los fármacos , Aedes/genética , Línea Celular Tumoral
14.
Sci Rep ; 14(1): 15544, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969695

RESUMEN

Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Plata , Humanos , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Extractos Vegetales/química , Extractos Vegetales/farmacología , Moringa oleifera/química , Proteínas Recombinantes/farmacología , Hojas de la Planta/química , Supervivencia Celular/efectos de los fármacos , Endotoxinas , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo
15.
EMBO Mol Med ; 16(8): 1886-1900, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39009886

RESUMEN

Despite the re-emergence of the pioneering "Coley's toxin" concept in anti-cancer immune therapies highlighted by check-point inhibitors and CAR-T approaches, fundamental mechanisms responsible for the immune-enhancing efficacy of low-dose "Coley's toxin" remain poorly understood. This study examines the novel reprogramming of immune-enhancing neutrophils by super-low dose endotoxin conducive for anti-cancer therapies. Through integrated analyses including scRNAseq and functional characterizations, we examined the efficacy of reprogrammed neutrophils in treating experimental cancer. We observed that neutrophils trained by super-low dose endotoxin adopt a potent immune-enhancing phenotype characterized by CD177loCD11bloCD80hiCD40hiDectin2hi. Both murine and human neutrophils trained by super-low dose endotoxin exhibit relieved suppression of adaptive T cells as compared to un-trained neutrophils. Functionally, neutrophils trained by super-low dose endotoxin can potently reduce tumor burden when transfused into recipient tumor-bearing mice. Mechanistically, Super-low dose endotoxin enables the generation of immune-enhancing neutrophils through activating STAT5 and reducing innate suppressor IRAK-M. Together, our data clarify the long-held mystery of "Coley's toxin" in rejuvenating anti-tumor immune defense, and provide a proof-of-concept in developing innate neutrophil-based anti-tumor therapeutics.


Asunto(s)
Endotoxinas , Neutrófilos , Neutrófilos/inmunología , Animales , Ratones , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Ratones Endogámicos C57BL , Factor de Transcripción STAT5/metabolismo , Línea Celular Tumoral
16.
Shanghai Kou Qiang Yi Xue ; 33(2): 170-174, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-39005094

RESUMEN

PURPOSE: To explore the clinical effect of ultrasonic irrigation combined with chlorhexidine in root canal treatment of pulpitis. METHODS: A total of 120 patients with pulpitis treated with root canal therapy were randomly divided into a study group (n=60, 72 affected teeth) and a control group (n=60, 70 affected teeth). During root canal preparation, the study group was treated with chlorhexidine combined with ultrasonic irrigation, while the control group was treated with chlorhexidine conventional irrigation. The bacterial count and endotoxin content in the root canal before and after root canal preparation were compared between the two groups, as well as the endodontic inter-appointment pain (EIAP), lateral branch root canal filling rate, and degree of tooth pain after root canal treatment. The success rate of treatment was statistically analyzed after one-year follow-up. Statistical analysis was performed with SPSS 19.0 software package. RESULTS: After root canal preparation, the number of colonies in experimental group and control group was significantly decreased compared with that before root canal preparation(P<0.05), and the number of colonies in experimental group was significantly lower than that in control group(P<0.05). After root canal preparation, endotoxin levels in experimental group and control group were significantly lower than those before root canal preparation(P<0.05), and the level in experimental group was significantly lower than that in control group(P<0.05). The lateral branch root canal filling rate in the study group and the control group was 29.17% and 11.43%, respectively, with significant difference between the groups(P<0.05). The incidence of EIAP was 4.17% and 14.29%, respectively, with significant difference between the two groups(P<0.05). At 48 hours after surgery, the visual analogue score (VAS) of the study group and the control group was (2.74±0.61) and (3.29±0.68), respectively, which were significantly lower than at before surgery(P<0.05). There was a significant difference in VAS score between the two groups 48 hours after surgery(P<0.05). One week after surgery, the VAS score in the study group and the control group was (1.52±0.34) and (1.81±0.42), respectively, significantly lower than that before and 48 hours after surgery(P<0.05). There was a significant difference in VAS score between the two groups at one week after surgery (P<0.05). The successful rate of treatment in the control group was 84.62%, and 95.71% in the study group, with a significant difference between the two groups(P<0.05). CONCLUSIONS: The application of ultrasonic irrigation combined with chlorhexidine in the treatment of pulpitis root canals can help reduce the level of bacteria and endotoxin after root canal preparation, alleviate the degree of postoperative tooth pain, and improve the filling rate of lateral branch root canals, with superior curative effects.


Asunto(s)
Clorhexidina , Pulpitis , Preparación del Conducto Radicular , Tratamiento del Conducto Radicular , Clorhexidina/administración & dosificación , Clorhexidina/uso terapéutico , Humanos , Pulpitis/terapia , Preparación del Conducto Radicular/métodos , Tratamiento del Conducto Radicular/métodos , Irrigación Terapéutica/métodos , Irrigantes del Conducto Radicular/uso terapéutico , Irrigantes del Conducto Radicular/administración & dosificación , Endotoxinas , Ultrasonido , Cavidad Pulpar/efectos de los fármacos
17.
Front Immunol ; 15: 1426682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938563

RESUMEN

Background: The disruption of the circadian clock is associated with inflammatory and immunological disorders. BMAL2, a critical circadian protein, forms a dimer with CLOCK, activating transcription. Extracellular cold-inducible RNA-binding protein (eCIRP), released during sepsis, can induce macrophage endotoxin tolerance. We hypothesized that eCIRP induces BMAL2 expression and promotes macrophage endotoxin tolerance through triggering receptor expressed on myeloid cells-1 (TREM-1). Methods: C57BL/6 wild-type (WT) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Serum levels of eCIRP 20 h post-CLP were assessed by ELISA. Peritoneal macrophages (PerM) were treated with recombinant mouse (rm) CIRP (eCIRP) at various doses for 24 h. The cells were then stimulated with LPS for 5 h. The levels of TNF-α and IL-6 in the culture supernatants were assessed by ELISA. PerM were treated with eCIRP for 24 h, and the expression of PD-L1, IL-10, STAT3, TREM-1 and circadian genes such as BMAL2, CRY1, and PER2 was assessed by qPCR. Effect of TREM-1 on eCIRP-induced PerM endotoxin tolerance and PD-L1, IL-10, and STAT3 expression was determined by qPCR using PerM from TREM-1-/- mice. Circadian gene expression profiles in eCIRP-treated macrophages were determined by PCR array and confirmed by qPCR. Induction of BMAL2 activation in bone marrow-derived macrophages was performed by transfection of BMAL2 CRISPR activation plasmid. The interaction of BMAL2 in the PD-L1 promoter was determined by computational modeling and confirmed by the BIAcore assay. Results: Serum levels of eCIRP were increased in septic mice compared to sham mice. Macrophages pre-treated with eCIRP exhibited reduced TNFα and IL-6 release upon LPS challenge, indicating macrophage endotoxin tolerance. Additionally, eCIRP increased the expression of PD-L1, IL-10, and STAT3, markers of immune tolerance. Interestingly, TREM-1 deficiency reversed eCIRP-induced macrophage endotoxin tolerance and significantly decreased PD-L1, IL-10, and STAT3 expression. PCR array screening of circadian clock genes in peritoneal macrophages treated with eCIRP revealed the elevated expression of BMAL2, CRY1, and PER2. In eCIRP-treated macrophages, TREM-1 deficiency prevented the upregulation of these circadian genes. In macrophages, inducible BMAL2 expression correlated with increased PD-L1 expression. In septic human patients, blood monocytes exhibited increased expression of BMAL2 and PD-L1 in comparison to healthy subjects. Computational modeling and BIAcore assay identified a putative binding region of BMAL2 in the PD-L1 promoter, suggesting BMAL2 positively regulates PD-L1 expression in macrophages. Conclusion: eCIRP upregulates BMAL2 expression via TREM-1, leading to macrophage endotoxin tolerance in sepsis. Targeting eCIRP to maintain circadian rhythm may correct endotoxin tolerance and enhance host resistance to bacterial infection.


Asunto(s)
Proteínas de Unión al ARN , Sepsis , Animales , Humanos , Masculino , Ratones , Factores de Transcripción ARNTL/genética , Modelos Animales de Enfermedad , Endotoxinas/inmunología , Tolerancia Inmunológica , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Receptor Activador Expresado en Células Mieloides 1/inmunología , Receptor Activador Expresado en Células Mieloides 1/genética , Receptor Activador Expresado en Células Mieloides 1/metabolismo
18.
Ecotoxicol Environ Saf ; 280: 116530, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833976

RESUMEN

The heavy metals and bioreactivity properties of endotoxin in personal exposure to fine particulate matter (PM2.5) were characterized in the analysis. The average personal exposure concentrations to PM2.5 were ranged from 6.8 to 96.6 µg/m3. The mean personal PM2.5 concentrations in spring, summer, autumn, and winter were 32.1±15.8, 22.4±11.8, 35.3±11.9, and 50.2±19.9 µg/m3, respectively. There were 85 % of study targets exceeded the World Health Organization (WHO) PM2.5 threshold (24 hours). The mean endotoxin concentrations ranged from 1.086 ± 0.384-1.912 ± 0.419 EU/m3, with a geometric mean (GM) varied from 1.034 to 1.869. The concentration of iron (Fe) (0.008-1.16 µg/m3) was one of the most abundant transition metals in the samples that could affect endotoxin toxicity under Toll-Like Receptor 4 (TLR4) stimulation. In summer, the interleukin 6 (IL-6) levels showed statistically significant differences compared to other seasons. Spearman correlation analysis showed endotoxin concentrations were positively correlated with chromium (Cr) and nickel (Ni), implying possible roles as nutrients and further transport via adhering to the surface of fine inorganic particles. Mixed-effects model analysis demonstrated that Tumor necrosis factor-α (TNF-α) production was positively associated with endotoxin concentration and Cr as a combined exposure factor. The Cr contained the highest combined effect (0.205-0.262), suggesting that Cr can potentially exacerbate the effect of endotoxin on inflammation and oxidative stress. The findings will be useful for practical policies for mitigating air pollution to protect the public health of the citizens.


Asunto(s)
Contaminantes Atmosféricos , Endotoxinas , Monitoreo del Ambiente , Material Particulado , Estaciones del Año , Material Particulado/análisis , Endotoxinas/análisis , Humanos , Hong Kong , Contaminantes Atmosféricos/análisis , Anciano , Exposición a Riesgos Ambientales , Metales Pesados/análisis , Interleucina-6 , Factor de Necrosis Tumoral alfa , Tamaño de la Partícula , Femenino , Masculino
19.
Sci Total Environ ; 944: 173760, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38857800

RESUMEN

Ferrate (Fe(VI)) is an environmentally friendly disinfectant that is widely used to eradicate microbes in reclaimed water. However, the potential health risks associated with inhalation of Fe(VI)-treated bacteria-laden reclaimed water remains uncertain. We aimed to explore the inhalation hazards and potential mechanisms of K2FeO4-treated Escherichia coli (E. coli, ATCC 25922). Our findings indicated that Fe(VI) disinfection induced a dose- and time-dependent E. coli inactivation, accompanied by a rapid release of the bacterial endotoxin, lipopolysaccharide (LPS). Scanning electron microscopy (SEM) observations indicate that Fe(VI)-induced endotoxin production consists of at least two stages: initial binding of endotoxin to bacteria and subsequent dissociation to release free endotoxin. Furthermore, Fe(VI) disinfection was not able to effectively eliminate pure or E. coli-derived endotoxins. The E. coli strain used in this study lacks lung infection capability, thus the inhalation of bacteria alone failed to induce severe lung injury. However, mice inhaled exposure to Fe(VI)-treated E. coli showed severe impairment of lung structure and function. Moreover, we observed an accumulation of neutrophil/macrophage recruitment, cell apoptosis, and ROS generation in the lung tissue of mice subjected to Fe(VI)-treated E. coli. RNA sequencing (RNA-seq) and PCR results revealed that genes involved with endotoxin stimuli, cell apoptosis, antioxidant defence, inflammation response, chemokines and their receptors were upregulated in response to Fe(VI)-treated E. coli. In conclusion, Fe(VI) is ineffective in eliminating endotoxins and can trigger secondary hazards owing to endotoxin release from inactivated bacteria. Aerosol exposure to Fe(VI)-treated E. coli causes considerable damage to lung tissue by inducing oxidative stress and inflammatory responses.


Asunto(s)
Endotoxinas , Escherichia coli , Inflamación , Lesión Pulmonar , Estrés Oxidativo , Escherichia coli/efectos de los fármacos , Ratones , Animales , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/microbiología , Hierro/metabolismo , Desinfección/métodos , Desinfectantes/toxicidad
20.
Biofabrication ; 16(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701770

RESUMEN

Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products. Using a modern and scalable manufacturing platform, iMonoMac showed typical macrophage-like morphology and stained positive for several Toll like receptor (TLRs) such as TLR-2, TLR-5, TLR-4. Furthermore, iMonoMac derived from the same donor were sensitive to endotoxins, non-endotoxins, and process related pyrogens at a high dynamic range and across different cellular densities. Of note, iMonoMac showed increased sensitivity and reactivity to a broad range of pyrogens, demonstrated by the detection of interleukin-6 at low concentrations of LPS and MALP-2 which could not be reached using the current MAT cell sources. To further advance the system, iMonoMac or genetically engineered iMonoMac with NF-κB-luciferase reporter cassette could reveal a specific activation response while correlating to the classical detection method employing enzyme-linked immunosorbent assay to measure cytokine secretion. Thus, we present a valuable cellular tool to assess parenteral drugs safety, facilitating the future acceptance and design of regulatory-approved bioassays.


Asunto(s)
Células Madre Pluripotentes Inducidas , Macrófagos , Pirógenos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/citología , Contaminación de Medicamentos , Receptores Toll-Like/metabolismo , Endotoxinas , Interleucina-6/metabolismo , Monocitos/citología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Infusiones Parenterales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA