Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.954
Filtrar
1.
Balkan Med J ; 41(3): 193-205, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700358

RESUMEN

Background: Paclitaxel (PAX) is a widely used chemotherapy drug for various cancer types but often induces significant toxicity in multiple organ systems. Silymarin (SIL), a natural flavonoid, has shown therapeutic potential due to its multiple benefits. Aims: To evaluate the therapeutic efficacy of SIL in mitigating liver and kidney damage induced by PAX in rats, focusing on oxidative stress, inflammation, and apoptosis pathways. Study Design: Experimental animal model. Methods: The study included 28 male Wistar rats aged 12-14 weeks weighing 270-300 g. The rats were divided into four groups: control, SIL, PAX, and PAX + SIL, with seven in each group. The rats received intraperitoneal (i.p.) injections at a dose of 2 mg per kilogram of body weight of PAX for 5 successive days, followed by oral gavage with 200 mg/kg body mass of SIL for 10 uninterrupted days. We examined the effect of SIL on specific serum biochemical parameters using an autoanalyzer and rat-specific kits. The spectrophotometric methods was used to investigate oxidative stress indicators in kidney and liver tissues. Aquaporin-2 (AQP-2), B-cell lymphoma-2 (Bcl-2), cysteine aspartate-specific protease-3 (caspase-3), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), and streptavidin-biotin staining were used to assess immunoreactivity in PAX-induced liver and kidney injury models. Results: SIL treatment significantly reduced serum levels of alanine aminotransferase, aspartate aminotransferase, creatinine, urea, and C-reactive protein, indicating its effectiveness in treating PAX-induced liver and kidney injury. SIL treatment significantly reduced oxidative stress by increasing essential antioxidant parameters, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione. It also reduced malondialdehyde levels in liver and kidney tissues of SIL-PAX groups (p < 0.05). SIL administration reduced NF-κB, caspase-3, and IL-6 expression while increasing Bcl-2 and AQP2 levels in liver and kidney tissues of rats treated with SIL and PAX (p < 0.05). Conclusion: Our findings indicate the potential of SIL to alleviate PAX-induced liver and kidney damage in rats by reducing oxidative stress, inflammation, and apoptotic processes.


Asunto(s)
Apoptosis , Inflamación , Estrés Oxidativo , Paclitaxel , Ratas Wistar , Silimarina , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Masculino , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Silimarina/farmacología , Silimarina/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Hígado/efectos de los fármacos , Riñón/efectos de los fármacos , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología
2.
J Ethnopharmacol ; 331: 118282, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701935

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Sang Yu granule (SY), a traditional Chinese medicine prescription of Xijing Hospital, was developed based on the Guanyin powder in the classical prescription "Hong's Collection of Proven Prescriptions" and the new theory of modern Chinese medicine. It has been proved to have a certain therapeutic effect on drug-induced liver injury (DILI), but the specific mechanism of action is still unclear. AIM OF STUDY: Aim of the study was to explore the effect of SangYu granule on treating drug-induced liver injury induced by acetaminophen in mice. MATERIALS AND METHODS: The chemical composition of SY, serum, and liver tissue was analyzed using ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To assess hepatic function, measurements were taken using kits for total bile acids, as well as serum AST, ALT, and ALP activity. Concentrations of IL-1ß and TNF-α in serum were quantified using ELISA kits. Transcriptome Sequencing Analysis and 2bRAD-M microbial diversity analysis were employed to evaluate gene expression variance in liver tissue and fecal microbiota diversity among different groups, respectively. Western blotting was performed to observe differences in the activation levels of FXR, SHP, CYP7A1 and PPARα in the liver, and the levels of FXR and FGF-15 genes and proteins in the ileum of mice. Additionally, fecal microbiota transplantation (FMT) experiments were conducted to investigate the potential therapeutic effect of administering the intestinal microbial suspension from mice treated with SY on drug-induced liver injury. RESULTS: SY treatment exhibited significant hepatoprotective effects in mice, effectively ameliorating drug-induced liver injury while concurrently restoring intestinal microbial dysbiosis. Furthermore, SY administration demonstrated a reduction in the concentration of total bile acids, the expression of FXR and SHP proteins in the liver was up-regulated, CYP7A1 protein was down-regulated, and the expressions of FXR and FGF-15 proteins in the ileum were up-regulated. However, no notable impact on PPARα was observed. Furthermore, results from FMT experiments indicated that the administration of fecal suspensions derived from mice treated with SY did not yield any therapeutic benefits in the context of drug-induced liver injury. CONCLUSION: The aforementioned findings strongly suggest that SY exerts a pronounced ameliorative effect on drug-induced liver injury through its ability to modulate the expression of key proteins involved in bile acid secretion, thereby preserving hepato-enteric circulation homeostasis.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Hígado , PPAR alfa , Animales , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , PPAR alfa/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Factores de Crecimiento de Fibroblastos , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Ácidos y Sales Biliares/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
3.
Cell Biol Toxicol ; 40(1): 38, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789868

RESUMEN

Ensartinib, an approved ALK inhibitor, is used as a first-line therapy for advanced ALK-positive non-small cell lung cancer in China. However, the hepatotoxicity of ensartinib seriously limits its clinical application and the regulatory mechanism is still elusive. Here, through transcriptome analysis we found that transcriptional activation of TXNIP was the main cause of ensartinib-induced liver dysfunction. A high TXNIP level and abnormal TXNIP translocation severely impaired hepatic function via mitochondrial dysfunction and hepatocyte apoptosis, and TXNIP deficiency attenuated hepatocyte apoptosis under ensartinib treatment. The increase in TXNIP induced by ensartinib is related to AKT inhibition and is mediated by MondoA. Through screening potential TXNIP inhibitors, we found that the natural polyphenolic flavonoid rutin, unlike most reported TXNIP inhibitors can inhibit TXNIP by binding to TXNIP and partially promoting its proteasomal degradation. Further studies showed rutin can attenuate the hepatotoxicity of ensartinib without antagonizing its antitumor effects. Accordingly, we suggest that TXNIP is the key cause of ensartinib-induced hepatotoxicity and rutin is a potential clinically safe and feasible therapeutic strategy for TXNIP intervention.


Asunto(s)
Apoptosis , Proteínas Portadoras , Rutina , Rutina/farmacología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Humanos , Animales , Apoptosis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Masculino
4.
Toxicon ; 244: 107750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750940

RESUMEN

Malathion (MAL) is one of the highly toxic organophosphorus (OP) compounds that induces hepatotoxicity. Echinops. ritro leaves extract (ERLE) is traditionally used in the treatment of bacterial/fungal infections. This study's goal was to investigate the potential of extracts from ERLE against hepatotoxicity induced by MAL in male albino rats. Four equal groups of forty mature male albino rats were created: The rats in the first group used as a control. The second group of rats received ERLE orally. The third group received MAL. ERLE and MAL were administered to the fourth group of rats. Six-week treatment groups were conducted. Using lipid peroxidation indicators [malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST)], oxidative stress markers [catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx)], apoptotic markers [Bcl-2 & caspase-3] and tumor necrosis factor alpha (TNF-α). Rats treated with MAL underwent a significant increase on MDA, ALT, AST, caspase-3 and TNF-α marker with a significant decrease in antioxidant markers [CAT, SOD, GPx] and Bcl-2. Histologically, MAL-treated group's liver sections displayed damaged hepatocytes with collapsed portions, pyknotic nuclei, vacuolated cytoplasm, and congested central veins. Ultra structurally, rat livers treated with MAL showed dilated cisternae of endoplasmic reticulum, swollen mitochondria with disrupted cristae, nuclei with disrupted chromatin content, multiple lysosomes, multiple vacuolations and a disrupted blood sinusoid. With rats treated with ERLE, these alterations were essentially non-existent. It is possible to conclude that ERLE protects against MAL hepatotoxicity, and that this protection is related, at least in part, to its antioxidant activities.


Asunto(s)
Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas , Malatión , Estrés Oxidativo , Extractos Vegetales , Animales , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Ratas , Malatión/toxicidad , Inflamación/tratamiento farmacológico , Hígado/efectos de los fármacos , Hígado/patología , Antioxidantes/farmacología , Alanina Transaminasa/sangre , Peroxidación de Lípido/efectos de los fármacos , Aspartato Aminotransferasas/sangre , Asteraceae/química
5.
Nutrients ; 16(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794706

RESUMEN

Cadmium (Cd) is recognized as being linked to several liver diseases. Currently, due to the limited spectrum of drugs available for the treatment of Cd intoxication, developing and designing antidotes with superior detoxification capacity and revealing their underlying mechanisms remains a major challenge. Therefore, we developed the first next-generation probiotic E. coli 1917-pSK18a-MT that delivers metallothionein (MT) to overcome Cd-induced liver injury in C57BL/6 mice by utilizing bacterial surface display technology. The results demonstrate that E. coli 1917-pSK18a-MT could efficiently express MT without altering the growth and probiotic properties of the strain. Moreover, we found that E. coli 1917-pSK18a-MT ameliorated Cd contamination-induced hepatic steatosis, inflammatory cell infiltration, and liver fibrosis by decreasing the expression of aminotransferases along with inflammatory factors. Activation of the Nrf2-Keap1 signaling pathway also further illustrated the hepatoprotective effects of the engineered bacteria. Finally, we showed that E. coli 1917-pSK18a-MT improved the colonic barrier function impaired by Cd induction and ameliorated intestinal flora dysbiosis in Cd-poisoned mice by increasing the relative abundance of the Verrucomicrobiota. These data revealed that the combination of E. coli 1917 and MT both alleviated Cd-induced liver injury to a greater extent and restored the integrity of colonic epithelial tissues and bacterial dysbiosis.


Asunto(s)
Cadmio , Enfermedad Hepática Inducida por Sustancias y Drogas , Escherichia coli , Microbioma Gastrointestinal , Metalotioneína , Ratones Endogámicos C57BL , Probióticos , Animales , Probióticos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metalotioneína/metabolismo , Cadmio/toxicidad , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Disbiosis , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos
6.
BMC Complement Med Ther ; 24(1): 153, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581023

RESUMEN

BACKGROUND: Vortioxetine (VORTX) is a potent and selective type of selective serotonin reuptake inhibitor (SSRI) that is mainly prescribed for treating major depression along with mood disorders as the first drug of choice. Limited previous findings have indicated evidence of liver injury and hepatotoxicity associated with daily VORTX treatment. Rutin (RUT), which is known for its antioxidant properties, has demonstrated several beneficial health actions, including hepatoprotection. Therefore the current study aimed to evaluate and assess the ameliorative effect of RUT against the hepatotoxic actions of daily low and high-dose VORTX administration. METHODS: The experimental design included six groups of rats, each divided equally. Control, rats exposed to RUT (25 mg/kg), rats exposed to VORTX (28 mg/kg), rats exposed to VORTX (28 mg/kg) + RUT (25 mg/kg), rats exposed to VORTX (80 mg/kg), and rats exposed to VORTX (80 mg/kg) + RUT (25 mg/kg). After 30 days from the daily exposure period, assessments were conducted for serum liver enzyme activities, hepatotoxicity biomarkers, liver antioxidant endogenous enzymes, DNA fragmentation, and histopathological studies of liver tissue. RESULTS: Interestingly, the risk of liver damage and hepatotoxicity related to VORTX was attenuated by the daily co-administration of RUT. Significant improvements were observed among all detected liver functions, oxidative stress, and inflammatory biomarkers including aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), albumin, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione S-transferase (GST), total protein, acid phosphatase, N-Acetyl-/ß-glucosaminidase (ß-NAG), ß-Galactosidase (ß-Gal), alpha-fetoprotein (AFP), caspase 3, and cytochrom-C along with histopathological studies, compared to the control and sole RUT group. CONCLUSION: Thus, RUT can be considered a potential and effective complementary therapy in preventing hepatotoxicity and liver injury induced by the daily or prolonged administration of VORTX.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Animales , Antioxidantes/farmacología , Rutina/farmacología , Vortioxetina , Inflamación/tratamiento farmacológico , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Biomarcadores
7.
Biochem Biophys Res Commun ; 710: 149880, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581952

RESUMEN

Drug-induced liver injury (DILI) occurs frequently and can be life-threatening. Increasing researches suggest that acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury. Indole-3-carboxaldehyde (I3A) alleviates hepatic inflammation, fibrosis and atherosclerosis, suggesting a potential role in different disease development. However, the question of whether and how I3A protects against acetaminophen-induced liver injury remains unanswered. In this study, we demonstrated that I3A treatment effectively mitigates acetaminophen-induced liver injury. Serum alanine/aspartate aminotransferases (ALT/AST), liver malondialdehyde (MDA) activity, liver glutathione (GSH), and superoxide dismutase (SOD) levels confirmed the protective effect of I3A against APAP-induced liver injury. Liver histological examination provided further evidence of I3A-induced protection. Mechanistically, I3A reduced the expression of apoptosis-related factors and oxidative stress, alleviating disease symptoms. Finally, I3A treatment improved survival in mice receiving a lethal dose of APAP. In conclusion, our study demonstrates that I3A modulates hepatotoxicity and can be used as a potential therapeutic agent for DILI.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Indoles , Animales , Ratones , Acetaminofén/efectos adversos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Estrés Oxidativo , Hígado/metabolismo , Apoptosis , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Aspartato Aminotransferasas , Alanina Transaminasa
8.
Ecotoxicol Environ Saf ; 276: 116344, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636259

RESUMEN

Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 µg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.


Asunto(s)
Aflatoxina B1 , Enfermedad Hepática Inducida por Sustancias y Drogas , Polisacáridos , Salvia miltiorrhiza , Animales , Conejos , Polisacáridos/farmacología , Aflatoxina B1/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Salvia miltiorrhiza/química , Hígado/efectos de los fármacos , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Masculino , Alanina Transaminasa/sangre , Especies Reactivas de Oxígeno/metabolismo
9.
J Hazard Mater ; 471: 134319, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38657511

RESUMEN

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18ß-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18ß-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.


Asunto(s)
Autofagia , Enfermedad Hepática Inducida por Sustancias y Drogas , Ácido Glicirretínico , Tricotecenos , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , Animales , Tricotecenos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Autofagia/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ferritinas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Sustancias Protectoras/farmacología , Coactivadores de Receptor Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Ratones Endogámicos C57BL , Células Hep G2
10.
Pharm Dev Technol ; 29(4): 371-382, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613468

RESUMEN

Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.


Asunto(s)
Supervivencia Celular , Enfermedad Hepática Inducida por Sustancias y Drogas , Flavonoides , Liofilización , Solubilidad , Comprimidos , Animales , Flavonoides/administración & dosificación , Flavonoides/farmacología , Flavonoides/química , Supervivencia Celular/efectos de los fármacos , Humanos , Ratas , Células Hep G2 , Liofilización/métodos , Masculino , Administración Sublingual , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratas Wistar
11.
Toxicon ; 243: 107722, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38653393

RESUMEN

Flutamide is frequently used in the management of prostate cancer, hirsutism, and acne. It is a non-steroidal anti-androgenic drug and causes hepatotoxicity. The current study's objective is to evaluate sophorin's hepatoprotective effectiveness against flutamide-induced hepatotoxicity in Wistar rats. Sophorin is a citrus flavonoid glycoside, also known as rutin, which is a low molecular weight polyphenolic compound with natural antioxidant properties and reported to have promising hepatoprotective efficacy. In this study, sophorin was used at a dose of 100 mg/kg body weight in purified water via oral route for 4 week daily whereas, flutamide was used at a dose of 100 mg kg/b.wt for 4 weeks daily in 0.5% carboxy methyl cellulose (CMC) through the oral route for the induction of hepatotoxicity. Flutamide administration leads to enhanced reactive oxygen species (ROS) generation, an imbalance in redox homeostasis and peroxidation of lipid resulted in reduced natural antioxidant level in liver tissue. Our result demonstrated that sophorin significantly abrogate flutamide induced lipid peroxidation, protein carbonyl (PC), and also significantly increasesed in enzymatic activity/level of tissue natural antioxidant such as reduced glutathione(GSH), glutathione reductase(GR), catalase, and superoxide dismutase(SOD). Additionally, sophorin reduced the activity of cytochrome P450 3A1 in liver tissue which was elevated due to flutamide treatment. Furthermore, sophorin treatment significantly decreased the pro-inflammatory cytokines (TNF-α and IL-6) level. Immunohistochemical analysis for the expression of inflammatory proteins (iNOS and COX-2) in hepatic tissue was decreased after sophorin treatment against flutamide-induced hepatotoxicity. Moreover, sophorin suppressed the infiltration of mast cells in liver tissue which further showed anti-inflammatory potential of sophorin. Our histological investigation further demonstrated sophorin's hepatoprotective function by restoring the typical histology of the liver. Based on the aforementioned information, we are able to come to the conclusion that sophorin supplementation might benefit wistar rats with flutamide-induced hepatic damage by reducing oxidative stress and hepatocellular inflammation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Flutamida , Hígado , Ratas Wistar , Animales , Flutamida/farmacología , Ratas , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Masculino , Hígado/efectos de los fármacos , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antagonistas de Andrógenos/farmacología
12.
J Cancer Res Clin Oncol ; 150(4): 212, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662247

RESUMEN

BACKGROUND AND AIM: Morinda citrifolia fruit juice (noni) is an herbal remedy documented to have antioxidant properties. It has been suggested that prevention of carcinogen-DNA adduct formation and the antioxidant activity of NJ may contribute to the cancer preventive effect. In the present study, the antitumor activity of noni was investigated in the presence of cyclophosphamide (CYL) in vitro and in vivo. METHODS: In vitro breast cancer cells (MDA-MB-468) were used to measure the percentage of inhibition and the IC50. The in vivo antitumor activity of noni was studied by monitoring the mean survival time (MST), percentage increase in life span (%ILS), viable and non-viable cell count, tumor volume, body weight, and hematological and serum biochemical parameters in mice. Treatment with noni and CYL exhibited dose- and time-dependent cytotoxicity toward breast cancer cells. RESULTS: Individual treatment of noni and CYL exhibited dose- and time-dependent cytotoxicity on breast cancer cell lines, while in combination therapy of noni and CYL, noni enhances cytotoxic effect of CYL at 48 h than that at 24 h. Similar result was found in in vivo studies, the results of which revealed that alone treatment of CYL and noni suppressed tumor growth. However, combination treatment with CYL and noni presented better tumor inhibition than that of alone treatment of CYL and noni. On the contrary, CYL alone drastically attenuated hematological parameters, i.e., RBC, WBC, and Hb compared to normal and control groups, and this change was reversed and normalized by noni when given as combination therapy with CYL. Moreover, the levels of serum biochemical markers, i.e., AST, ALP, and ALT, were significantly increased in the control and CYL-treated groups than those in the normal group. In the combination treatment of noni and CYL, the above biochemical marker levels significantly decreased compared to CYL alone-treated group. CONCLUSIONS: The present study suggested that CYL treatment can cause serious myelotoxicity and hepatic injury in cancer patients. In conclusion, the combined use of noni with CYL potentially enhances the antitumor activity of CYL and suppresses myelotoxicity and hepatotoxicity induced by CYL in tumor-bearing mice.


Asunto(s)
Neoplasias de la Mama , Ciclofosfamida , Morinda , Animales , Ciclofosfamida/farmacología , Ciclofosfamida/efectos adversos , Ratones , Humanos , Femenino , Morinda/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Jugos de Frutas y Vegetales , Ensayos Antitumor por Modelo de Xenoinjerto , Sinergismo Farmacológico , Extractos Vegetales/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/efectos adversos , Ratones Endogámicos BALB C , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
13.
J Ethnopharmacol ; 330: 118196, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631488

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY: This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS: CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS: TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION: RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.


Asunto(s)
Autofagia , Enfermedad Hepática Inducida por Sustancias y Drogas , Cinamatos , Depsidos , Janus Quinasa 2 , Lisosomas , Ácido Rosmarínico , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Autofagia/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Cinamatos/farmacología , Depsidos/farmacología , Medicamentos Herbarios Chinos/farmacología , Janus Quinasa 2/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Endogámicos BALB C , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo
14.
Ecotoxicol Environ Saf ; 277: 116350, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653026

RESUMEN

Inorganic arsenic is a well-established environmental toxicant linked to acute liver injury, fibrosis, and cancer. While oxidative stress, pyroptosis, and ferroptosis are known contributors, the role of PTEN-induced kinase 1 (PINK1)-mediated mitophagy in arsenic-induced hepatic immunotoxicity remains underexplored. Our study revealed that acute arsenic exposure prompts differentiation of hepatic dendritic cells (DCs) and T helper (Th) 1, Th2, Th17, and regulatory T (Treg) cells, alongside increased transcription factors and cytokines. Inorganic arsenic triggered liver redox imbalance, leading to elevated alanine transaminase (ALT), hydrogen peroxide (H2O2), malondialdehyde (MDA), and activation of nuclear factor erythroid 2-related factor (Nrf2)/heme oxygenase-1 (HO-1) pathway. PINK1-mediated mitophagy was initiated, and its inhibition exacerbates H2O2 accumulation while promoting DCs/Th1/Th2/Treg differentiation in the liver of arsenic-exposed mice. Mitoquinone (MitoQ) pretreatment relieved arsenic-induced acute liver injury and immune imbalance by activating Nrf2/HO-1 and PINK1-mediated mitophagy. To our knowledge, this is the first report identifying PINK1-mediated mitophagy as a protective factor against inorganic arsenic-induced hepatic DCs/Th1/Th2 differentiation. This study has provided new insights on the immunotoxicity of inorganic arsenic and established a foundation for exploring preventive and therapeutic strategies targeting PINK1-mediated mitophagy in acute liver injury. Consequently, the application of mitochondrial antioxidant MitoQ may offer a promising treatment for the metalloid-induced acute liver injury.


Asunto(s)
Antioxidantes , Arsénico , Diferenciación Celular , Hígado , Mitofagia , Compuestos Organofosforados , Proteínas Quinasas , Animales , Mitofagia/efectos de los fármacos , Ratones , Hígado/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas Quinasas/metabolismo , Diferenciación Celular/efectos de los fármacos , Compuestos Organofosforados/toxicidad , Compuestos Organofosforados/farmacología , Arsénico/toxicidad , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Células Dendríticas/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Masculino , Linfocitos T Reguladores/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Estrés Oxidativo/efectos de los fármacos
15.
Toxicology ; 504: 153766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432408

RESUMEN

Blood transfusion-requiring diseases such as sickle cell anemia and thalassemia are characterized by an imbalance between iron intake and excretion, resulting in an iron overload (IOL) disorder. Hepatotoxicity is prevalent under the IOL disorder because of the associated hepatocellular redox and inflammatory perturbation. The current work was devoted to investigate the potential protection against the IOL-associated hepatotoxicity using chrysin, a naturally-occurring flavone. IOL model was created in male Wistar rats by intraperitoneal injection of 100 mg/kg elemental iron subdivided on five equal injections; one injection was applied every other day over ten days. Chrysin was administered in a daily dose of 50 mg/kg over the ten-day iron treatment period. On day eleven, blood and liver samples were collected and subjected to histopathological, biochemical, and molecular investigations. Chrysin suppressed the IOL-induced hepatocellular damage as revealed by decreased serum activity of the intracellular liver enzymes and improved liver histological picture. Oxidative damage biomarkers, and pro-inflammatory cytokines were significantly suppressed. Mechanistically, the levels of the redox and inflammation-controlling proteins SIRT1 and PPARγ were efficiently up-regulated. The liver iron load, NLRP3 inflammasome activation, and NF-κB acetylation and nuclear shift were significantly suppressed in the iron-intoxicated rats. Equally important, the level of the antioxidant protein Nrf2 and its target HO-1 were up-regulated. In addition, chrysin significantly ameliorated the IOL-induced apoptosis as indicated by reduction in caspase-3 activity and modulation of BAX and Bcl2 protein abundance. Together, these findings highlight the alleviating activity of chrysin against the IOL-associated hepatotoxicity and shed light on the role of SIRT1, NLRP3 inflammasome, and Nrf2 signaling as potential contributing molecular mechanisms.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Flavonoides , Inflamasomas , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Wistar , Transducción de Señal , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Masculino , Flavonoides/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Transducción de Señal/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ratas , Hierro/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/complicaciones
16.
Toxicol Appl Pharmacol ; 486: 116914, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522585

RESUMEN

Ferroptosis has been shown to be involved in carbon tetrachloride (CCl4)-induced acute liver injury (ALI). The mitochondrion-targeted antioxidant MitoQ can eliminate the production of mitochondrial reactive oxygen species (mtROS). This study investigated the role of MitoQ in CCl4-induced hepatocytic ferroptosis and ALI. MDA and 4HNE were elevated in CCl4-induced mice. In vitro, CCl4 exposure elevated the levels of oxidized lipids in HepG2 cells. Alterations in the mitochondrial ultrastructure of hepatocytes were observed in the livers of CCl4-evoked mice. Ferrostatin-1 (Fer-1) attenuated CCl4-induced hepatic lipid peroxidation, mitochondrial ultrastructure alterations and ALI. Mechanistically, acyl-CoA synthetase long-chain family member 4 (ACSL4) was upregulated in CCl4-exposed human hepatocytes and mouse livers. The ACSL4 inhibitor rosiglitazone alleviated CCl4-induced hepatic lipid peroxidation and ALI. ACSL4 knockdown inhibited oxidized lipids in CCl4-exposed human hepatocytes. Moreover, CCl4 exposure decreased the mitochondrial membrane potential and OXPHOS subunit levels and increased the mtROS level in HepG2 cells. Correspondingly, MitoQ pretreatment inhibited the upregulation of ACSL4 in CCl4-evoked mouse livers and HepG2 cells. MitoQ attenuated lipid peroxidation in vivo and in vitro after CCl4 exposure. Finally, MitoQ pretreatment alleviated CCl4-induced hepatocytic ferroptosis and ALI. These findings suggest that MitoQ protects against hepatocyte ferroptosis in CCl4-induced ALI via the mtROS-ACSL4 pathway.


Asunto(s)
Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Coenzima A Ligasas , Ferroptosis , Hepatocitos , Ratones Endogámicos C57BL , Compuestos Organofosforados , Especies Reactivas de Oxígeno , Regulación hacia Arriba , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Regulación hacia Arriba/efectos de los fármacos , Células Hep G2 , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Ferroptosis/efectos de los fármacos , Tetracloruro de Carbono/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Masculino , Compuestos Organofosforados/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos
17.
Basic Clin Pharmacol Toxicol ; 134(5): 737-749, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477401

RESUMEN

Cantharidin (CTD) is a widely used anticancer compound, but its clinical use is mainly limited due to hepatotoxicity. Ginsenoside Rb1 (GRb1) shows potential hepatoprotective effects. Nonetheless, the protective effect and underlying mechanism of GRb1 against CTD-induced hepatotoxicity in mice have not been investigated. This study aims to elucidate the effect and mechanism of GRb1 on CTD-induced hepatotoxicity using network pharmacology and in vivo experiments. Network pharmacology studies have shown that 263 targets were the main mechanisms by which GRb1 alleviates CTD-induced hepatotoxicity. KEGG enrichment analysis revealed that 75 hub genes were mainly enriched in TNF, IL-17 and apoptosis signalling pathways. Molecular docking analysis showed that GRb1 exhibited high affinity with Akt1, Tnf, Il6, Bcl2 and Caspase3. In addition, results from animal studies demonstrated that GRb1 could ameliorate CTD-induced hepatotoxicity by inhibiting protein expression of Caspase-3, Caspase-8, Bcl-2/Bax, GRP78, ATF6, ATF4, CHOP, IRE1α and PERK. This research revealed the mechanism of GRb1 against CTD-induced hepatotoxicity by inhibiting apoptosis and endoplasmic reticulum stress (ERS) and it may provide a scientific rationale for the potential use of GRb1 in the treatment of hepatotoxicity induced by CTD.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Ginsenósidos , Ratones , Animales , Cantaridina/toxicidad , Endorribonucleasas , Simulación del Acoplamiento Molecular , Farmacología en Red , Proteínas Serina-Treonina Quinasas , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
18.
Arch Toxicol ; 98(6): 1843-1858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551724

RESUMEN

Acetaminophen (APAP)-induced hepatotoxicity is comprised of an injury and recovery phase. While pharmacological interventions, such as N-acetylcysteine (NAC) and 4-methylpyrazole (4-MP), prevent injury there are no therapeutics that promote recovery. JNJ-26366821 (TPOm) is a novel thrombopoietin mimetic peptide with no sequence homology to endogenous thrombopoietin (TPO). Endogenous thrombopoietin is produced by hepatocytes and the TPO receptor is present on liver sinusoidal endothelial cells in addition to megakaryocytes and platelets, and we hypothesize that TPOm activity at the TPO receptor in the liver provides a beneficial effect following liver injury. Therefore, we evaluated the extent to which TPOm, NAC or 4-MP can provide a protective and regenerative effect in the liver when administered 2 h after an APAP overdose of 300 mg/kg in fasted male C57BL/6J mice. TPOm did not affect protein adducts, oxidant stress, DNA fragmentation and hepatic necrosis up to 12 h after APAP. In contrast, TPOm treatment was beneficial at 24 h, i.e., all injury parameters were reduced by 42-48%. Importantly, TPOm enhanced proliferation by 100% as indicated by PCNA-positive hepatocytes around the area of necrosis. When TPOm treatment was delayed by 6 h, there was no effect on the injury, but a proliferative effect was still evident. In contrast, 4MP and NAC treated at 2 h after APAP significantly attenuated all injury parameters at 24 h but failed to enhance hepatocyte proliferation. Thus, TPOm arrests the progression of liver injury by 24 h after APAP and accelerates the onset of the proliferative response which is essential for liver recovery.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Regeneración Hepática , Hígado , Ratones Endogámicos C57BL , Trombopoyetina , Animales , Acetaminofén/toxicidad , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Trombopoyetina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Regeneración Hepática/efectos de los fármacos , Ratones , Acetilcisteína/farmacología , Pirazoles/farmacología , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Receptores de Trombopoyetina/metabolismo , Proliferación Celular/efectos de los fármacos
19.
Phytomedicine ; 128: 155550, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522313

RESUMEN

BACKGROUND: The pathogenesis of acute liver injury (ALI) has been a pressing issue in the medical scientific community. We previously found that 5-O-methylvisammioside (MeV) from Saposhnikovia divaricata (Turcz.) Schischk has excellent anti-inflammatory properties. However, the mechanism by which MeV protects against ALI still needs to be deeply investigated. PURPOSE: In the present study, we established an acetaminophen (APAP) -induced ALI mouse model and pre-protected the mice with MeV. METHODS & RESULTS: Our findings indicate that MeV (5 and 10 mg/kg) lowered the blood levels of alanine aminotransferase and aspartate aminotransferase and reduced the infiltration of inflammatory cells in the liver. MeV initially showed an inhibitory effect on ALI. We then analyzed the molecular mechanisms underlying the effects of MeV by transcriptomic and metabolomic analyzes. Through transcriptomic analysis, we identified 4675 differentially expressed genes between the APAP+MeV group and the APAP-induced ALI group, which were mainly enriched in the MAPK pathway, the TNF pathway, and the NF-κB pathway. Through metabolomic analysis, we found that 249 metabolites in the liver were differentially regulated between the APAP+MeV group and the APAP- induced ALI group, which were mainly enriched in the arachidonic acid pathway. The mRNA expression levels of key genes (encoding TNF-α, p38, AP-1, RelB, IL-1ß, and Ptges), as determined by RT-PCR analysis, were consistent with the RNA-seq data. The ELISA results indicate that MeV markedly decreased the serum levels of TNF-α and IL-1ß in mice. Finally, the key proteins in the NF-κB and MAPK pathways were examined using immunoblotting. The results showed that MeV decreased IκB-α phosphorylation and inhibited the nuclear translocation of NF-κB. In addition, MeV reduced the hepatic inflammatory burst mainly by inhibiting the phosphorylation of p38 and JNK in the MAPK pathway. CONCLUSION: The present study demonstrated (i) that MeV could ameliorate APAP-induced ALI by inhibiting arachidonic acid metabolism and the TNF, MAPK, and NF-κB pathways, and (ii) that MeV is a promising drug candidate for the prevention of ALI.


Asunto(s)
Ácido Araquidónico , Enfermedad Hepática Inducida por Sustancias y Drogas , FN-kappa B , Factor de Necrosis Tumoral alfa , Animales , FN-kappa B/metabolismo , Masculino , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Araquidónico/metabolismo , Acetaminofén , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Multiómica
20.
Toxicology ; 503: 153757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364893

RESUMEN

Doxorubicin (DOX) is a widely used antitumor agent; however, its clinical application is limited by dose-related organ damage. Because organic cation/carnitine transporters (OCTN1 and OCTN2), which are critical for DOX uptake, are highly expressed in hepatocytes, we aimed to elucidate the role of these transporters in hepatic DOX uptake. The results indicated that inhibitors and RNA interference both significantly reduced DOX accumulation in HepG2 and HepaRG cells, suggesting that OCTN1/2 contribute substantially to DOX uptake by hepatocytes. To determine whether metformin (MET, an inhibitor of OCTN1 and OCTN2) ameliorates DOX-induced hepatotoxicity, we conducted in vitro and in vivo studies. MET (1-100 µM) inhibited DOX (500 nM) accumulation and cytotoxicity in vitro in a concentration-dependent manner. Furthermore, intravenous MET administration at 250 or 500 mg/kg or by gavage at 50, 100, or 200 mg/kg reduced DOX (8 mg/kg) accumulation in a dose-dependent manner in the mouse liver and attenuated the release of alanine aminotransferase, aspartate aminotransferase, and carboxylesterase 1. Additionally, MET reduced the distribution of DOX in the heart, liver, and kidney and enhanced the urinary elimination of DOX; however, it did not increase the nephric toxicity of DOX. In conclusion, our study demonstrated that MET alleviates DOX hepatotoxicity by inhibiting OCTN1- and OCTN2-mediated DOX uptake in vitro (mouse hepatocytes and HepaRG or HepG2 cells) and in mice.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Metformina , Simportadores , Ratones , Animales , Proteínas de Transporte de Catión Orgánico/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos , Metformina/farmacología , Doxorrubicina/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA