Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.211
Filtrar
1.
Nat Commun ; 15(1): 5540, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956042

RESUMEN

Iron plays a fundamental role in multiple brain disorders. However, the genetic underpinnings of brain iron and its implications for these disorders are still lacking. Here, we conduct an exome-wide association analysis of brain iron, measured by quantitative susceptibility mapping technique, across 26 brain regions among 26,789 UK Biobank participants. We find 36 genes linked to brain iron, with 29 not being previously reported, and 16 of them can be replicated in an independent dataset with 3,039 subjects. Many of these genes are involved in iron transport and homeostasis, such as FTH1 and MLX. Several genes, while not previously connected to brain iron, are associated with iron-related brain disorders like Parkinson's (STAB1, KCNA10), Alzheimer's (SHANK1), and depression (GFAP). Mendelian randomization analysis reveals six causal relationships from regional brain iron to brain disorders, such as from the hippocampus to depression and from the substantia nigra to Parkinson's. These insights advance our understanding of the genetic architecture of brain iron and offer potential therapeutic targets for brain disorders.


Asunto(s)
Encéfalo , Secuenciación del Exoma , Hierro , Humanos , Hierro/metabolismo , Encéfalo/metabolismo , Masculino , Femenino , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Persona de Mediana Edad , Predisposición Genética a la Enfermedad/genética , Anciano , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Adulto , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo
2.
Parkinsonism Relat Disord ; 124: 107024, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38843617

RESUMEN

INTRODUCTION: Among gene mutations and variants linked to an increased risk of PD, mutations of leucine-rich repeat kinase 2 gene (LRRK2) are among the most frequently associated with early- and late-onset PD. Clinical and neuropathological characteristics of idiopathic-PD (iPD) and LRRK2-PD are similar, and these similarities suggest that the pathomechanisms between these two conditions are shared. LRRK2 mutations determine a gain-of-function and yield higher levels of lrrk2 across body tissues, including brain. On another side, recent animal studies supported the potential use of low dose radiation (LDR) to modify the pathomechanisms of diseases such as Alzheimer's disease (AD). METHODS: We assessed if a single total-body LDR (sLDR) exposure in normal swine could alter expression levels of the following PD-associated molecules: alpha-synuclein (α-syn), phosphorylated-α-synuclein (pα-syn), parkin, tyrosine hydroxylase (th), lrrk2, phosphorylated-lrrk2 (pS935-lrrk2), and some LRRK2 substrates (Rab8a, Rab12) across different brain regions. These proteins were measured in frontal cortex, hippocampus, striatum, thalamus/hypothalamus, and cerebellum of 9 radiated (RAD) vs. 6 sham (SH) swine after 28 days from a sLDR of 1.79Gy exposure. RESULTS: Western Blot analyses showed lowered lrrk2 levels in the striatum of RAD vs. SH swine (p < 0.05), with no differences across the remaining brain regions. None of the other protein levels differed between RAD and SH swine in any examined brain regions. No lrrk2 and p-lrrk2 (S935) levels differed in the lungs of RAD vs. SH swine. CONCLUSIONS: These findings show a specific striatal lrrk2 lowering effect due to LDR and support the potential use of LDR to interfere with the pathomechanisms of PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Porcinos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de la radiación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Masculino , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Femenino
3.
Sci Rep ; 14(1): 14670, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918550

RESUMEN

The objective of this study was to investigate the association between a Parkinson's disease (PD)-specific polygenic score (PGS) and protective lifestyle factors on age at onset (AAO) in PD. We included data from 4367 patients with idiopathic PD, 159 patients with GBA1-PD, and 3090 healthy controls of European ancestry from AMP-PD, PPMI, and Fox Insight cohorts. The association between PGS and lifestyle factors on AAO was assessed with linear and Cox proportional hazards models. The PGS showed a negative association with AAO (ß = - 1.07, p = 6 × 10-7) in patients with idiopathic PD. The use of one, two, or three of the protective lifestyle factors showed a reduction in the hazard ratio by 21% (p = 0.0001), 44% (p < 2 × 10-16), and 55% (p < 2 × 10-16), compared to no use. An additive effect of aspirin (ß = 7.62, p = 9 × 10-7) and PGS (ß = - 1.58, p = 0.0149) was found for AAO without an interaction (p = 0.9993) in the linear regressions, and similar effects were seen for tobacco. In contrast, no association between aspirin intake and AAO was found in GBA1-PD (p > 0.05). In our cohort, coffee, tobacco, aspirin, and PGS are independent predictors of PD AAO. Additionally, lifestyle factors seem to have a greater influence on AAO than common genetic risk variants with aspirin presenting the largest effect.


Asunto(s)
Edad de Inicio , Estilo de Vida , Herencia Multifactorial , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Predisposición Genética a la Enfermedad , Modelos de Riesgos Proporcionales , Glucosilceramidasa/genética , Estudios de Casos y Controles , Factores de Riesgo , Aspirina/uso terapéutico
4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928416

RESUMEN

A homozygous mutation of the DNAJC6 gene causes autosomal recessive familial type 19 of Parkinson's disease (PARK19). To test the hypothesis that PARK19 DNAJC6 mutations induce the neurodegeneration of dopaminergic cells by reducing the protein expression of functional DNAJC6 and causing DNAJC6 paucity, an in vitro PARK19 model was constructed by using shRNA-mediated gene silencing of endogenous DANJC6 in differentiated human SH-SY5Y dopaminergic neurons. shRNA targeting DNAJC6 induced the neurodegeneration of dopaminergic cells. DNAJC6 paucity reduced the level of cytosolic clathrin heavy chain and the number of lysosomes in dopaminergic neurons. A DNAJC6 paucity-induced reduction in the lysosomal number downregulated the protein level of lysosomal protease cathepsin D and impaired macroautophagy, resulting in the upregulation of pathologic α-synuclein or phospho-α-synucleinSer129 in the endoplasmic reticulum (ER) and mitochondria. The expression of α-synuclein shRNA or cathepsin D blocked the DNAJC6 deficiency-evoked degeneration of dopaminergic cells. An increase in ER α-synuclein or phospho-α-synucleinSer129 caused by DNAJC6 paucity activated ER stress, the unfolded protein response and ER stress-triggered apoptotic signaling. The lack of DNAJC6-induced upregulation of mitochondrial α-synuclein depolarized the mitochondrial membrane potential and elevated the mitochondrial level of superoxide. The DNAJC6 paucity-evoked ER stress-related apoptotic cascade, mitochondrial malfunction and oxidative stress induced the degeneration of dopaminergic neurons via activating mitochondrial pro-apoptotic signaling. In contrast with the neuroprotective function of WT DNAJC6, the PARK19 DNAJC6 mutants (Q789X or R927G) failed to attenuate the tunicamycin- or rotenone-induced upregulation of pathologic α-synuclein and stimulation of apoptotic signaling. Our data suggest that PARK19 mutation-induced DNAJC6 paucity causes the degeneration of dopaminergic neurons via downregulating protease cathepsin D and upregulating neurotoxic α-synuclein. Our results also indicate that PARK19 mutation (Q789X or R927G) impairs the DNAJC6-mediated neuroprotective function.


Asunto(s)
Catepsina D , Neuronas Dopaminérgicas , Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSP40 , alfa-Sinucleína , Catepsina D/metabolismo , Catepsina D/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Regulación hacia Arriba , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Mitocondrias/metabolismo , Lisosomas/metabolismo , Regulación hacia Abajo , Apoptosis/genética , Línea Celular Tumoral
5.
Ageing Res Rev ; 98: 102340, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38759892

RESUMEN

Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson , Plaguicidas , Animales , Plaguicidas/toxicidad , Plaguicidas/efectos adversos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/etiología , Humanos , Drosophila , Estrés Oxidativo/efectos de los fármacos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Roedores
6.
Genes Genomics ; 46(7): 817-829, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776049

RESUMEN

BACKGROUND: Eukaryotic elongation factor 1A1 (eEF1A1) is an RNA-binding protein that is associated with PARK2 activity in cells, suggesting a possible role in Parkinson's disease (PD). OBJECTIVE: To clear whether eEF1A1 plays a role in PD through transcriptional or posttranscriptional regulation. METHODS: The GSE68719 dataset was downloaded from the GEO database, and the RNA-seq data of all brain tissue autopsies were obtained from 29 PD patients and 44 neurologically normal control subjects. To inhibit eEF1A1 from being expressed in U251 cells, siRNA was transfected into those cells, and RNA-seq high-throughput sequencing was used to determine the differentially expressed genes (DEGs) and differentially alternative splicing events (ASEs) resulting from eEF1A1 knockdown. RESULTS: eEF1A1 was significantly overexpressed in PD brain tissue in the BA9 area. GO and KEGG enrichment analyses revealed that eEF1A1 knockdown significantly upregulated the expression of the genes CXCL10, NGF, PTX3, IL6, ST6GALNAC3, NUPR1, TNFRSF21, and CXCL2 and upregulated the alternative splicing of the genes ACOT7, DDX10, SHMT2, MYEF2, and NDUFAF5. These genes were enriched in pathways related to PD pathogenesis, such as apoptosis, inflammatory response, and mitochondrial dysfunction. CONCLUSION: The results suggesting that eEF1A1 involved in the development of PD by regulating the differential expression and alternative splicing of genes, providing a theoretical basis for subsequent research.


Asunto(s)
Empalme Alternativo , Enfermedad de Parkinson , Factor 1 de Elongación Peptídica , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Factor 1 de Elongación Peptídica/genética , Empalme Alternativo/genética , Línea Celular Tumoral
7.
Aging (Albany NY) ; 16(10): 8732-8746, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38775730

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA (miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. METHODS: We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow cytometry. RESULTS: Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, ROCK2 was identified as the direct target of miR-101a-3p. CONCLUSION: MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 expression, suggesting that miR-101a-3p is a promising therapeutic target for PD.


Asunto(s)
Modelos Animales de Enfermedad , MicroARNs , Quinasas Asociadas a rho , Animales , MicroARNs/metabolismo , MicroARNs/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Ratones , Masculino , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Línea Celular Tumoral , Apoptosis/genética , 1-Metil-4-fenilpiridinio/toxicidad
8.
J Hazard Mater ; 473: 134691, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788584

RESUMEN

Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.


Asunto(s)
Adenosina , Neuronas Dopaminérgicas , Ferroptosis , Ratones Endogámicos C57BL , Nanopartículas , Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Ferroptosis/efectos de los fármacos , Adenosina/análogos & derivados , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Nanopartículas/toxicidad , Nanopartículas/química , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , ARN , Metilación de ARN
9.
Science ; 384(6701): 1220-1227, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38753766

RESUMEN

Developing vehicles that efficiently deliver genes throughout the human central nervous system (CNS) will broaden the range of treatable genetic diseases. We engineered an adeno-associated virus (AAV) capsid, BI-hTFR1, that binds human transferrin receptor (TfR1), a protein expressed on the blood-brain barrier. BI-hTFR1 was actively transported across human brain endothelial cells and, relative to AAV9, provided 40 to 50 times greater reporter expression in the CNS of human TFRC knockin mice. The enhanced tropism was CNS-specific and absent in wild-type mice. When used to deliver GBA1, mutations of which cause Gaucher disease and are linked to Parkinson's disease, BI-hTFR1 substantially increased brain and cerebrospinal fluid glucocerebrosidase activity compared with AAV9. These findings establish BI-hTFR1 as a potential vector for human CNS gene therapy.


Asunto(s)
Antígenos CD , Encéfalo , Cápside , Técnicas de Transferencia de Gen , Vectores Genéticos , Glucosilceramidasa , Receptores de Transferrina , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Antígenos CD/genética , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Dependovirus , Células Endoteliales/metabolismo , Técnicas de Sustitución del Gen , Terapia Genética , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Glucosilceramidasa/genética , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia
10.
J Parkinsons Dis ; 14(4): 737-746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820021

RESUMEN

Background: The penetrance of common genetic risk variants for Parkinson's disease (PD) is low. Pesticide exposure increases PD risk, but how exposure affects penetrance is not well understood. Objective: To determine the relationship between occupational pesticide exposure and PD in people with LRRK2 and GBA risk variants. Methods: Participants of the Parkinson's Progression Markers Initiative (PPMI) with a LRRK2-G2019 S or GBA risk variant provided information about occupational pesticide exposure. We compared exposure in carriers with and without PD. Among carriers with PD, we used Cox proportional hazard models to compare time-to impairment in balance, cognition, and activities of daily living (ADLs) between participants with and without prior occupational pesticide exposure. Results: 378 participants with a risk variant provided exposure information; 176 with LRRK2-G2019 S (54 with and 122 without PD) and 202 with GBA variants (47 with and 155 without PD). Twenty-six participants reported pesticide exposure. People with a GBA variant and occupational pesticide exposure had much higher odds of PD (aOR: 5.4, 95% CI 1.7-18.5, p < 0.01). People with a LRRK2 variant and a history of occupational pesticide exposure had non-significantly elevated odds of PD (aOR 1.3, 95% CI 0.4-4.6, p = 0.7). Among those with PD, pesticide exposure was associated with a higher risk of balance problems and cognitive impairment in LRRK2-PD and functional impairment in GBA-PD, although associations were not statistically significant. Conclusions: Occupational pesticide exposure may increase penetrance of GBA-PD and may be associated with faster symptom progression. Further studies in larger cohorts are necessary.


Asunto(s)
Glucosilceramidasa , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Exposición Profesional , Enfermedad de Parkinson , Plaguicidas , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Femenino , Enfermedad de Parkinson/genética , Masculino , Glucosilceramidasa/genética , Exposición Profesional/efectos adversos , Plaguicidas/efectos adversos , Anciano , Persona de Mediana Edad , Penetrancia , Actividades Cotidianas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/inducido químicamente
11.
Neurobiol Dis ; 197: 106539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789058

RESUMEN

BACKGROUND: Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. METHODS: We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). FINDINGS: In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM âˆ¼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. INTERPRETATION: Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.


Asunto(s)
Demencia , Estudio de Asociación del Genoma Completo , Sustancia Gris , Hierro , Imagen por Resonancia Magnética , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/diagnóstico por imagen , Masculino , Demencia/genética , Demencia/patología , Demencia/diagnóstico por imagen , Femenino , Hierro/metabolismo , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Reino Unido/epidemiología , Anciano , Persona de Mediana Edad , Estudios de Cohortes , Bancos de Muestras Biológicas , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Biobanco del Reino Unido
12.
Nutrients ; 16(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794754

RESUMEN

Alcohol consumption significantly impacts disease burden and has been linked to various diseases in observational studies. However, comprehensive meta-analyses using Mendelian randomization (MR) to examine drinking patterns are limited. We aimed to evaluate the health risks of alcohol use by integrating findings from MR studies. A thorough search was conducted for MR studies focused on alcohol exposure. We utilized two sets of instrumental variables-alcohol consumption and problematic alcohol use-and summary statistics from the FinnGen consortium R9 release to perform de novo MR analyses. Our meta-analysis encompassed 64 published and 151 de novo MR analyses across 76 distinct primary outcomes. Results show that a genetic predisposition to alcohol consumption, independent of smoking, significantly correlates with a decreased risk of Parkinson's disease, prostate hyperplasia, and rheumatoid arthritis. It was also associated with an increased risk of chronic pancreatitis, colorectal cancer, and head and neck cancers. Additionally, a genetic predisposition to problematic alcohol use is strongly associated with increased risks of alcoholic liver disease, cirrhosis, both acute and chronic pancreatitis, and pneumonia. Evidence from our MR study supports the notion that alcohol consumption and problematic alcohol use are causally associated with a range of diseases, predominantly by increasing the risk.


Asunto(s)
Consumo de Bebidas Alcohólicas , Predisposición Genética a la Enfermedad , Análisis de la Aleatorización Mendeliana , Humanos , Masculino , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Artritis Reumatoide/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/epidemiología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Factores de Riesgo , Femenino
13.
Cell Mol Life Sci ; 81(1): 232, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780644

RESUMEN

Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.


Asunto(s)
Calgranulina A , Calgranulina B , Ratones Transgénicos , Enfermedad de Parkinson , Ubiquitina Tiolesterasa , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/deficiencia , Humanos , Ratones , Femenino , Masculino , Calgranulina B/metabolismo , Calgranulina B/genética , Calgranulina A/metabolismo , Calgranulina A/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
14.
Stem Cells Dev ; 33(11-12): 306-320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753688

RESUMEN

Lower population of dopaminergic (DA) neurons is known to increase susceptibility to Parkinson's disease (PD), and our earlier study showed a lower yield of DA neurons in Leucine-Rich Repeat Kinase Isoleucine 1371 Valine (LRRK2-I1371V) mutation-carrying PD patient-derived induced Pluripotent Stem Cells (iPSCs). Although the role of Sonic Hedgehog (SHH) in DA neurogenesis of floor plate cells (FPCs) is known, the effect of LRRK2 mutations on SHH responsiveness of FPCs impacting DA neuronal yield has not been studied. We investigated SHH responsiveness of FPCs derived from LRRK2-I1371V PD patient iPSCs with regard to the expression of SHH receptors Patched1 (Ptch1) and Smoothened (Smo), in conjunction with nuclear Gli1 (glioma-associated oncogene 1) expression, intracellular Ca2+ rise, and cytosolic cyclic adenosine monophosphate (cAMP) levels upon SHH induction. In addition, we examined the mechanistic link with LRRK2-I1371V gain-of-function by assessing membrane fluidity and Rab8A and Rab10 phosphorylation in SH-SY5Y cells and healthy control (HC) FPCs overexpressing LRRK2-I1371V as well as FPCs. Although total expression of Ptch1 and Smo was comparable, receptor expression on cell surface was significantly lower in LRRK2-I1371V FPCs than in HC FPCs, with distinctly lower nuclear expression of the downstream transcription factor Gli1. HC-FPCs transfected with LRRK2-I1371V exhibited a similarly reduced cell surface expression of Ptch1 and Smo. Intracellular Ca2+ response was significantly lower with corresponding elevated cAMP levels in LRRK2-I1371V FPCs compared with HC FPCs upon SHH stimulation. The LRRK2-I1371V mutant FPCs and LRRK2-I1371V-transfected SH-SY5Y and HC FPCs too exhibited higher autophosphorylation of phospho LRRK2 (pLRRK2) serine1292 and serine935, as well as substrate phosphorylation of Rab8A and Rab10. Concurrent increase in membrane fluidity, accompanied by a decrease in membrane cholesterol, and lower expression of lipid raft marker caveolin 1 were also observed in them. These findings suggest that impaired SHH responsiveness of LRRK2-I1371V PD FPCs indeed leads to lower yield of DA neurons during ontogeny. Reduced cell surface expression of SHH receptors is influenced by alteration in membrane fluidity owing to the increased substrate phosphorylation of Rab8A and reduced membrane protein trafficking due to pRab10, both results of the LRRK2-I1371V mutation.


Asunto(s)
Neuronas Dopaminérgicas , Proteínas Hedgehog , Células Madre Pluripotentes Inducidas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Receptor Patched-1 , Proteína con Dedos de Zinc GLI1 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neuronas Dopaminérgicas/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , AMP Cíclico/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Mutación/genética , Calcio/metabolismo , Diferenciación Celular/genética , Transducción de Señal/genética
15.
Psychogeriatrics ; 24(4): 752-764, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664198

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a prevailing neurodegenerative disorder increasingly affecting the elderly population. The involvement of microRNAs (miRNAs) in PD has been confirmed. We sought to explore the molecular mechanism of miR-20a-5p in PD. METHODS: Lipopolysaccharide (LPS)-induced BV2 cell model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP-HCl)-induced PD mouse model were established. miR-20a-5p, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-ß1, and IL-10 expression in BV2 cells was examined by reverse transcription - quantitative polymerase chain reaction. Cell viability was assessed by MTT assay. The apoptotic rate and levels of Bcl-2, Bax, cleaved caspase-3, and signal transducer and activator of transmission (STAT)3 were examined by flow cytometry and Western blot. Bioinformatics software predicted the potential binding sites of miR-20a-5p and STAT3. Dual-luciferase experiment verified the binding relationship. Iba1-positive and tyrosine hydroxylase (TH)-positive cell numbers in substantia nigra pars compacta were detected by immunohistochemistry. The effect of miR-20a-5p on motor function in MPTP-induced PD mice was detected by Rota-rod test, Pole test, Traction test and Beam-crossing task. RESULTS: miR-20a-5p was under-expressed in LPS-induced BV2 cells. Overexpression of miR-20a-5p increased the viability of LPS-induced BV2 cells and reduced apoptosis rates. Moreover, overexpression of miR-20a-5p reduced cleaved caspase-3, Bax, iNOS, IL-6, and TNF-α and increased Bcl-2 and TGF-ß1, and IL-10. miR-20a-5p targeted STAT3. STAT3 overexpression partially reversed miR-20a-5p overexpression-mediated effects on LPS-induced BV2 cell viability, apoptosis, and inflammatory responses. miR-20a-5p overexpression inhibited MPTP-induced STAT3 and α-synuclein levels, microglia activation, and inflammatory response, and reduced the loss of TH-positive cells in mice. miR-20a-5p overexpression ameliorated MPTP-induced dyskinesia in PD model mice. CONCLUSION: miR-20a-5p alleviates neuronal damage and suppresses inflammation by targeting STAT3 in PD.


Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Lipopolisacáridos/farmacología , Inflamación/patología , Inflamación/genética , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Neuronas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Ratones Endogámicos C57BL , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Sustancia Negra/patología , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos
16.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566100

RESUMEN

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Asunto(s)
Interferón Tipo I , Neuroblastoma , Enfermedad de Parkinson , Ratones , Animales , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedades Neuroinflamatorias , Células Endoteliales/metabolismo , FN-kappa B/metabolismo , Análisis de la Célula Individual , Ratones Endogámicos C57BL
17.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574977

RESUMEN

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Asunto(s)
Neuronas Dopaminérgicas , Ferroptosis , Mitofagia , Enfermedad de Parkinson , ATPasa Intercambiadora de Sodio-Potasio , Animales , Mitofagia/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Masculino , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Haploinsuficiencia , Ratones Noqueados
18.
Artículo en Chino | MEDLINE | ID: mdl-38677987

RESUMEN

Objective: To analyze the differential genes and related signaling pathways of microglia subpopulations in Parkinson's disease (PD) -like mouse brains induced by paraquat (PQ) based on single-cell RNA sequencing, and provide clues to elucidate the mechanism of PQ-induced PD-like changes in the brain of animals. Methods: In September 2021, six male 6-week-old C57BL/6 mice were randomly divided into control group and experimental group (three mice in each group) . The mice were injected with saline, 10.0 mg/kg PQ intraperitoneally, once every three days, and 10 consecutive injections were used for modeling. After infection, the brains of mice were taken and 10×Genomics single-cell RNA sequencing was performed. Microglia subpopulations were screened based on gene expression characteristics, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The differential genes of microglia subpopulations between the experimental group and control group were further screened, and functional enrichment analysis was performed using bioinformatics tools. Mouse microglia (BV2 cells) were treated with 0, 60, 90 µmol/L PQ solution, respectively. And real-time fluorescence quantitative PCR experiments were conducted to validate the expressions of differential genes hexokinase 2 (Hk2) , ATPase H+ Transporting V0 Subunit B (Atp6v0b) and Neuregulin 1 (Nrg1) . Results: Cluster 7 and Cluster 20 were identified as microglia subpopulations based on the signature genes inositol polyphosphate-5-phosphatase d, Inpp5d (Inpp5d) and transforming growth factor beta receptor 1 (Tgfbr1) , and they reflected the microglia-activated M2 phenotype. The bioinformatics analysis showed that the characteristic genes of identified microglia subpopulations were enriched in endocytosis. In terms of molecular function, it mainly enriched in transmembrane receptor protein kinase activity and cytokine binding. The up-regulated genes of Cluster 7 were mainly enriched in lysosomal pathway, endocytosis pathway, and down-regulated genes were mainly enriched in neurodegenerative disease and other signaling pathways. The up-regulated genes of Cluster 20 were mainly enriched in signaling pathways related to PD, and down-regulated genes were mainly enriched in cyclic adenosine 3', 5'-monophosphate (cAMP) signaling pathways, neurological development, synaptic function and other signaling pathways. The results of real-time fluorescence quantitative PCR showed that the expressions of Hk2 mRNA and Atp6v0b mRNA increased and the expression of Nrg1 mRNA decreased in the 90 µmol/L PQ-treated BV2 cells compared with the 0 µmol/L, and the differences were statistically significant (P<0.05) . Conclusion: Microglia are activated in the PQ-induced PD-like mouse model and polarized toward the M2 phenotype. And their functions are associated with lysosomal (endocytosis) , synaptic functions and the regulation of PD-related pathways.


Asunto(s)
Encéfalo , Ratones Endogámicos C57BL , Microglía , Paraquat , Animales , Paraquat/toxicidad , Ratones , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Perfilación de la Expresión Génica
19.
J Integr Neurosci ; 23(4): 78, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682222

RESUMEN

BACKGROUND: Neurodegenerative diseases are a group of unexplained disorders of the central nervous system, and studies have shown that a large number of genetic and environmental factors are associated with these diseases. Since these diseases show significant gender differences in epidemiology, sex hormones are thought to be strongly associated with these diseases. In this study, we used Mendelian randomization to explore the causal relationship between sex hormones and the risk of developing neurodegenerative diseases. METHODS: We obtained genetic instrumental variables for sex hormones (sex hormone-binding globulin [SHBG], estradiol levels [EL], and bioavailable testosterone [BT]) separately through the Integrative Epidemiology Unit (IEU) database (https://gwas.mrcieu.ac.uk/). We analyzed the causal relationship of each with the risk of developing neurodegenerative diseases (Amyotrophic Lateral Sclerosis [ALS], Parkinson's disease [PD], and Alzheimer's disease [AD]) using inverse variance weighted (IVW) in Mendelian randomization. Data were then analyzed for sensitivity. RESULTS: BT was negatively associated with the risk of developing ALS (odds ratio [OR] = 0.794; 95% confidence interval [95% CI] = 0.672-0.938; p = 0.006). EL and SHBG were not associated with a risk for developing neurodegenerative diseases (ALS, PD, AD). CONCLUSIONS: Elevated BT is associated with a reduced risk of developing ALS. Further research is needed to investigate the underlying mechanisms of action for this correlation and how it can be used as a potential target of action to reduce the risk of developing ALS.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Enfermedades Neurodegenerativas , Globulina de Unión a Hormona Sexual , Humanos , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/genética , Globulina de Unión a Hormona Sexual/análisis , Globulina de Unión a Hormona Sexual/metabolismo , Testosterona/sangre , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Estradiol/sangre , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Hormonas Esteroides Gonadales/sangre , Hormonas Esteroides Gonadales/metabolismo , Femenino , Masculino
20.
Eur J Pharmacol ; 974: 176615, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38685306

RESUMEN

MicroRNA-29a (miR-29a) has been suggested to serve a potential protective function against Parkinson's disease (PD); however, the exact molecular mechanisms remain elusive. This study explored the protective role of miR-29a in a cellular model of PD using SH-SY5Y cell lines through iTRAQ-based quantitative proteomic and biochemistry analysis. The findings showed that using a miR-29a mimic in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+) significantly decreased cell death and increased mitochondrial membrane potential. It also reduced mitochondrial reactive oxygen species (ROS) and the production of α-synuclein. Subsequent heatmap analysis using iTRAQ-based quantitative proteomics revealed remarkably contrasting protein expression profiles for 882 genes when comparing the groups treated with miR-29a mimic plus MPP + against the control group treated solely with MPP+. The KEGG pathway analysis of these 882 genes indicated the substantial role of miR-29a in the PD pathway (P = 1.58x10-5) and highlighted its function in mitochondrial genes. Furthermore, treatment with a miR-29a mimic in SH-SY5Y cells reduced the levels of GSK-3ß, phosphorylated GSK-3ß, and cleaved caspase-7 following exposure to MPP+. The miR-29a mimic also upregulated the expressions of α-synuclein clearance proteins FYCO1 and Rab7 in this cellular PD model, thereby inhibiting the production of α-synuclein. Luciferase activity analysis confirmed the specific binding of miR-29a to the 3' untranslated region (3'UTR) of GSK-3ß, leading to its repression. Our findings demonstrated miR-29a's neuroprotective role in mitochondrial function and highlighted its potential to inhibit ROS and α-synuclein production, offering possible therapeutic avenues for PD treatment.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , MicroARNs , Enfermedad de Parkinson , Especies Reactivas de Oxígeno , alfa-Sinucleína , Humanos , 1-Metil-4-fenilpiridinio/toxicidad , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA