Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Nat Commun ; 15(1): 7791, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242637

RESUMEN

Multiple sclerosis (MS) is a debilitating demyelinating disease characterized by remyelination failure attributed to inadequate oligodendrocyte precursor cells (OPCs) differentiation and aberrant astrogliosis. A comprehensive cell atlas reanalysis of clinical specimens brings to light heightened clusterin (CLU) expression in a specific astrocyte subtype links to active lesions in MS patients. Our investigation reveals elevated astrocytic CLU levels in both active lesions of patient tissues and female murine MS models. CLU administration stimulates primary astrocyte proliferation while concurrently impeding astrocyte-mediated clearance of myelin debris. Intriguingly, CLU overload directly impedes OPC differentiation and induces OPCs and OLs apoptosis. Mechanistically, CLU suppresses PI3K-AKT signaling in primary OPCs via very low-density lipoprotein receptor. Pharmacological activation of AKT rescues the damage inflicted by excess CLU on OPCs and ameliorates demyelination in the corpus callosum. Furthermore, conditional knockout of CLU emerges as a promising intervention, showcasing improved remyelination processes and reduced severity in murine MS models.


Asunto(s)
Astrocitos , Clusterina , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Remielinización , Animales , Femenino , Humanos , Ratones , Apoptosis/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Clusterina/metabolismo , Clusterina/genética , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remielinización/efectos de los fármacos , Transducción de Señal
2.
Open Biol ; 14(9): 240138, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226928

RESUMEN

In this study, we develop an in silico model of a neuron's behaviour under demyelination caused by a cytokine storm to investigate the effects of viral infections in the brain. We use a comprehensive model to measure how cytokine-induced demyelination affects the propagation of action potential (AP) signals within a neuron. We analysed the effects of neuron-neuron communications by applying information and communication theory at different levels of demyelination. Our simulations demonstrate that virus-induced degeneration can play a role in the signal power and spiking rate, which compromise the propagation and processing of information between neurons. We propose a transfer function to model the weakening effects on the AP. Our results show that demyelination induced by a cytokine storm not only degrades the signal but also impairs its propagation within the axon. Our proposed in silico model can analyse virus-induced neurodegeneration and enhance our understanding of virus-induced demyelination.


Asunto(s)
Simulación por Computador , Enfermedades Desmielinizantes , Neuronas , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/virología , Neuronas/metabolismo , Humanos , Modelos Neurológicos , Potenciales de Acción , Síndrome de Liberación de Citoquinas , Animales , Citocinas/metabolismo , Axones/metabolismo , Axones/patología
3.
Signal Transduct Target Ther ; 9(1): 254, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327467

RESUMEN

The downregulation of Cadm4 (Cell adhesion molecular 4) is a prominent feature in demyelination diseases, yet, the underlying molecular mechanism remains elusive. Here, we reveal that Cadm4 undergoes specific palmitoylation at cysteine-347 (C347), which is crucial for its stable localization on the plasma membrane (PM). Mutation of C347 to alanine (C347A), blocking palmitoylation, causes Cadm4 internalization from the PM and subsequent degradation. In vivo experiments introducing the C347A mutation (Cadm4-KI) lead to severe myelin abnormalities in the central nervous system (CNS), characterized by loss, demyelination, and hypermyelination. We further identify ZDHHC3 (Zinc finger DHHC-type palmitoyltransferase 3) as the enzyme responsible for catalyzing Cadm4 palmitoylation. Depletion of ZDHHC3 reduces Cadm4 palmitoylation and diminishes its PM localization. Remarkably, genetic deletion of ZDHHC3 results in decreased Cadm4 palmitoylation and defects in CNS myelination, phenocopying the Cadm4-KI mouse model. Consequently, altered Cadm4 palmitoylation impairs neuronal transmission and cognitive behaviors in both Cadm4-KI and ZDHHC3 knockout mice. Importantly, attenuated ZDHHC3-Cadm4 signaling significantly influences neuroinflammation in diverse demyelination diseases. Mechanistically, we demonstrate the predominant expression of Cadm4 in the oligodendrocyte lineage and its potential role in modulating cell differentiation via the WNT-ß-Catenin pathway. Together, our findings propose that dysregulated ZDHHC3-Cadm4 signaling contributes to myelin abnormalities, suggesting a common pathological mechanism underlying demyelination diseases associated with neuroinflammation.


Asunto(s)
Aciltransferasas , Sistema Nervioso Central , Lipoilación , Vaina de Mielina , Lipoilación/genética , Animales , Aciltransferasas/genética , Ratones , Humanos , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Ratones Noqueados
4.
J Neuroinflammation ; 21(1): 243, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342313

RESUMEN

Demyelination occurs widely in the central nervous system (CNS) neurodegenerative diseases, especially the multiple sclerosis (MS), which with a complex and inflammatory lesion microenvironment inhibiting remyelination. Sirtuin6 (SIRT6), a histone/protein deacetylase is of interest for its promising effect in transcriptional regulation, cell cycling, inflammation, metabolism and longevity. Here we show that SIRT6 participates in the remyelination process in mice subjected to LPC-induced demyelination. Using pharmacological SIRT6 inhibitor or activator, we found that SIRT6 modulated LPC-induced damage in motor or cognitive function. Inhibition of SIRT6 impaired myelin regeneration, exacerbated neurological deficits, and decreased oligodendrocyte precursor cells (OPCs) proliferation and differentiation, whereas activation of SIRT6 reversed behavioral performance in mice, demonstrating a beneficial effect of SIRT6. Importantly, based on RNA sequencing analysis of the corpus callosum tissues, it was further revealed that SIRT6 took charge in regulation of glial activation during remyelination, and significant alterations in CHI3L1 were obtained, a glycoprotein specifically secreted by astrocytes. Impaired proliferation and differentiation of OPCs could be induced in vitro using supernatants from reactive astrocyte, especially when SIRT6 was inhibited. Mechanistically, SIRT6 regulates the secretion of CHI3L1 from reactive astrocytes by histone-H3-lysine-9 acetylation (H3K9Ac). Adeno-associated virus-overexpression of SIRT6 (AAV-SIRT6-OE) in astrocytes improved remyelination and functional recovery after LPC-induced demyelination, whereas together with AAV-CHI3L1-OE inhibits this therapeutic effect. Collectively, our data elucidate the role of SIRT6 in remyelination and further reveal astrocytic SIRT6/CHI3L1 as the key regulator for improving the remyelination environment, which may be a potential target for MS therapy.


Asunto(s)
Astrocitos , Enfermedades Desmielinizantes , Sirtuinas , Animales , Masculino , Ratones , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Células Cultivadas , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Lisofosfatidilcolinas/toxicidad , Ratones Endogámicos C57BL , Remielinización/efectos de los fármacos , Remielinización/fisiología , Sirtuinas/metabolismo , Sirtuinas/genética
5.
Int Immunopharmacol ; 142(Pt A): 113045, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236454

RESUMEN

BACKGROUND: In sepsis-associated encephalopathy (SAE), the activation of microglial cells and ensuing neuroinflammation are important in the underlying pathological mechanisms. Increasing evidence suggests that the protein Piezo1 functions as a significant regulator of neuroinflammation. However, the influence of Piezo1 on microglial cells in the context of SAE has not yet been determined. This study aims to investigate the role of Piezo1 in microglial cells in the context of SAE. METHODS: By inducing cecal ligation and puncture (CLP), a mouse model of SAE was established, while the control group underwent a sham surgery in which the cecum was exposed without ligation and puncture. Piezo1 knockout mice were employed in this study. Morris water maze tests were conducted between Days 14 and 18 postop to assess both the motor activity and cognitive function. A proteomic analysis was conducted to assess the SAE-related pathways, whereas a Mendelian randomization analysis was conducted to identify the pathways associated with cognitive impairment. Dual-label immunofluorescence and flow cytometry were used to assess the secretion of inflammatory factors, microglial status, and oligodendrocyte development. Electron microscopy was used to evaluate axonal myelination. A western blot analysis was conducted to evaluate the influence of Piezo1 on oligodendrocyte ferroptosis. RESULTS: The results of the bioinformatics analysis have revealed the significant involvement of CCL25 in the onset and progression of SAE-induced cognitive impairment. SAE leads to cognitive dysfunction by activating the microglial cells. The release of CCL25 by the activated microglia initiates the demyelination of oligodendrocytes in the hippocampus, resulting in ferroptosis and the disruption of hippocampal functional connectivity. Of note, the genetic knockout of the Piezo1 gene mitigates these changes. The treatment with siRNA targeting Piezo1 effectively reduces the secretion of inflammatory mediators CCL25 and IL-18 by inhibiting the p38 pathway, thus preventing the ferroptosis of oligodendrocytes through the modulation of the CCL25/GPR78 axis. CONCLUSION: Piezo1 is involved in the activation of microglia and demyelinating oligodendrocytes in the animal models of SAE, resulting in cognitive impairment. Consequently, targeting Piezo1 suppression can be a promising approach for therapeutic interventions aimed at addressing cognitive dysfunction associated with SAE.


Asunto(s)
Canales Iónicos , Ratones Noqueados , Microglía , Animales , Microglía/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Ratones , Masculino , Ratones Endogámicos C57BL , Sepsis/metabolismo , Sepsis/complicaciones , Modelos Animales de Enfermedad , Transducción de Señal , Encefalopatía Asociada a la Sepsis/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Ferroptosis
6.
J Neurochem ; 168(9): 3250-3267, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39115025

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Vaina de Mielina , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Animales , Masculino , Ratones , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Proteínas de Insectos , Locomoción/efectos de los fármacos , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología
7.
Nat Metab ; 6(8): 1492-1504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048801

RESUMEN

Microglia are necessary for central nervous system (CNS) function during development and play roles in ageing, Alzheimer's disease and the response to demyelinating injury1-5. The mitochondrial respiratory chain (RC) is necessary for conventional T cell proliferation6 and macrophage-dependent immune responses7-10. However, whether mitochondrial RC is essential for microglia proliferation or function is not known. We conditionally deleted the mitochondrial complex III subunit Uqcrfs1 (Rieske iron-sulfur polypeptide 1) in the microglia of adult mice to assess the requirement of microglial RC for survival, proliferation and adult CNS function in vivo. Notably, mitochondrial RC function was not required for survival or proliferation of microglia in vivo. RNA sequencing analysis showed that loss of RC function in microglia caused changes in gene expression distinct from aged or disease-associated microglia. Microglia-specific loss of mitochondrial RC function is not sufficient to induce cognitive decline. Amyloid-ß plaque coverage decreased and microglial interaction with amyloid-ß plaques increased in the hippocampus of 5xFAD mice with mitochondrial RC-deficient microglia. Microglia-specific loss of mitochondrial RC function did impair remyelination following an acute, reversible demyelinating event. Thus, mitochondrial respiration in microglia is dispensable for proliferation but is essential to maintain a proper response to CNS demyelinating injury.


Asunto(s)
Proliferación Celular , Enfermedades Desmielinizantes , Microglía , Mitocondrias , Animales , Microglía/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Respiración de la Célula
8.
J Neuroinflammation ; 21(1): 157, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879499

RESUMEN

BACKGROUND: Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS: Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS: JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS: Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.


Asunto(s)
Infecciones por Coronavirus , Cistatinas , Enfermedades Desmielinizantes , Ratones Noqueados , Virus de la Hepatitis Murina , Animales , Ratones , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/virología , Enfermedades Desmielinizantes/inmunología , Virus de la Hepatitis Murina/patogenicidad , Cistatinas/genética , Cistatinas/metabolismo , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismo
9.
Glia ; 72(8): 1392-1401, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38572807

RESUMEN

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) characterized by demyelination, axonal damage and, for the majority of people, a decline in neurological function in the long-term. Remyelination could assist in the protection of axons and their functional recovery, but such therapies are not, as yet, available. The TAM (Tyro3, Axl, and MERTK) receptor ligand GAS6 potentiates myelination in vitro and promotes recovery in pre-clinical models of MS. However, it has remained unclear which TAM receptor is responsible for transducing this effect and whether post-translational modification of GAS6 is required. In this study, we show that the promotion of myelination requires post-translational modification of the GLA domain of GAS6 via vitamin K-dependent γ-carboxylation. We also confirmed that the intracerebroventricular provision of GAS6 for 2 weeks to demyelinated wild-type (WT) mice challenged with cuprizone increased the density of myelinated axons in the corpus callosum by over 2-fold compared with vehicle control. Conversely, the provision of GAS6 to Tyro3 KO mice did not significantly improve the density of myelinated axons. The improvement in remyelination following the provision of GAS6 to WT mice was also accompanied by an increased density of CC1+ve mature oligodendrocytes compared with vehicle control, whereas this improvement was not observed in the absence of Tyro3. This effect occurs independent of any influence on microglial activation. This work therefore establishes that the remyelinative activity of GAS6 is dependent on Tyro3 and includes potentiation of oligodendrocyte numbers.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Péptidos y Proteínas de Señalización Intercelular , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Quinasas Receptoras , Remielinización , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Remielinización/fisiología , Remielinización/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Cuprizona/toxicidad , Ratones , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Masculino , Femenino
10.
Int J Surg ; 110(3): 1463-1474, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38270619

RESUMEN

BACKGROUND: Trigeminal neuralgia (TN) is the most common neuropathic disorder in the maxillofacial region. The etiology and pathogenesis of TN have not been clearly determined to date, although there are many hypotheses. OBJECTIVE: The goal of this study was to investigate the interactions between different types of cells in TN, particularly the impact and intrinsic mechanism of demyelination on the trigeminal ganglion, and to identify new important target genes and regulatory pathways in TN. METHODS: TN rat models were prepared by trigeminal root compression, and trigeminal nerve tissues were isolated for spatial transcriptome sequencing. The gene expression matrix was reduced dimensionally by PCA and presented by UMAP. Gene function annotation was analyzed by Metascape. The progression of certain clusters and the developmental pseudotime were analyzed using the Monocle package. Modules of the gene coexpression network between different groups were analyzed based on weighted gene coexpression network analysis and assigned AddModuleScore values. The intercellular communication of genes in these networks via ligand-receptor interactions was analyzed using CellPhoneDB analysis. RESULTS: The results suggested that the trigeminal ganglion could affect Schwann cell demyelination and remyelination responses through many ligand-receptor interactions, while the effect of Schwann cells on the trigeminal ganglion was much weaker. Additionally, ferroptosis may be involved in the demyelination of Schwann cells. CONCLUSIONS: This study provides spatial transcriptomics sequencing data on TN, reveals new markers, and redefines the relationship between the ganglion and myelin sheath, providing a theoretical basis and supporting data for future mechanistic research and drug development.


Asunto(s)
Enfermedades Desmielinizantes , Neuralgia del Trigémino , Ratas , Animales , Neuralgia del Trigémino/genética , Ligandos , Transcriptoma , Nervio Trigémino , Enfermedades Desmielinizantes/complicaciones , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología
11.
J Cell Mol Med ; 28(3): e18090, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38140846

RESUMEN

Cognitive impairment induced by postoperative pain severely deteriorates the rehabilitation outcomes in elderly patients. The present study focused on the relationship between microglial exosome miR-124-3p in hippocampus and cognitive impairment induced by postoperative pain. Cognitive impairment model induced by postoperative pain was constructed by intramedullary nail fixation after tibial fracture. Morphine intraperitoneally was carried out for postoperative analgesia. Morris water maze tests were carried out to evaluate the cognitive impairment, while mRNA levels of neurotrophic factors (BDNF, NG) and neurodegenerative biomarker (VILIP-1) in hippocampus were tested by q-PCR. Transmission electron microscope was used to observe the axon degeneration in hippocampus. The levels of pro-inflammatory factors (TNF-α, IL-1ß, IL-6), the levels of anti-inflammatory factors (Ym, Arg-1, IL-10) and microglia proliferation marker cyclin D1 in hippocampus were measured to evaluate microglia polarization. Bioinformatics analysis was conducted to identify key exosomes while BV-2 microglia overexpressing exosome miR-124-3p was constructed to observe microglia polarization in vitro experiments. Exogenous miR-124-3p-loaded exosomes were injected into hippocampus in vivo. Postoperative pain induced by intramedullary fixation after tibial fracture was confirmed by decreased mechanical and thermal pain thresholds. Postoperative pain induced cognitive impairment, promoted axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus. Postoperative pain also increased pro-inflammatory factors, cyclin D1 and decreased anti-inflammatory factors in hippocampus. However, these changes were all reversed by morphine analgesia. Bioinformatics analysis identified the critical role of exosome miR-124-3p in cognitive impairment, which was confirmed to be down-regulated in hippocampus of postoperative pain mice. BV-2 microglia overexpressing exosome miR-124-3p showed decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. In vivo, stereotactic injection of exogenous miR-124-3p into hippocampus decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. The cognitive impairment, axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus were all alleviated by exogenous exosome miR-124-3p. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain through microglia polarization in elderly mice.


Asunto(s)
Disfunción Cognitiva , Enfermedades Desmielinizantes , Exosomas , MicroARNs , Fracturas de la Tibia , Animales , Ratones , Antiinflamatorios/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Ciclina D1/metabolismo , Enfermedades Desmielinizantes/metabolismo , Exosomas/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , MicroARNs/genética , Derivados de la Morfina/metabolismo , Dolor Postoperatorio/metabolismo , Fracturas de la Tibia/metabolismo , Envejecimiento
12.
Behav Brain Res ; 458: 114755, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-37949321

RESUMEN

This study aimed to find the genes and signaling pathways underlying cuprizone-induced demyelination and cognitive impairments in mice. We used the cuprizone-exposed mice as an animal model of schizophrenia and assessed cognitive function in mice. Total RNA was extracted from mouse brain tissues for RNA sequencing. The DESeq2 R package was utilized to analyze the differentially expressed genes (DEGs). Functional and pathway enrichment analyses were performed simultaneously. We also constructed a protein-protein interaction (PPI) network to screen potential hub genes, and quantitative real-time polymerase chain reaction (qRT-PCR) was employed to validate the screened genes. After 6 weeks of cuprizone treatment, the cognitive function of mice was impaired. Compared to the controls, the cuprizone-exposed mice contained 351 DEGs, including 167 upregulated and 184 downregulated genes. Enrichment analysis showed that the DEGs were enriched in some biological processes involved in demyelination, including the MAPK pathway. Functional pathway analysis revealed that the DEGs were significantly enriched in the PI3K-Akt signaling pathway, which may be associated with cognitive impairments. MBP, IGF1, GFAP, PTPRC, CD14, CD68, ITGB2, LYN, TLR2, TLR4, VAV1, and PLEK were considered as potential hub genes. Except for MBP, all genes were upregulated in the cuprizone models, as verified by qRT-PCR. We suggest that the MAPK and PI3K-Akt signaling pathways may be associated with demyelination and cognitive impairments, respectively. GFAP and IGF-1 expression levels increased in cuprizone-exposed mice, suggesting that astrocytes may play a role in protecting the myelin sheath following treatment with cuprizone.


Asunto(s)
Disfunción Cognitiva , Enfermedades Desmielinizantes , Ratones , Animales , Cuprizona/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Transducción de Señal , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Oligodendroglía
13.
IUBMB Life ; 76(6): 313-331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38116887

RESUMEN

Although Multiple Sclerosis (MS) is primarily thought to be an autoimmune condition, its possible viral etiology must be taken into consideration. When mice are administered neurotropic viruses like mouse hepatitis virus MHV-A59, a murine coronavirus, or its isogenic recombinant strain RSA59, neuroinflammation along with demyelination are observed, which are some of the significant manifestations of MS. MHV-A59/RSA59 induced neuroinflammation is one of the best-studied experimental animal models to understand the viral-induced demyelination concurrent with axonal loss. In this experimental animal model, one of the major immune checkpoint regulators is the CD40-CD40L dyad, which helps in mediating both acute-innate, innate-adaptive, and chronic-adaptive immune responses. Hence, they are essential in reducing acute neuroinflammation and chronic progressive adaptive demyelination. While CD40 is expressed on antigen-presenting cells and endothelial cells, CD40L is expressed primarily on activated T cells and during severe inflammation on NK cells and mast cells. Experimental evidences revealed that genetic deficiency of both these proteins can lead to deleterious effects in an individual. On the other hand, interferon-stimulated genes (ISGs) possess potent antiviral properties and directly or indirectly alter acute neuroinflammation. In this review, we will discuss the role of an ISG, ISG54, and its tetratricopeptide repeat protein Ifit2; the genetic and experimental studies on the role of CD40 and CD40L in a virus-induced neuroinflammatory demyelination model.


Asunto(s)
Antígenos CD40 , Ligando de CD40 , Enfermedades Desmielinizantes , Virus de la Hepatitis Murina , Enfermedades Neuroinflamatorias , Animales , Ligando de CD40/metabolismo , Ligando de CD40/genética , Ligando de CD40/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/virología , Enfermedades Desmielinizantes/virología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Humanos , Antígenos CD40/metabolismo , Antígenos CD40/genética , Antígenos CD40/inmunología , Virus de la Hepatitis Murina/patogenicidad , Virus de la Hepatitis Murina/inmunología , Ratones , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/virología , Esclerosis Múltiple/patología , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad
14.
Front Immunol ; 14: 1290100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022538

RESUMEN

Background: Spinal cord injury (SCI) is a devastating disease that results in permanent paralysis. Currently, there is no effective treatment for SCI, and it is important to identify factors that can provide therapeutic intervention during the course of the disease. Zinc, an essential trace element, has attracted attention as a regulator of inflammatory responses. In this study, we investigated the effect of zinc status on the SCI pathology and whether or not zinc could be a potential therapeutic target. Methods: We created experimental mouse models with three different serum zinc concentration by changing the zinc content of the diet. After inducing contusion injury to the spinal cord of three mouse models, we assessed inflammation, apoptosis, demyelination, axonal regeneration, and the number of nuclear translocations of NF-κB in macrophages by using qPCR and immunostaining. In addition, macrophages in the injured spinal cord of these mouse models were isolated by flow cytometry, and their intracellular zinc concentration level and gene expression were examined. Functional recovery was assessed using the open field motor score, a foot print analysis, and a grid walk test. Statistical analysis was performed using Wilcoxon rank-sum test and ANOVA with the Tukey-Kramer test. Results: In macrophages after SCI, zinc deficiency promoted nuclear translocation of NF-κB, polarization to pro-inflammatory like phenotype and expression of pro-inflammatory cytokines. The inflammatory response exacerbated by zinc deficiency led to worsening motor function by inducing more apoptosis of oligodendrocytes and demyelination and inhibiting axonal regeneration in the lesion site compared to the normal zinc condition. Furthermore, zinc supplementation after SCI attenuated these zinc-deficiency-induced series of responses and improved motor function. Conclusion: We demonstrated that zinc affected axonal regeneration and motor functional recovery after SCI by negatively regulating NF-κB activity and the subsequent inflammatory response in macrophages. Our findings suggest that zinc supplementation after SCI may be a novel therapeutic strategy for SCI.


Asunto(s)
Enfermedades Desmielinizantes , Traumatismos de la Médula Espinal , Ratones , Animales , FN-kappa B/metabolismo , Traumatismos de la Médula Espinal/patología , Macrófagos/metabolismo , Modelos Animales de Enfermedad , Minerales/uso terapéutico , Zinc/metabolismo , Enfermedades Desmielinizantes/metabolismo
15.
Clin Exp Immunol ; 214(2): 219-234, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37497691

RESUMEN

Studies have shown that the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is detrimental to the functional recovery of the sciatic nerve, but the regulatory mechanisms of the NLRP3 inflammasome in peripheral nerves are unclear. C-X-C motif chemokine 12 (CXCL12) can bind to C-X-C chemokine receptor type 4 (CXCR4) and participate in a wide range of nerve inflammation by regulating the NLRP3 inflammasome. Based on these, we explore whether CXCL12-CXCR4 axis regulates the NLRP3 inflammasome in the peripheral nerve. We found that CXCR4/CXCL12, NLRP3 inflammasome-related components, pyroptosis-related proteins and inflammatory factors in the sciatic nerve injured rats were markedly increased compared with the sham-operated group. AMD3100, a CXCR4 antagonist, reverses the activation of NLRP3 inflammasome, Schwann cell pyroptosis and sciatic nerve demyelination. We further treated rat Schwann cells with LPS (lipopolysaccharide) and adenosine triphosphate (ATP) to mimic the cellular inflammation model of sciatic nerve injury, and the results were consistent with those in vivo. In addition, both in vivo and in vitro experiments demonstrated that AMD3100 treatment reduced the phosphorylation of nuclear factor κB (NF-κB) and the expression of thioredoxin interacting protein (TXNIP), which contributes to activating NLRP3 inflammasome. Therefore, our findings suggest that, after sciatic nerve injury, CXCL12-CXCR4 axis may promote Schwann cell pyroptosis and sciatic nerve demyelination through activating NLRP3 inflammasome and slow the recovery process of the sciatic nerve.


Asunto(s)
Enfermedades Desmielinizantes , Inflamasomas , Ratas , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Proteínas NLR/metabolismo , Nervio Ciático , Células de Schwann/metabolismo , Inflamación/metabolismo , Enfermedades Desmielinizantes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quimiocina CXCL12/metabolismo
16.
J Integr Neurosci ; 22(2): 40, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992584

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease for which bone marrow mesenchymal stem cells (BM-MSCs) have become one of the most promising tools for treatment. Cuprizone(CPZ) induces demyelination in the central nervous system and its use has established a demyelination sheath animal model which is particularly suitable for studying the effects of BM-MSCs on the remyelination and mood improvement of a demyelinating model mice. METHODS: 70 C57BL/6 male mice were selected and divided into 4 groups: the normal control (n = 20), chronic demyelination (n = 20), myelin repair (n = 15) and cell-treated groups (n = 15). Mice in the normal control group were given a normal diet; the chronic demyelination group mice were given a 0.2% CPZ mixed diet for 14 weeks, mice in the myelin repair and cell-treated groups mice were given a 0.2% CPZ diet for 12 weeks and normal diet for 2 weeks, while the cell-treated group mice were injected with BM-MSCs from the 13th week. The cuprizone-induced demyelination model was successfully established and BM-MSCs extracted, behavioural changes of the mice were detected by open field test, elevated plus maze test and tail suspension test, demyelination and repair of the corpus callosum and astrocyte changes were observed by immunofluorescence and electron microscopy and the concentrations of monoamine neurotransmitters and their metabolites detected by enzyme-linked immunosorbent assay (ELISA) and high performance liquid chromatography-electrochemistry (HPLC-ECD). RESULTS: Results suggest BM-MSCs were successfully extracted and cultured, and migrated to the demyelinating area of brain tissue after cell transplantation. Compared with the normal control group, the mice in the chronic demyelination group showed obvious anxiety and depression behaviours (p < 0.05); compared with the chronic demyelination group, the anxiety and depression behaviours of the cell-treated group mice were improved (p < 0.05); compared with the normal control group, the demyelination of the corpus callosum region of the chronic demyelination group mice was significant (p < 0.01), while the myelin sheath of the cell-treated and myelin repair groups was repaired when compared with the chronic demyelination group (p < 0.05), and the cell-treated group had a more significant effect than the myelin repair group (p < 0.05). Compared with the normal control group, the number of astrocytes in the corpus callosum of the chronic demyelination group mice was significantly increased (p < 0.01), and the expression of glial fibrillary acidic protein (GFAP) in the cell-treated group was lower than that in the chronic demyelination and myelin repair groups (p < 0.05); the serum concentrations of norepinephrine (NE), 5-hydroxytryptamine (5-HT) and 5-Hydroxyindole-3-acetic acid (5-HIAA) between the normal control and the chronic demyelination groups were significantly different (p < 0.05). CONCLUSIONS: The CPZ-induced model can be used as an experimental carrier for MS combined with anxiety and depression, and BM-MSC transplantation promotes the repair of myelin sheath and the recovery of emotional disorders in the model.


Asunto(s)
Enfermedades Desmielinizantes , Células Madre Mesenquimatosas , Esclerosis Múltiple , Masculino , Animales , Ratones , Vaina de Mielina/metabolismo , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/metabolismo , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad
17.
Mol Neurodegener ; 18(1): 12, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36803190

RESUMEN

BACKGROUND: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS: Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS: Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS: The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Desmielinizantes , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Cuprizona/metabolismo , Empalme del ARN , Mutación , Placa Amiloide/patología , Modelos Animales de Enfermedad , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Microglía/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
18.
Biochem Biophys Res Commun ; 646: 1-7, 2023 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36689911

RESUMEN

After peripheral nerve injury, demyelinating Schwann cells discharge myelin debris and macrophages execute myelin degradation, leading to demyelination of degenerating axons, which is essential for efficient nerve regeneration. In this study, we show that vacuolar-type proton ATPase subunit d2 (Atp6v0d2) is among the most highly upregulated genes in degenerating mouse sciatic nerves after nerve injury using microarray analysis. ATP6V0D2 is mostly expressed in macrophages of injured nerves. Atp6v0d2 knockout mice display delayed peripheral nerve demyelination and significantly attenuated myelin lipid digestion after nerve injury. However, macrophage recruitment and Schwann cell dedifferentiation are unaffected by loss of Atp6v0d2 expression. Taken together, these data demonstrate that ATP6V0D2 in macrophages is specifically required for demyelination during Wallerian degeneration.


Asunto(s)
Enfermedades Desmielinizantes , Traumatismos de los Nervios Periféricos , ATPasas de Translocación de Protón Vacuolares , Ratones , Animales , Traumatismos de los Nervios Periféricos/metabolismo , Adenosina Trifosfatasas/metabolismo , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , Degeneración Walleriana , Nervio Ciático/metabolismo , Ratones Noqueados , Enfermedades Desmielinizantes/metabolismo , Regeneración Nerviosa , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
19.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499770

RESUMEN

Myelin forming around axons provides electrical insulation and ensures rapid and efficient transmission of electrical impulses. Disruptions to myelinated nerves often result in nerve conduction failure along with neurological symptoms and long-term disability. In the central nervous system, calpains, a family of calcium dependent cysteine proteases, have been shown to have a role in developmental myelination and in demyelinating diseases. The roles of calpains in myelination and demyelination in the peripheral nervous system remain unclear. Here, we show a transient increase of activated CAPN1, a major calpain isoform, in postnatal rat sciatic nerves when myelin is actively formed. Expression of the endogenous calpain inhibitor, calpastatin, showed a steady decrease throughout the period of peripheral nerve development. In the sciatic nerves of Trembler-J mice characterized by dysmyelination, expression levels of CAPN1 and calpastatin and calpain activity were significantly increased. In lysolecithin-induced acute demyelination in adult rat sciatic nerves, we show an increase of CAPN1 and decrease of calpastatin expression. These changes in the calpain-calpastatin system are distinct from those during central nervous system development or in acute axonal degeneration in peripheral nerves. Our results suggest that the calpain-calpastatin system has putative roles in myelination and demyelinating diseases of peripheral nerves.


Asunto(s)
Enfermedades Desmielinizantes , Roedores , Animales , Ratones , Ratas , Roedores/metabolismo , Calpaína/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Axones/metabolismo , Vaina de Mielina/metabolismo , Nervio Ciático/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/metabolismo
20.
Cell Rep ; 41(6): 111591, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351388

RESUMEN

The progressive nature of demyelinating diseases lies in the inability of the central nervous system (CNS) to induce proper remyelination. Recently, we and others demonstrated that a dysregulated innate immune response partially underlies failure of CNS remyelination. Extensive accumulation of myelin-derived lipids and an inability to process these lipids was found to induce a disease-promoting phagocyte phenotype. Hence, restoring the ability of these phagocytes to metabolize and efflux myelin-derived lipids represents a promising strategy to promote remyelination. Here, we show that ApoA-I mimetic peptide 5A, a molecule well known to promote activity of the lipid efflux transporter ABCA1, markedly enhances remyelination. Mechanistically, we find that the repair-inducing properties of 5A are attributable to increased clearance and metabolism of remyelination-inhibiting myelin debris via the fatty acid translocase protein CD36, which is transcriptionally controlled by the ABCA1-JAK2-STAT3 signaling pathway. Altogether, our findings indicate that 5A promotes remyelination by stimulating clearance and degradation of myelin debris.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Humanos , Remielinización/fisiología , Vaina de Mielina/metabolismo , Enfermedades Desmielinizantes/metabolismo , Apolipoproteína A-I/metabolismo , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA