Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
BMC Biol ; 22(1): 192, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256796

RESUMEN

BACKGROUND: N6-Methyladenosine (m6A) methylation, a common form of RNA modification, play an important role in the pathogenesis of various diseases and in the ontogeny of organisms. Nevertheless, the precise function of m6A methylation in photoaging remains unknown. OBJECTIVES: This study aims to investigate the biological role and underlying mechanism of m6A methylation in photoaging. METHODS: m6A dot blot, Real-time quantitative PCR (RT-qPCR), western blot and immunohistochemical (IHC) assays were employed to detect the m6A level and specific m6A methylase in ultraviolet ray (UVR)-induced photoaging tissue. The profile of m6A-tagged mRNA was identified by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq analysis. Finally, we investigated the regulatory mechanism of KIAA1429 by MeRIP-qPCR, RNA knockdown and immunofluorescence assay. RESULTS: m6A levels were increased in photoaging and were closely associated with the upregulation of KIAA1429 expression. 1331 differentially m6A methylated genes were identified in the UVR group compared with the control group, of which 1192 (90%) were hypermethylated. Gene ontology analysis showed that genes with m6A hypermethylation and mRNA downregulation were mainly involved in extracellular matrix metabolism and collagen metabolism-related processes. Furthermore, KIAA1429 knockdown abolished the downregulation of TGF-bRII and upregulation of MMP1 in UVR-irradiated human dermal fibroblasts (HDFs). Mechanically, we identified MFAP4 as a target of KIAA1429-mediated m6A modification and KIAA1429 might suppress collagen synthesis through an m6A-MFAP4-mediated process. CONCLUSIONS: The increased expression of KIAA1429 hinders collagen synthesis during UVR-induced photoaging, suggesting that KIAA1429 represents a potential candidate for targeted therapy to mitigate UVR-driven photoaging.


Asunto(s)
Colágeno , Envejecimiento de la Piel , Envejecimiento de la Piel/efectos de la radiación , Envejecimiento de la Piel/genética , Colágeno/metabolismo , Animales , Adenosina/análogos & derivados , Adenosina/metabolismo , Ratones , Humanos , Rayos Ultravioleta , Metilación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación
2.
Eur J Dermatol ; 34(4): 355-360, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39193671

RESUMEN

Skin aging is associated with a progressive decline in physiological functions, skin cancers and, ultimately, death. It may be categorized as intrinsic or extrinsic, whereby intrinsic aging is attributed to chronological and genetic factors. At the molecular level, skin aging involves changes in protein conformation and function. The skin proteome changes constantly, mainly through carbonylation; an irreversible phenomenon leading to protein accumulation as toxic aggregates that impair cellular physiology and accelerate skin aging. This review details the central role of proteostasis during skin aging and why proteome protection may be a promising approach in mitigating skin aging. A comprehensive literature review of 87 articles focusing on the proteome, proteostasis, proteotoxicity, protein carbonylation, and the impact of the damaged proteome on aging, and in particular skin aging, was conducted. Skin aging is associated with deficiencies in the repair mechanisms of DNA, transcriptional control, mitochondrial function, cell cycle control, apoptosis, cellular metabolism, changes in hormonal levels secondary to toxicity of damaged proteins, and cell-to-cell communication for tissue homeostasis, which are largely controlled by proteins. In this context, a damaged proteome that leads to the loss of proteostasis may be considered as the first step in tissue aging. There is growing evidence that a healthy proteome plays a central role in skin and in maintaining healthy tissues, thus slowing down the process of skin aging. Hence, protecting the proteome against oxidative or other damage may be an appropriate strategy to prevent and delay skin aging.


Asunto(s)
Proteoma , Proteostasis , Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/fisiología , Envejecimiento de la Piel/genética , Proteoma/metabolismo , Carbonilación Proteica , Estrés Oxidativo , Piel/metabolismo
3.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062918

RESUMEN

The aging process is linked to numerous cellular changes, among which are modifications in the functionality of dermal fibroblasts. These fibroblasts play a crucial role in sustaining the healing of skin wounds. Reduced cell proliferation is a hallmark feature of aged dermal fibroblasts. Long intergenic non-coding RNA (lincRNAs), such as LincRNA-EPS (Erythroid ProSurvival), has been implicated in various cellular processes. However, its role in aged dermal fibroblasts and its impact on the cell cycle and its regulator, Cyclin D1 (CCND1), remains unclear. Primary dermal fibroblasts were isolated from the skin of 17-week-old (young) and 88-week-old (aged) mice. Overexpression of LincRNA-EPS was achieved through plasmid transfection. Cell proliferation was detected using the MTT assay. Real-time PCR was used to quantify relative gene expressions. Our findings indicate a noteworthy decline in the expression of LincRNA-EPS in aged dermal fibroblasts, accompanied by reduced levels of CCND1 and diminished cell proliferation in these aging cells. Significantly, the overexpression of LincRNA-EPS in aged dermal fibroblasts resulted in an upregulation of CCND1 expression and a substantial increase in cell proliferation. Mechanistically, LincRNA-EPS induces CCND1 expression by sequestering miR-34a, which was dysregulated in aged dermal fibroblasts, and directly targeting CCND1. These outcomes underscore the crucial role of LincRNA-EPS in regulating CCND1 and promoting cell proliferation in aged dermal fibroblasts. Our study provides novel insights into the molecular mechanisms underlying age-related changes in dermal fibroblasts and their implications for skin wound healing. The significant reduction in LincRNA-EPS expression in aged dermal fibroblasts and its ability to induce CCND1 expression and enhance cell proliferation highlight its potential as a therapeutic target for addressing age-related skin wound healing.


Asunto(s)
Proliferación Celular , Ciclina D1 , Fibroblastos , ARN Largo no Codificante , Ciclina D1/metabolismo , Ciclina D1/genética , Fibroblastos/metabolismo , Fibroblastos/citología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Ratones , Piel/metabolismo , Piel/citología , MicroARNs/genética , MicroARNs/metabolismo , Células Cultivadas , Envejecimiento de la Piel/genética , Dermis/citología , Dermis/metabolismo , Senescencia Celular/genética , Regulación de la Expresión Génica , Cicatrización de Heridas/genética , Envejecimiento/genética
4.
Arch Dermatol Res ; 316(6): 328, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824251

RESUMEN

Observational studies have revealed associations between various dietary factors and skin conditions. However, the causal relationship between diet and skin condition is still unknown. Data on 17 dietary factors were obtained from the UK Biobank. Data on four skin conditions were derived from the UK Biobank and another large-scale GWAS study. Genetic predictions suggested that the intake of oily fish was associated with a lower risk of skin aging (OR: 0.962, P = 0.036) and skin pigmentation (OR: 0.973, P = 0.033); Tea intake was associated with a lower risk of skin pigmentation (OR: 0.972, P = 0.024); Salad/raw vegetables intake was associated with a lower risk of keratinocyte skin cancer (OR: 0.952, P = 0.007). Coffee intake was associated with increased risk of skin aging (OR: 1.040, P = 0.028); Pork intake was associated with increased risk of skin aging (OR: 1.134, P = 0.020); Beef intake was associated with increased risk of cutaneous melanoma (OR: 1.013, P = 0.016); Champagne plus white wine intake was associated with increased risk of cutaneous melanoma (OR: 1.033, P = 0.004); Bread intake was associated with increased risk of keratinocyte skin cancer (OR: 1.026, P = 0.013). Our study results indicate causal relationships between genetically predicted intake of oily fish, tea, salad/raw vegetables, coffee, pork, beef, champagne plus white wine, and bread and skin conditions.


Asunto(s)
Dieta , Análisis de la Aleatorización Mendeliana , Neoplasias Cutáneas , Humanos , Dieta/efectos adversos , Dieta/estadística & datos numéricos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/etiología , Envejecimiento de la Piel/genética , Pigmentación de la Piel/genética , Café/efectos adversos , Estudio de Asociación del Genoma Completo , Reino Unido/epidemiología , Té/efectos adversos , Factores de Riesgo
5.
J Dermatol Sci ; 114(3): 124-132, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749796

RESUMEN

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.


Asunto(s)
Adenosina , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Apoptosis , Células HaCaT , Ratones Endogámicos BALB C , Ratones Desnudos , Envejecimiento de la Piel , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Apoptosis/efectos de la radiación , Apoptosis/genética , Humanos , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilación/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación , Envejecimiento de la Piel/genética , Piel/efectos de la radiación , Piel/patología , Piel/metabolismo , Queratinocitos/efectos de la radiación , Queratinocitos/metabolismo , Supervivencia Celular/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Femenino
6.
J Physiol Anthropol ; 43(1): 14, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762735

RESUMEN

BACKGROUND: Changes develop on the facial skin as a person ages. Other than chronological time, it has been discovered that gender, ethnicity, air pollution, smoking, nutrition, and sun exposure are notable risk factors that influence the development of skin ageing phenotypes such as wrinkles and photo-ageing. These risk factors can be quantified through epidemiological collection methods. We previously studied wrinkles and photo-ageing in detail using photo-numeric scales. The analysis was performed on the ethnic Chinese skin by three trained assessors. Recent studies have shown that it is possible to use self-reported data to identify skin-related changes including skin colour and skin cancer. In order to investigate the association between risk factors and skin ageing phenotypic outcomes in large-scale epidemiological studies, it would be useful to evaluate whether it is also possible for participants to self-report signs of ageing on their skin. AIM: We have previously identified several validated photo-numeric scales for wrinkling and photo-ageing to use on ethnic Chinese skin. Using these scales, our trained assessors grade wrinkling and photo-ageing with moderately high inter-assessor concordance and agreement. The main objective of this study involves letting participants grade self-reported wrinkling and photo-ageing using these same scales. We aim to compare the concordance and agreement between signs of skin ageing by the participant and signs of ageing identified by our assessors. METHOD: Three trained assessors studied facial photo-ageing on 1081 ethnic Chinese young adults from the Singapore/Malaysia Cross-sectional Genetics Epidemiology Study (SMCGES) cohort. Self-reported facial photo-ageing data by the same 1081 participants were also collated and the two sets of data are compared. RESULTS: Here, we found that self-reported signs of photo-ageing are concordant with photo-ageing detected by our assessors. This finding is consistent whether photo-ageing is evaluated through studying wrinkle variations (Spearman's rank correlation (ρ) value: 0.246-0.329) or through studying dyspigmentation patterns (Spearman's rank correlation (ρ) value 0.203-0.278). When studying individual wrinkles, both participants and assessors often detect the presence of the same wrinkle (Spearman's rank correlation (ρ) value 0.249-0.366). A weak-to-fair level of agreement between both participants and assessors (Cohen's kappa (κ) values: 0.041-0.233) persists and is statistically significant after accounting for agreements due to chance. Both the participant and the assessor are largely consistent in evaluating the extent of photo-ageing (area under curve (AUC) values 0.689-0.769) and in discerning between the presence or absence of a given facial wrinkle (area under curve (AUC) values 0.601-0.856). CONCLUSION: When we analyse the overall appearance of the face, our results show that signs of photo-ageing identified by the participant are concordant with signs of photo-ageing identified by our assessors. When we focused our analysis on specific areas of the face, we found that participants were more likely to identify and self-report the same wrinkles that our assessors have also detected. Here, we found that self-reported signs of skin ageing provide a satisfactory approximation to the signs of skin ageing identified by our assessors. The ability to use self-reported signs of skin ageing should also be evaluated on scales beyond the ones discussed in this study. Currently, there are not as many photo-numeric scales for quantifying dyspigmentation patterns as there are for quantifying wrinkle variations. As Chinese skin is known to become dyspigmented more easily with age, more photo-numeric scales need to be developed and properly validated.


Asunto(s)
Autoinforme , Envejecimiento de la Piel , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Pueblo Asiatico/estadística & datos numéricos , Estudios de Cohortes , Estudios Transversales , Pueblos del Este de Asia , Malasia/epidemiología , Malasia/etnología , Singapur/epidemiología , Envejecimiento de la Piel/fisiología , Envejecimiento de la Piel/genética
7.
Biomolecules ; 14(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38540700

RESUMEN

Skin aging is a multifaceted biological phenomenon influenced by a combination of intrinsic or extrinsic factors. There is an increasing interest in anti-aging materials including components that improve skin wrinkles. Despite the availability of several such wrinkle-improving materials, the demand for ingredients with outstanding efficacy is increasing. Therefore, this study aimed to explore the mechanisms of wrinkle-related genes reported in previous genome-wide association studies (GWASs), identify materials that regulate these genes, and develop an effective anti-wrinkle formula containing the active ingredients that regulate the expression of these genes. We selected two candidate genes, EDAR and BNC2, that are reportedly related to periorbital wrinkles. We investigated their functions in the skin through in vitro experiments using human skin cell lines (keratinocytes and fibroblasts). Moreover, we identified ingredients that regulate the expression of these two genes and confirmed their efficacy through in vitro experiments using the skin cell lines. Finally, we developed a formula containing these ingredients and confirmed that it enhanced dermal collagen in the 3D skin and improved fine wrinkles under the eyes more effectively than retinol in humans, when applied for 8 weeks. Our results are significant and relevant, as we have discovered a special formula for wrinkle improvement with reliable efficacy that surpasses the efficacy of retinol and does not cause side-effects such as skin irritation.


Asunto(s)
Envejecimiento de la Piel , Vitamina A , Humanos , Vitamina A/farmacología , Envejecimiento de la Piel/genética , Estudio de Asociación del Genoma Completo , Piel , Expresión Génica , Receptor Edar , Proteínas de Unión al ADN
8.
J Invest Dermatol ; 144(10): 2230-2239.e10, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38460809

RESUMEN

Skin aging is a natural process that occurs over time but can be accelerated by sun exposure. Measuring skin age in a large population can provide insight into the extent of skin damage from sun exposure and skin cancer risk. Understanding the genetics of skin aging, within and across sexes (males and females), could improve our understanding of the genetic drivers of both skin aging and skin cancer. We used UK Biobank data to examine the genetic overlap between perceived youthfulness and traits relevant to actinic photoaging. Our GWAS identified 22 genome-wide significant loci for women and 43 for men. The genetic correlation (rg) between perceived youthfulness in men and women was significantly less than unity (rg = 0.75, 95% confidence interval = 0.69-0.80), suggesting a gene-by-sex interaction. In women, perceived youthfulness was modestly correlated with keratinocyte cancer (rg = -0.19) and skin tanning (rg = 0.18). In men, perceived youthfulness was correlated with male-pattern baldness (rg = -0.23). This suggests that the genetic architecture of perceived youthfulness may differ between sexes, with genes influencing skin tanning and skin cancer susceptibility driving the difference in women, whereas genes influencing male-pattern baldness and other puberty-related traits drive the difference in men. We recommend that future genetic analysis of skin aging include a sex-stratified component.


Asunto(s)
Estudio de Asociación del Genoma Completo , Envejecimiento de la Piel , Neoplasias Cutáneas , Humanos , Masculino , Femenino , Envejecimiento de la Piel/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/etiología , Persona de Mediana Edad , Anciano , Factores Sexuales , Adulto , Reino Unido/epidemiología
9.
Ital J Dermatol Venerol ; 159(3): 285-293, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376504

RESUMEN

Melanocortin-1 receptor (MC1R) and its variants have a pivotal role in melanin synthesis. However, MC1R has been associated to non-pigmentary pathways related to DNA-repair activities and inflammation. The aim of this review is to provide an up-to-date overview about the role of MC1R in the skin. Specifically, after summarizing the current knowledge about MC1R structure and polymorphisms, we report data concerning the correlation between MC1R, phenotypic traits, skin aging, other diseases and skin cancers and their risk assessment through genetic testing.


Asunto(s)
Receptor de Melanocortina Tipo 1 , Neoplasias Cutáneas , Receptor de Melanocortina Tipo 1/genética , Humanos , Neoplasias Cutáneas/genética , Polimorfismo Genético , Envejecimiento de la Piel/fisiología , Envejecimiento de la Piel/genética , Fenotipo , Enfermedades de la Piel/genética
10.
Aging Cell ; 23(5): e14123, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380598

RESUMEN

Exposure to ultraviolet radiation can lead to skin photoaging, which increases the risk of skin tumors. This study aims to investigate how microRNA m6A modification contributes to skin photoaging. This study found that skin fibroblasts exposed to a single UVB dose of 30 mJ/cm2 exhibited characteristics of photoaging. The m6A level of total RNA decreased in photoaged cells with a down-regulated level of METTL14, and overexpression of METTL14 displayed a photoprotective function. Moreover, miR-100-3p was a downstream target of METTL14. And METTL14 could affect pri-miR-100 processing to mature miR-100-3p in an m6A-dependent manner via DGCR8. Furthermore, miR-100-3p targeted at 3' end untranslated region of ERRFI1 mRNA with an inhibitory effect on translation. Additionally, photoprotective effects of overexpression of METTL14 were reversed by miR-100-3p inhibitor or overexpression of ERRFI1. In UVB-induced photoaging of human skin fibroblasts, METTL14-dependent m6A can regulate miR-100-3p maturation via DGCR8 and affect skin fibroblasts photoaging through miR-100-3p/ERRFI1 axis.


Asunto(s)
Fibroblastos , Metiltransferasas , MicroARNs , Envejecimiento de la Piel , Rayos Ultravioleta , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Metiltransferasas/metabolismo , Metiltransferasas/genética , Envejecimiento de la Piel/efectos de la radiación , Envejecimiento de la Piel/genética , Piel/metabolismo , Piel/efectos de la radiación , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
11.
J Cosmet Dermatol ; 23(4): 1396-1403, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38054565

RESUMEN

BACKGROUND: SPRY1 is associated with the invasiveness and prognosis of various tumors, and TET3 affects aging by regulating gene expression. AIMS: We investigated the roles of SPRY1 and TET3 in natural skin aging, replicative aging, and photoaging, along with the effect of UVA on genome-wide DNA methylation in HaCaT cells. METHODS: TET3 and SPRY1 expression were measured in the skin of patients of different age groups, as well as in vitro human skin, HaCaT cell replicative senescence, and HaCaT and HaCaT-siTET3 cell photoaging models. Senescence was verified using ß-galactosidase staining, and DNA damage was detected using immunofluorescence staining for γ-H2A.X. 5-Methyl cytosine (5-mC) content in the genome was determined using ELISA. RESULTS: SPRY1 expression increased with age, whereas TET3 expression decreased. Similarly, SPRY1 was upregulated and TET3 was downregulated with increasing cell passages. TET3-siRNA upregulated SPRY1 expression in HaCaT cells. UVA irradiation promoted HaCaT cell senescence and induced cellular DNA damage. SPRY1 was upregulated and TET3 was downregulated upon UVA irradiation. Genome-wide 5-mC content increased upon TET3 silencing and UVA irradiation, indicating a surge in overall methylation. CONCLUSIONS: SPRY1 and TET3 are natural skin aging-related genes that counteract to regulate replicative aging and UVA-induced photoaging in HaCaT cells. The cell photoaging model may limit experimental bias caused by different exposure times of skin model samples.


Asunto(s)
Dioxigenasas , Envejecimiento de la Piel , Enfermedades de la Piel , Humanos , Envejecimiento de la Piel/genética , Células Cultivadas , Piel , Daño del ADN , Rayos Ultravioleta/efectos adversos , Fibroblastos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfoproteínas/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Dioxigenasas/farmacología
12.
Pac Symp Biocomput ; 29: 477-491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160301

RESUMEN

The advent of spatial transcriptomics technologies has heralded a renaissance in research to advance our understanding of the spatial cellular and transcriptional heterogeneity within tissues. Spatial transcriptomics allows investigation of the interplay between cells, molecular pathways, and the surrounding tissue architecture and can help elucidate developmental trajectories, disease pathogenesis, and various niches in the tumor microenvironment. Photoaging is the histological and molecular skin damage resulting from chronic/acute sun exposure and is a major risk factor for skin cancer. Spatial transcriptomics technologies hold promise for improving the reliability of evaluating photoaging and developing new therapeutics. Challenges to current methods include limited focus on dermal elastosis variations and reliance on self-reported measures, which can introduce subjectivity and inconsistency. Spatial transcriptomics offers an opportunity to assess photoaging objectively and reproducibly in studies of carcinogenesis and discern the effectiveness of therapies that intervene in photoaging and preventing cancer. Evaluation of distinct histological architectures using highly-multiplexed spatial technologies can identify specific cell lineages that have been understudied due to their location beyond the depth of UV penetration. However, the cost and interpatient variability using state-of-the-art assays such as the 10x Genomics Spatial Transcriptomics assays limits the scope and scale of large-scale molecular epidemiologic studies. Here, we investigate the inference of spatial transcriptomics information from routine hematoxylin and eosin-stained (H&E) tissue slides. We employed the Visium CytAssist spatial transcriptomics assay to analyze over 18,000 genes at a 50-micron resolution for four patients from a cohort of 261 skin specimens collected adjacent to surgical resection sites for basal cell and squamous cell keratinocyte tumors. The spatial transcriptomics data was co-registered with 40x resolution whole slide imaging (WSI) information. We developed machine learning models that achieved a macro-averaged median AUC and F1 score of 0.80 and 0.61 and Spearman coefficient of 0.60 in inferring transcriptomic profiles across the slides, and accurately captured biological pathways across various tissue architectures.


Asunto(s)
Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/genética , Reproducibilidad de los Resultados , Biología Computacional , Perfilación de la Expresión Génica , Eosina Amarillenta-(YS) , Transcriptoma
14.
Skin Res Technol ; 29(9): e13463, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753673

RESUMEN

BACKGROUND: Photoaging is a degenerative biological process that affects the quality of life. It is caused by environmental factors including ultraviolet radiation (UVR), deep skin burns, smoking, active oxygen, chemical substances, and trauma. Among them, UVR plays a vital role in the aging process. AIM: With the continuous development of modern medicine, clinical researchers have investigated novel approaches to treat aging. In particular, mesenchymal stem cells (MSCs), non-coding RNAs are involved in various physiological processes have broad clinical application as they have the advantages of convenient samples, abundant sources, and avoidable ethical issues. METHODS: This article reviews research progress on five types of stem cell, exosomes, non-coding RNA in the context of photoaging treatment: adipose-derived stem cell, human umbilical cord MSCs, epidermal progenitor cells, keratinocyte stem cells, and hair follicle stem cells (HFSCs). It also includes stem cell related exosomes and their non-coding RNA research. RESULTS: The results have clinical guiding significance for prevention and control of the onset and development of photoaging. It is found that stem cells secrete cytokines, cell growth factors, non-coding RNA, exosomes and proteins to repair aging skin tissues and achieve skin rejuvenation. In particular, stem cell exosomes and non-coding RNA are found to have significant research potential, as they possess the benefits of their source cells without the disadvantages which include immune rejection and granuloma formation.


Asunto(s)
Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/genética , Calidad de Vida , Rayos Ultravioleta/efectos adversos , Piel , ARN no Traducido/genética
15.
Arch Dermatol Res ; 315(9): 2575-2584, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37402830

RESUMEN

Skin aging is a continuous and irreversible process which results in impairment of the skin role as barrier against all aggressive exogenous factors. It mainly manifests by photoaging, laxity, sagging, wrinkling, and xerosis. Carboxytherapy is considered as a safe, minimally invasive modality used for rejuvenation, restoration, and recondition of the skin. In the current study, the efficacy of carboxytherapy in the treatment of skin aging was assessed through investigation of gene expression profile for Coll I, Coll III, Coll IV, elastin, FGF, TGF-ß1, and VEGF. Our study is a 2-split clinical trial in which carboxytherapy was performed on one side of the abdomen in 15 cases with intrinsically skin aging manifestations weekly for 10 sessions, while the other side of the abdomen was left without treatment. Two weeks after the last session, skin biopsies were taken from both the treated and control sides of the abdomen in order to assess gene expression profile by qRT-PCR. The analysis of gene expression levels for all of Coll I, Coll III, Coll IV, elastin, TGF-ß1, FGF and VEGF genes showed a statistically significant difference between the interventional and control groups. The findings for all of these seven genes showed increase in the interventional group, among which Coll IV, VEGF, FGF, and elastin showed the higher mean changes. Our study confirmed the effectiveness of carboxytherapy in treating and reversing the intrinsically aging skin.Clinical Trial Registration Code and Date of Registration: ChiCTR2200055185; 2022/1/2.


Asunto(s)
Envejecimiento de la Piel , Humanos , Envejecimiento de la Piel/genética , Elastina , Factor de Crecimiento Transformador beta1/genética , Transcriptoma , Factor A de Crecimiento Endotelial Vascular/genética , Resultado del Tratamiento
16.
J Invest Dermatol ; 143(9): 1700-1707.e1, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36914001

RESUMEN

Fragmentation, disorganization, and depletion of the collagen-rich dermal extracellular matrix are hallmarks of aged human skin. These deleterious alterations are thought to critically mediate many of the prominent clinical attributes of aged skin, including thinning, fragility, impaired wound healing, and a propensity for carcinoma. Matrix metalloproteinase-1 (MMP1) initiates the cleavage of collagen fibrils and is significantly increased in dermal fibroblasts in aged human skin. To investigate the role of elevated MMP1 in skin aging, we generated a conditional bitransgenic mouse (type I collagen alpha chain 2; human MMP1 [Col1a2;hMMP1]) that expresses full-length, catalytically active hMMP1 in dermal fibroblasts. hMMP1 expression is activated by a tamoxifen-inducible Cre recombinase that is driven by the Col1a2 promoter and upstream enhancer. Tamoxifen induced hMMP1 expression and activity throughout the dermis Col1a2:hMMP1 mice. At 6 months of age, Col1a2;hMMP1 mice displayed loss and fragmentation of dermal collagen fibrils, which was accompanied by many of the features of aged human skin, such as contracted fibroblast morphology, reduced collagen production, increased expression of multiple endogenous MMPs, and proinflammatory mediators. Interestingly, Col1a2;hMMP1 mice displayed substantially increased susceptibility to skin papilloma development. These data demonstrate that fibroblast expression of hMMP1 is a critical mediator of dermal aging and creates a dermal microenvironment that promotes keratinocyte tumor development.


Asunto(s)
Papiloma , Envejecimiento de la Piel , Humanos , Animales , Ratones , Anciano , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno/metabolismo , Piel/metabolismo , Envejecimiento de la Piel/genética , Fibroblastos/metabolismo , Células Cultivadas , Microambiente Tumoral
17.
Mitochondrion ; 70: 41-53, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36921832

RESUMEN

Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.


Asunto(s)
Envejecimiento Prematuro , Neoplasias , ARN Largo no Codificante , Envejecimiento de la Piel , Humanos , ARN Largo no Codificante/genética , Envejecimiento de la Piel/genética , Envejecimiento Prematuro/metabolismo , Neoplasias/genética , Mitocondrias/genética , Mitocondrias/metabolismo
18.
Photodermatol Photoimmunol Photomed ; 39(3): 235-245, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35950642

RESUMEN

BACKGROUND: Mesenchymal stem cells-derived exosome (MSCs-exo) was identified to reduce photoaging. The purpose of this study was to investigate the potential role of microRNA (miR)-29b-3p derived from bone marrow MSCs-exo (BMSCs-exo) in photoaging. METHODS: Exosomes were isolated from BMSCs and verified by Western blot. A photoaging cell model was constructed by UVB irradiation of human dermal fibroblasts (HDFs). Quantitative real-time PCR (RT-qPCR) was performed to detect the mRNA levels of miR-29b-3p, collagen type I and matrix metalloproteinases (MMPs). CCK-8, Transwell and flow cytometry were applicated to examine cell viability, migration and apoptosis. Commercial kits are used to measure levels of oxidative stress indicators. Finally, a dual-luciferase reporter assay was applied to validate the target of miR-29b-3p. RESULTS: Extracted exosomes were positive for HSP70 and CD9. Survival of HDFs increased in an exosome concentration-dependent manner. UVB irradiation inhibited miR-29b-3p levels compared with controls, but BMSCs-exo treatment restored miR-29b-3p levels (p < .05). Additionally, BMSCs-exo-miR-29b-3p reversed the inhibition of HDFs migration and oxidative stress by UVB irradiation, as well as the promotion of apoptosis. However, this reversal was attenuated by the suppression of miR-29b-3p (p < .05). Furthermore, BMSCs-exo-miR-29b-3p also inhibited the degradation of collagen type I and the production of MMPs in photoaging, and they were also eliminated by the reduced miR-29b-3p. Finally, MMP-2 was the target gene of miR-29b-3p. CONCLUSION: Our study presented a novel role for BMSCs-exo-miR-29b-3p in improving skin photoaging function, and these findings may provide new insights into the targeted treatment of skin photoaging.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Envejecimiento de la Piel , Humanos , Colágeno Tipo I/genética , Envejecimiento de la Piel/genética , Exosomas/genética , Exosomas/metabolismo , MicroARNs/genética , Células Madre Mesenquimatosas/metabolismo , Fibroblastos/metabolismo
19.
Skin Res Technol ; 29(1): e13231, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36437544

RESUMEN

BACKGROUND: Skin characteristics show great variation from person to person and are affected by multiple factors, including genetic, environmental, and physical factors, but details of the involvement and contributions of these factors remain unclear. OBJECTIVES: We aimed to characterize genetic, environmental, and physical factors affecting 16 skin features by developing models to predict personal skin characteristics. METHODS: We analyzed the associations of skin phenotypes with genetic, environmental, and physical features in 1472 Japanese females aged 20-80 years. We focused on 16 skin characteristics, including melanin, brightness/lightness, yellowness, pigmented spots, wrinkles, resilience, moisture, barrier function, texture, and sebum amount. As genetic factors, we selected 74 single-nucleotide polymorphisms of genes related to skin color, vitamin level, hormones, circulation, extracellular matrix (ECM) components and ECM-degrading enzymes, inflammation, and antioxidants. Histories of ultraviolet (UV) exposure and smoking as environmental factors and age, height, and weight as physical factors were acquired by means of a questionnaire. RESULTS: A linear association with age was prominent for increase in the area of crow's feet, increase in number of pigmented spots, decrease in forehead sebum, and increase in VISIA wrinkle parameters. Associations were analyzed by constructing linear regression models for skin feature changes and logistic regression models to predict whether subjects show lower or higher skin measurement values in the same age groups. Multiple genetic factors, history of UV exposure and smoking, and body mass index were statistically selected for each skin characteristic. The most important association found for skin spots, such as lentigines and wrinkles, was adolescent sun exposure. CONCLUSION: Genetic, environmental, and physical factors associated with interindividual differences of the selected skin features were identified. The developed models should be useful to predict the skin characteristics of individuals and their age-related changes.


Asunto(s)
Trastornos de la Pigmentación , Envejecimiento de la Piel , Femenino , Humanos , Pueblos del Este de Asia , Piel , Envejecimiento de la Piel/genética , Pigmentación de la Piel/genética , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
20.
Cells ; 11(24)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36552724

RESUMEN

In recent years, there has been a great deal of interest in the ectopic roles of olfactory receptors (ORs) throughout the human body. Especially, the ectopic function of OR in the skin is one of the most actively researched areas. Suberic acid, a scent compound, was hypothesized to increase collagen synthesis in the ultraviolet B (UVB)-irradiated human dermal fibroblasts (Hs68) through a specific olfactory receptor. Suberic acid ameliorated UVB-induced decreases in collagen production in Hs68 cells. Using in silico docking to predict the binding conformation and affinity of suberic acid to 15 ectopic ORs detectable in Hs68, several ORs were identified as promising candidates. The effect of suberic acid on collagen synthesis in UVB-exposed dermal fibroblasts was nullified only by a reduction in OR10A3 expression via specific siRNA. In addition, using the cells transiently expressing OR10A3, we demonstrated that suberic acid can activate OR10A3 by assessing the downstream effector cAMP response element (CRE) luciferase activity. We examined that the activation of OR10A3 by suberic acid subsequently stimulates collagen synthesis via the downstream cAMP-Akt pathway. The findings support OR10A3 as a promising target for anti-aging treatments of the skin.


Asunto(s)
Receptores Odorantes , Envejecimiento de la Piel , Humanos , Colágeno/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/fisiología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA