Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 618
Filtrar
1.
Reprod Fertil ; 5(3)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38990713

RESUMEN

Abstract: Reactive oxygen species (ROS) are a by-product of the activity of cytochrome P450 steroidogenic enzymes. Antioxidant enzymes protect against ROS damage. To identify if any particular antioxidant enzyme is used to protect against ROS produced by granulosa cells as follicles enlarge and produce oestradiol, we measured in the bovine granulosa cells the expression of two steroidogenic enzymes (CYP11A1, CYP19A1), important for progesterone and oestradiol production. We also measured the expression of the members (FDXR, FDX1, POR) of their electron transport chains (ETC). We measured antioxidant enzymes (GPXs 1-8, CAT, SODs 1 and 2, PRDXs 1-6, GSR, TXN, TXNRDs 1-3). Since selenium is an active component of GPXs, the selenium-uptake receptors (LRPs 2 and 8) were measured. Only the selenium-dependent GPX1 showed the same increase in expression as the steroidogenic enzymes did with increasing follicle size. GPX4 and PRDX2/6 decreased with follicle size, whereas SOD1/2, CAT, GSR, and TXNRD3 were lowest at the intermediate sizes. The other antioxidant enzymes were unchanged or expressed at low levels. The expression of the selenium-uptake receptor LRP8 also increased significantly with follicle size. Correlation analysis revealed statistically significant and strongly positive correlations of the steroidogenic enzymes and their ETCs with both GPX1 and LRP8. These results demonstrate a relationship between the expression of genes involved in steroidogenesis and selenium-containing antioxidant defence mechanisms. They suggest that during the late stages of folliculogenesis, granulosa cells are dependent on sufficient expression of GPX1 and the selenium transporter LRP8 to counteract increasing ROS levels caused by the production of steroid hormones. Lay summary: In the ovary, eggs are housed in follicles which contain the cells that produce oestrogen in the days leading up to ovulation of the egg. Oestrogen is produced by the action of enzymes. However, some of these enzymes also produce by-products called reactive oxygen species (ROS). These are harmful to eggs. Fortunately, cells have protective antioxidant enzymes that can neutralise ROS. This study was interested in which particular antioxidant enzyme(s) might be involved in neutralising the ROS in follicle cells. It was found that only one antioxidant enzyme, GPX1, appeared to be co-regulated with the enzymes that produce oestrogen and progesterone in the follicular cells. GPX1 contains the essential mineral selenium. In summary, this study has identified which antioxidant appears to be involved in neutralising ROS in the days leading to ovulation. It highlights the importance of selenium in the diet.


Asunto(s)
Glutatión Peroxidasa GPX1 , Glutatión Peroxidasa , Células de la Granulosa , Femenino , Células de la Granulosa/metabolismo , Animales , Bovinos , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Selenio/metabolismo , Antioxidantes/metabolismo , Aromatasa/metabolismo , Aromatasa/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Progesterona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estradiol/metabolismo , Folículo Ovárico/metabolismo
2.
Science ; 384(6701): eadk5382, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38870290

RESUMEN

Polycystic ovary syndrome (PCOS), a prevalent reproductive disorder in women of reproductive age, features androgen excess, ovulatory dysfunction, and polycystic ovaries. Despite its high prevalence, specific pharmacologic intervention for PCOS is challenging. In this study, we identified artemisinins as anti-PCOS agents. Our finding demonstrated the efficacy of artemisinin derivatives in alleviating PCOS symptoms in both rodent models and human patients, curbing hyperandrogenemia through suppression of ovarian androgen synthesis. Artemisinins promoted cytochrome P450 family 11 subfamily A member 1 (CYP11A1) protein degradation to block androgen overproduction. Mechanistically, artemisinins directly targeted lon peptidase 1 (LONP1), enhanced LONP1-CYP11A1 interaction, and facilitated LONP1-catalyzed CYP11A1 degradation. Overexpression of LONP1 replicated the androgen-lowering effect of artemisinins. Our data suggest that artemisinin application is a promising approach for treating PCOS and highlight the crucial role of the LONP1-CYP11A1 interaction in controlling hyperandrogenism and PCOS occurrence.


Asunto(s)
Proteasas ATP-Dependientes , Artemisininas , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Proteínas Mitocondriales , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Ratones , Ratas , Andrógenos/metabolismo , Artemisininas/uso terapéutico , Artemisininas/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Modelos Animales de Enfermedad , Hiperandrogenismo/tratamiento farmacológico , Hiperandrogenismo/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ovario/efectos de los fármacos , Ovario/metabolismo , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Proteolisis , Ratones Endogámicos C57BL , Adulto Joven , Adulto , Ratas Sprague-Dawley , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo
3.
Anim Biotechnol ; 35(1): 2351975, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38742598

RESUMEN

The development of ovarian follicles in poultry is a key factor affecting the performance of egg production. Ovarian follicle development is regulated via the Wnt/ß-catenin signaling pathway, and ß-catenin, encoded by CTNNB1, is a core component of this pathway. In this study, using ovary GCs from laying hens, we investigated the regulatory role of CTNNB1 in steroid synthesis. We found that CTNNB1 significantly regulates the expression of StAR and CYP11A1 (key genes related to progesterone synthesis) and the secretion of progesterone (P4). Furthermore, simultaneous overexpression of CTNNB1 and SF1 resulted in significantly higher levels of CYP11A1 and secretion of P4 than in cells overexpressing CTNNB1 or SF1 alone. We also found that in GCs overexpressing SF1, levels of CYP11A1 and secreted P4 were significantly greater than in controls. Silencing of CYP11A1 resulted in the inhibition of P4 secretion while overexpression of SF1 in CYP11A1-silenced cells restored P4 secretion to normal levels. Together, these results indicate that synergistic cooperation between the ß-catenin and SF1 regulates progesterone synthesis in laying hen ovarian hierarchical granulosa cells to promote CYP11A1 expression.


Asunto(s)
Pollos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Células de la Granulosa , Progesterona , beta Catenina , Animales , Femenino , Progesterona/biosíntesis , Progesterona/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Células de la Granulosa/metabolismo , Pollos/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Regulación de la Expresión Génica/fisiología
4.
Anim Reprod Sci ; 265: 107474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657463

RESUMEN

This study investigated the effect of hCG or GnRH on structural changes of the corpora lutea (CL) and the regulation of the expression of steroidogenic enzymes involved in P4 secretion in post-ovulatory (po-CL) and accessory CL (acc-CL). Sixty-four ewes were assigned to three groups receiving: 300 IU of hCG (hCG) or 4 µg Buserelin (GnRH) or 1 mL of saline solution (Control) on Day (d) 4 post artificial insemination (FTAI). Laparoscopic ovarian were performed on d 4, 14 and, 21 post-FTAI to determine the numbers of CL. Blood samples were collected for serum LH and P4 analysis. On d 14 post-FTAI, both CL were removed from the ovary to determine large luteal cell (LLC) number and to evaluate the expression of steroidogenic enzymes (HSD3B1, STAR, CYP11A1). Only hCG and GnRH treated ewes generated acc-CL. The LLC in both po- and acc-CL were significantly greater in the hCG group compared to GnRH and Control groups (P<0.05). Overall, hCG group showed the greatest immunodetection of HSD3B1and STAR in both po- and acc-CL (P<0.05). rnRNA expression of HSD3B1, STAR and CYP11A1 in the acc-CL tended to be greater in hCG group than in GnRH group (P<0.1). The LH concentration was increased in GnRH group (P<0.05) and P4 concentration was greater in hCG group compared to the other groups (P<0.05). In conclusion, administration of hCG has a notably impact on acc-CL development and the expression of steroidogenic enzymes compared to GnRH treatment in ewes. This leads to elevated P4 concentration and improved luteal function.


Asunto(s)
Gonadotropina Coriónica , Cuerpo Lúteo , Hormona Liberadora de Gonadotropina , Fase Luteínica , Progesterona , Animales , Femenino , Ovinos/fisiología , Cuerpo Lúteo/efectos de los fármacos , Cuerpo Lúteo/metabolismo , Progesterona/sangre , Progesterona/metabolismo , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/administración & dosificación , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Fase Luteínica/efectos de los fármacos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Hormona Luteinizante/metabolismo , Fosfoproteínas
5.
Microb Cell Fact ; 23(1): 105, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594656

RESUMEN

BACKGROUND: Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS: Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION: The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.


Asunto(s)
Fitosteroles , Progesterona , Bovinos , Animales , Pregnenolona/metabolismo , Esteroles , Esteroides , Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Mamíferos/metabolismo , Éteres
6.
Cell Rep ; 43(3): 113936, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38489269

RESUMEN

Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Humanos , Femenino , Osteogénesis , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Línea Celular Tumoral , Neoplasias Óseas/metabolismo , Osteoclastos/metabolismo , Pregnenolona/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular
7.
Theriogenology ; 220: 108-115, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507824

RESUMEN

The presence of Kisspeptin (Kp) and its receptors in the corpus luteum (CL) of buffalo has recently been demonstrated. In this study, we investigated the role of Kp in the modulation of progesterone (P4) synthesis in vitro. The primary culture of bubaline luteal cells (LCs) was treated with 10, 50, and 100 nM of Kp and Kp antagonist (KpA) alongside a vehicle control. The combined effect of Kp and KpA was assessed at 100 nM concentration. Intracellular response to Kp treatment in the LCs was assessed by examining transcript profiles (LHR, STAR, CYP11A1, HSD3B1, and ERK1/2) using quantitative polymerase chain reaction (qPCR). In addition, the immunolocalization of ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2) in the LCs was studied using immunocytochemistry. Accumulation of P4 from the culture supernatant was determined using enzyme-linked immunosorbent assay (ELISA). The results indicated that LCs had a greater p-ERK1/2 expression in the Kp treatment groups. A significant increase in the P4 concentration was recorded at 50 nM and 100 nM Kp, while KpA did not affect the basal concentration of P4. However, the addition of KpA to the Kp-treated group at 100 nM concentration suppressed the Kp-induced P4 accumulation into a concentration similar to the control. There was significant upregulation of ERK1/2 and CYP11A1 expressions in the Kp-treated LCs at 100 nM (18.1 and 37fold, respectively, p < 0.01). However, the addition of KpA to Kp-treated LCs modulated ERK1/2, LHR, STAR, CYP11A1, and HSD3B1 at 100 nM concentration. It can be concluded that Kp at 100 nM stimulated P4 production, while the addition of KpA suppressed Kp-induced P4 production in the buffalo LCs culture. Furthermore, an increment in p-ERK1/2 expression in the LCs indicated activation of the Kp signaling pathway was associated with luteal steroidogenesis.


Asunto(s)
Células Lúteas , Femenino , Animales , Progesterona/metabolismo , Kisspeptinas/genética , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Regulación hacia Arriba , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Sistema de Señalización de MAP Quinasas , Cuerpo Lúteo/fisiología , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo
8.
Reproduction ; 167(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271820

RESUMEN

In brief: In this study, we examined the relationship between BMAL1 expression and the genes regulating steroid biosynthesis in human luteinized granulosa cells. BMAL1 function is crucial for steroid production and proper ovarian function, highlighting the importance of circadian clock regulation in female reproductive health. Abstract: Human luteinized granulosa cells were collected to analyze circadian clock gene expression and its effect on the genes regulating steroid biosynthesis. We used siRNA to knock down the expression of BMAL1 in KGN cells. We measured the expression levels of genes regulating steroid biosynthesis and circadian clock RT-qPCR. We demonstrated that BMAL1 expression positively correlates with genes regulating steroid biosynthesis (CYP11A1, CYP19A1, STAR, and ESR2). The knockdown of BMAL1 in KGN cells revealed a significant decrease in steroid synthase expression. In contrast, when BMAL1 was overexpressed in KGN and HGL5 cells, we observed a significant increase in the expression of steroid synthases, such as CYP11A1 and CYP19A1. These results indicated that BMAL1 positively controls 17ß-estradiol (E2) secretion in granulosa cells. We also demonstrated that dexamethasone synchronization in KGN cells enhanced the rhythmic alterations in circadian clock genes. Our study suggests that BMAL1 plays a critical role in steroid biosynthesis in human luteinized granulosa cells, thereby emphasizing the importance of BMAL1 in the regulation of reproductive physiology.


Asunto(s)
Factores de Transcripción ARNTL , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Femenino , Humanos , Factores de Transcripción ARNTL/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Estradiol/metabolismo , Células de la Granulosa/metabolismo , Progesterona/metabolismo
9.
Br Poult Sci ; 65(1): 44-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37772759

RESUMEN

1. The bioflavonoid quercetin is a biologically active component, but its functional regulation of granulosa cells (GCs) during chicken follicular development is little studied. To investigate the effect of quercetin on follicular development in laying hens, an in vitro study was conducted on granulosa cells from hierarchical follicles treated with quercetin.2. The effect of quercetin on cell activity, proliferation and apoptosis of granulosa cells was detected by CCK-8, EdU and apoptosis assays. The effect on progesterone secretion from granulosa cells was investigated by enzyme-linked immunosorbent assay (ELISA). Expression of proliferating cell nuclear antigen (PCNA) mRNA and oestrogen receptors (ERs), as well as the expression of steroid acute regulatory protein (StAR), cytochrome P450 cholesterol side chain cleavage enzyme (P450scc) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA during progesterone synthesis, were measured by real-time quantitative polymerase chain reaction (RT-qPCR). PCNA, StAR and CYP11A1 protein expression levels were detected using Western blotting (WB).3. The results showed that treatment with quercetin in granulosa cells significantly enhanced cell vitality and proliferation, reduced apoptosis and promoted the expression of gene and protein levels of PCNA. The levels of progesterone secretion increased significantly following quercetin treatment, as did the expression levels of StAR and CYP11A1 using the Western Blot (WB) method.4. The mRNA expression levels of ERα were significantly upregulated in the 100 ng/ml and 1000 ng/ml quercetin-treated groups, while there was no significant difference in expression levels of ERß mRNA.


Asunto(s)
Pollos , Progesterona , Femenino , Animales , Progesterona/metabolismo , Progesterona/farmacología , Pollos/genética , Quercetina/farmacología , Quercetina/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Células de la Granulosa/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
J Exp Zool A Ecol Integr Physiol ; 341(1): 31-40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861072

RESUMEN

Cadmium is a male reproductive toxicant that interacts with a variety of pathogenetic mechanisms. However, the effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis is still ambiguous. Light microscopy, Western blot, immunohistochemistry, immunofluorescence, and quantitative polymerase chain reaction were performed to study the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis. The results indicated that in the control group, Leydig cells showed dynamic immunoreactivity and immunosignaling action with a strong positive significant secretion of 3ß-hydroxysteroid hydrogenase (3ß-HSD) in the interstitial compartment of the testis. Leydig cells showed a high active regulator mechanism of the steroidogenic pathway with increased the proteins and genes expression level of steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol (CYP11A1), cytochrome P450 cholesterol (CYP17A1), 3ß-hydroxysteroid hydrogenase (3ß-HSD) 17ß-hydroxysteroid hydrogenase (17ß-HSD), and androgen receptor (AR) that maintained the healthy and vigorous progressive motile spermatozoa. However, on treatment with cadmium, Leydig cells were irregularly dispersed in the interstitial compartment of the testis. Leydig cells showed reduced immunoreactivity and immunosignaling of 3ß-HSD protein. Meanwhile, cadmium impaired the regulatory mechanism of the steroidogenic process of the Leydig cells with reduced protein and gene expression levels of STAR, CYP11A1, CYP17A1, 3ß-HSD, 17ß-HSD, and AR in the testis. Additionally, treatment with cadmium impaired the serum LH, FSH, and testosterone levels in blood as compared to control. This study explores the hazardous effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis.


Asunto(s)
Hidrogenasas , Células Intersticiales del Testículo , Masculino , Animales , Células Intersticiales del Testículo/química , Células Intersticiales del Testículo/metabolismo , Cadmio/metabolismo , Testosterona , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Hidroxiesteroides/metabolismo , Hidroxiesteroides/farmacología , Hidrogenasas/metabolismo , Hidrogenasas/farmacología , Espermatogénesis , Colesterol/metabolismo , Colesterol/farmacología
11.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068875

RESUMEN

Melatonin has been proved to be involved in testosterone synthesis, but whether melatonin participates in testosterone synthesis by regulating miRNA in Leydig cells is still unclear. The purpose of this study is to clarify the mechanism of melatonin on Leydig cells testosterone synthesis from the perspective of miRNA. Our results showed that melatonin could significantly inhibit testosterone synthesis in rooster Leydig cells. miR-7481-3p and CXCL14 were selected as the target of melatonin based on RNA-seq and miRNA sequencing. The results of dual-luciferase reporter assays showed that miR-7481-3p targeted the 3'-UTR of CXCL14. The overexpression of miR-7481-3p significantly inhibited the expression of CXCL14 and restored the inhibitory role of melatonin testosterone synthesis and the expression of StAR, CYP11A1, and 3ß-HSD in rooster Leydig cells. Similarly, interference with CXCL14 could reverse the inhibitory effect of melatonin on the level of testosterone synthesis and the expression of StAR, CYP11A1, and 3ß-HSD in rooster Leydig cells. The RNA-seq results showed that melatonin could activate the PI3K/AKT signal pathway. Interference with CXCL14 significantly inhibited the phosphorylation level of PI3K and AKT, and the inhibited PI3K/AKT signal pathway could reverse the inhibitory effect of CXCL14 on testosterone synthesis and the expression of StAR, CYP11A1 and 3ß-HSD in rooster Leydig cells. Our results indicated that melatonin inhibits testosterone synthesis by targeting miR-7481-3p/CXCL14 and inhibiting the PI3K/AKT pathway.


Asunto(s)
Células Intersticiales del Testículo , Melatonina , MicroARNs , Testosterona , Animales , Masculino , Pollos/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Células Intersticiales del Testículo/metabolismo , Melatonina/farmacología , Melatonina/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Testosterona/metabolismo
12.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 218-222, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38063092

RESUMEN

Resveratrol (Res) is a polyphenolic compound that exhibits a diverse array of biological effects. Herein, we detected the ability of Res on murine granulosa cells (GCs) against impaired steroidogenesis and apoptotic death in response to high glucose levels. Ovarian GCs were harvested from C57BL/6 mice and cultured in steroidogenic media supplemented with follicle-stimulating hormone (FSH, 30 ng/mL), Res (50 µmol/L), and low or high glucose concentrations (5 mM or 30 mM). After culture for 24 h, cell supernatants were harvested and the levels of progesterone and estradiol therein were measured. Also, caspase-3 activity and the expression of genes associated with apoptosis and steroidogenesis were assessed. High-glucose treatment suppressed steroidogenesis in this assay system, resulting in the impaired expression of steroidogenesis-related genes including Cyp11a1, Cyp19a1, 3ßHSD, and StAR and a concomitant decrease in progesterone and estradiol production. Cells exposed to high glucose also exhibited apoptotic phenotypes characterized by Bax upregulation, Bcl-2 downregulation, and increased caspase-3 activity levels. However, Res treatment was sufficient to reverse this high glucose level-induced apoptotic and steroidogenic phenotypes with improving progesterone and estradiol production, and these maybe related the effects of Res on Cyp11a1, Cyp19a1, 3ßHSD, and StAR expressions. These data suggested that Res is well suited to overcoming the negative effects of hyperglycemia of GC functionality.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Progesterona , Femenino , Ratones , Animales , Progesterona/farmacología , Resveratrol/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Caspasa 3/metabolismo , Ratones Endogámicos C57BL , Estradiol/farmacología , Hormona Folículo Estimulante/metabolismo , Células de la Granulosa/metabolismo , Apoptosis , Glucosa/metabolismo , Células Cultivadas
13.
Endocrinology ; 165(2)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38146648

RESUMEN

Progesterone synthesized in the placenta is essential for pregnancy maintenance. CYP11A1 is a key enzyme in progesterone synthesis, and its expression increases greatly during trophoblast syncytialization. However, the underlying mechanism remains elusive. Here, we demonstrated that passive demethylation of CYP11A1 promoter accounted for the upregulation of CYP11A1 expression during syncytialization with the participation of the transcription factor C/EBPα. We found that the methylation rate of a CpG locus in the CYP11A1 promoter was significantly reduced along with decreased DNA methyltransferase 1 (DNMT1) expression and its enrichment at the CYP11A1 promoter during syncytialization. DNMT1 overexpression not only increased the methylation of this CpG locus in the CYP11A1 promoter, but also decreased CYP11A1 expression and progesterone production. In silico analysis disclosed multiple C/EBPα binding sites in both CYP11A1 and DNMT1 promoters. C/EBPα expression and its enrichments at both the DNMT1 and CYP11A1 promoters were significantly increased during syncytialization. Knocking-down C/EBPα expression increased DNMT1 while it decreased CYP11A1 expression during syncytialization. Conclusively, C/EBPα plays a dual role in the regulation of CYP11A1 during syncytialization. C/EBPα not only drives CYP11A1 expression directly, but also indirectly through downregulation of DNMT1, which leads to decreased methylation in the CpG locus of the CYP11A1 promoter, resulting in increased progesterone production during syncytialization.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , ADN (Citosina-5-)-Metiltransferasa 1 , Placenta , Femenino , Humanos , Embarazo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Metilación de ADN , Placenta/metabolismo , Progesterona/metabolismo , Trofoblastos/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo
14.
J Reprod Dev ; 69(6): 337-346, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940556

RESUMEN

Insulin-like growth factor-1 (IGF-1) plays a crucial role in follicular growth and stimulates steroid hormone production in bovine follicles. Steroid hormones are synthesized through the actions of steroidogenic enzymes, specifically STAR, CYP11A1, HSD3B, and CYP19A1 in both theca cells (TCs) and granulosa cells (GCs), under the influence of gonadotropins. Particularly, estradiol 17ß (E2) assumes a central role in follicular development and selection by activating estrogen receptors ß (ESR2) in GCs. We assessed ESR2 mRNA expression in GCs of developing follicles and investigated the impact of IGF-1 on the mRNA expression of ESR2, CYP19A1, FSHR, and LHCGR, STAR, CYP11A1, and HSD17B in cultured GCs and TCs, respectively. Additionally, we assessed the influence of IGF-1 on androstenedione (A4), progesterone (P4), and testosterone (T) production in TCs. Small-sized follicles (< 6 mm) exhibited the highest levels of ESR2 mRNA expression, whereas medium-sized follicles (7-8 mm) displayed higher levels than large-sized follicles (≥ 9 mm) (P < 0.05). IGF-1 increased the mRNA expression of ESR2, CYP19A1, and FSHR in GCs of follicles of both sizes, except for FSHR mRNA in medium-sized follicles (P < 0.05). IGF-1 significantly elevated mRNA expression of LHCGR, STAR, CYP11A1, and CYP17B in TCs of small- and medium-sized follicles (P < 0.05). Moreover, IGF-1 augmented the production of A4 and P4 but had no impact on T production in TCs of small- and medium-sized follicles. Taken together, our findings indicate that IGF-1 upregulates steroidogenic enzymes and steroid hormone production, underscoring the crucial role of IGF-1 in follicle development and selection.


Asunto(s)
Hormonas Esteroides Gonadales , Factor I del Crecimiento Similar a la Insulina , Folículo Ovárico , Animales , Bovinos , Femenino , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Estradiol/metabolismo , Células de la Granulosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Folículo Ovárico/metabolismo , Progesterona/farmacología , Receptores de Estradiol/metabolismo , ARN Mensajero/metabolismo , Hormonas Esteroides Gonadales/metabolismo
15.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R750-R758, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37867473

RESUMEN

The oviduct of the Chinese brown frog (Rana dybowskii) expands in prehibernation rather than in prespawning, which is one of the physiological phenomena that occur in the preparation for hibernation. Steroid hormones are known to regulate oviductal development. Cholesterol synthesis and steroidogenesis may play an important role in the expansion of the oviduct before hibernation. In this study, we investigated the expression patterns of the markers that are involved in the de novo steroid synthesis pathway in the oviduct of R. dybowskii during prespawning and prehibernation. According to histological analysis, the oviduct of R. dybowskii contains epithelial cells, glandular cells, and tubule lumens. During prehibernation, oviductal pipe diameter and weight were significantly larger than during prespawning. 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR), low-density lipoprotein receptor (LDLR), steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and steroidogenic factor 1 (SF-1) were detected in epithelial cells in prehibernation and glandular cells during prespawning. HMGCR, LDLR, StAR, and P450scc protein expression levels were higher in prehibernation than during prespawning, but the SF-1 protein expression level did not significantly differ. HMGCR, LDLR, StAR, P450scc (CYP11A1), and SF-1 (NR5A1) mRNA expression levels were significantly higher in prehibernation compared with prespawning. The transcriptome results showed that the steroid synthesis pathway was highly expressed during prehibernation. Existing results indicate that the oviduct is able to synthesize steroid hormones using cholesterol, and that steroid hormones may affect the oviductal functions of R. dybowskii.


Asunto(s)
Oviductos , Ranidae , Humanos , Animales , Femenino , Ranidae/genética , Ranidae/metabolismo , Oviductos/metabolismo , Células Epiteliales/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Colesterol/metabolismo , Hormonas/metabolismo
16.
J Steroid Biochem Mol Biol ; 234: 106404, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37743028

RESUMEN

Adropin, a highly conserved multifunctional peptide hormone, has a beneficial effect on the maintenance of gluco-lipid homeostasis, endothelial and cardiovascular functions. However, the expression and potential role of adropin in ovarian function are not fully elucidated. The present study aimed to investigate the expression of adropin and GPR19 in the mice ovary during various stages of postnatal development. This study also explored whether the treatment of adropin can modulate the timing of puberty, for which pre-pubertal mice were treated with adropin. The result showed the intense immunoreactivity of adropin in TICs, while GPR19 immunoreactivity was noted in GCs in infantile, pre-pubertal, and pubertal mice ovary. Also, adropin and GPR19 are highly expressed in the CL of the ovary of reproductively active mice. The fact that adropin expression in the ovary at different stages of postnatal development positively correlated with circulating progesterone and estradiol indicated that it has a role in the production of steroid hormones. Furthermore, the results of in vivo studies in pre-pubertal mice showed that adropin promotes early folliculogenesis by enhancing the proliferation (PCNA) of GCs of cortical ovarian follicles and promotes estradiol production by enhancing the expression of GPR19, StAR, CYP11A1 and aromatase proteins. Also, adropin treatment increases the Bax/Bcl2 ratio and expression of cleaved caspase-3 and ERα proteins, which may result in increased apoptosis of medullary follicles leading to the formation of a well-developed interstitium with interstitial glandular cells. Collectively, these findings indicate that adropin may be a factor that accelerates pubertal development in the ovary and could be utilized as a therapeutic approach for treating pubertal delay.


Asunto(s)
Ovario , Maduración Sexual , Animales , Femenino , Ratones , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Estradiol/metabolismo , Folículo Ovárico/fisiología , Ovario/metabolismo
17.
Theriogenology ; 210: 214-220, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37527623

RESUMEN

Granulosa cells (GCs) synthesize estrogens needed for follicular growth. However, the effects of hypoxia on steroidogenesis in buffalo GCs remain unclear. In this study, the impacts of hypoxic conditions (5% oxygen) on estrogen synthesis in buffalo GCs were examined. The results showed that hypoxia improved both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3ß-HSD) and the secretion levels of estradiol in buffalo GCs. Hypoxic conditions promoted the sensitivity of buffalo GCs to FSH. Furthermore, inhibition of cAMP/PKA signaling pathway (H89, a cAMP/PKA signaling pathway inhibitor) reduced both the expression levels of estrogen synthesis-related genes (CYP11A1, CYP19A1, and 3ß-HSD) and the secretion levels of estradiol in hypoxia-cultured buffalo GCs. Besides, inhibition of cAMP/PKA signaling pathway lowered the responsiveness of buffalo GCs to FSH under hypoxic conditions. The present study indicated that hypoxia enhanced the steroidogenic competence of buffalo GCs principal by affecting cAMP/PKA signaling pathway and subsequent sensitivity of GCs to FSH.


Asunto(s)
Bison , Búfalos , Femenino , Animales , Búfalos/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Células de la Granulosa/fisiología , Estradiol/farmacología , Bison/metabolismo , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Estrógenos/farmacología , Hipoxia/metabolismo , Hipoxia/veterinaria , Células Cultivadas
18.
Environ Sci Pollut Res Int ; 30(42): 96412-96423, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567992

RESUMEN

Although 2,4,6-trinitrotoluene (TNT) is a dangerous carcinogen in environmental pollution, information on the reproductive effects of TNT explosive contamination is limited. To explore the possible ovarian effects, TNT explosive-exposed rat models were established, and Wistar female rats were exposed to low and high TNT (40 g and 80 g, air and internal) explosives. After a month of exposure, the estrous cycle, ovarian histopathology, and follicle counting were conducted. Serum hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), progesterone, testosterone, and estradiol were detected, and the mRNA and protein expression of steroidogenic enzymes were measured. The results showed that the diestrus phase duration was significantly (P < 0.05) increased in the high TNT-exposed groups. In addition, the proportions of preantral follicles were significantly (P < 0.05) decreased in the high TNT-exposed groups, as well as the proportions of atretic follicles. The serum estradiol levels were significantly (P < 0.05) increased, and the follicle-stimulating hormone and luteinizing hormone levels were significantly (P < 0.05) decreased in the high TNT-exposed groups. The mRNA levels of steroidogenic acute regulatory protein (Star), cytochrome P450 cholesterol side chain cleavage (Cyp11a1, Cyp17a1 and Cyp19a1), hydroxysteroid dehydrogenase 3b (Hsd3b) and steroidogenic factor-1 (SF-1) were significantly (P < 0.05) increased in the TNT-exposed groups. The protein levels of Star, Cyp11a1 and Hsd3b were increased (P < 0.05) in the TNT-exposed groups. These results indicate that the exposure of rats to TNT explosive can subsequently affect ovarian follicle development, suggesting that the mechanism may involve disrupting steroidogenesis.


Asunto(s)
Contaminantes Ambientales , Sustancias Explosivas , Trinitrotolueno , Femenino , Ratas , Animales , Sustancias Explosivas/toxicidad , Trinitrotolueno/toxicidad , Contaminantes Ambientales/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Ratas Wistar , Hormona Luteinizante , Estradiol , Hormona Folículo Estimulante , Folículo Ovárico , ARN Mensajero/metabolismo
19.
Comput Biol Chem ; 106: 107937, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37552904

RESUMEN

The process of steroidogenesis plays a vital role in human physiology as it governs the biosynthesis of mineralocorticoids, glucocorticoids, and androgens. These three classes of steroid hormones are primarily produced in the adrenal and gonadal glands through steroidogenesis pathways. Initiated by the side chain cleavage of cholesterol (CLR), this process leads to the conversion of cholesterol into pregnenolone and isocaproic aldehyde. The enzyme CYP11A1, encoded by the CYP11A1 gene, plays a key role in catalyzing the side chain cleavage of CLR. Several single nucleotide polymorphisms (SNPs) have been identified in the CYP11A1 gene, which may predispose carriers to disorders associated with abnormal steroidogenesis. Specifically, missense SNPs in the CYP11A1 gene have the potential to negatively impact the interaction between CYP11A1 and CLR, thus affecting the overall metabolome of steroid hormones. In this computational study, we focused on a specific set of missense SNPs reported in the CYP11A1 gene, aiming to identify variants that directly impact the interaction between CYP11A1 and CLR. The three-dimensional structure of the CYP11A1-CLR complex was obtained from the RCSB Protein Data Bank, while missense SNPs in the CYP11A1 gene were retrieved from Ensembl. To predict the most deleterious variants, we utilized the ConSurf server, SIFT, and PolyPhen. Furthermore, we assessed the impact of induced amino acid (AA) substitutions on the CYP11A1-CLR interaction using the PRODIGY server, PyMol, and Ligplot programs. Additionally, molecular dynamics (MD) simulations were conducted to analyze the effects of deleterious variants on the structural dynamics of the CYP11A1-CLR complex. Among the 8096 retrieved variants, we identified ten missense SNPs (E91K, W147G, R151W, R151Q, S391C, V392M, Q395K, Q416E, R460W, and R460Q) as deleterious for the interaction between CYP11A1 and CLR. MD simulations of the CYP11A1-CLR complexes carrying these deleterious AA substitutions revealed that Q416E, W147G, R460Q, and R460W had the most pronounced impacts on the structural dynamics of the complex. Consequently, these missense SNPs were considered the most deleterious ones. Further functional tests are recommended to assess the impact of these four missense SNPs on the enzymatic activity of CYP11A1. Moreover, Genome-Wide Association Studies (GWAS) should be conducted to determine the significance of their association with abnormal steroidogenesis diseases in various patient groups.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Simulación de Dinámica Molecular , Humanos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Esteroides , Colesterol , Hormonas
20.
Endocrine ; 82(3): 681-694, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572199

RESUMEN

PURPOSE: Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS: DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS: lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS: This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.


Asunto(s)
Progesterona , Estilbenos , Femenino , Humanos , Resveratrol/farmacología , Resveratrol/metabolismo , Progesterona/farmacología , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Liposomas/metabolismo , Liposomas/farmacología , Estilbenos/farmacología , Estilbenos/metabolismo , Estradiol/farmacología , Hormona Folículo Estimulante/metabolismo , Células de la Granulosa/metabolismo , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA