Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.514
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 132024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757931

RESUMEN

Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.


Asunto(s)
Eritropoyesis , Fosfatidilinositol 3-Quinasas , Trombopoyesis , Factores de Transcripción , Eritropoyesis/fisiología , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células K562 , Trombopoyesis/fisiología , Transducción de Señal , Proteínas Nucleares/metabolismo , Núcleo Celular/metabolismo , Transporte de Proteínas , Células Madre Hematopoyéticas/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Transporte Activo de Núcleo Celular
2.
Stem Cell Res Ther ; 15(1): 142, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750578

RESUMEN

Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.


Asunto(s)
Eritrocitos , Eritropoyesis , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo
3.
Nat Commun ; 15(1): 3976, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729948

RESUMEN

Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages. TFPI levels are elevated in erythroblasts of human erythroblastic islands with JAK2V617F mutation and hypoxia condition. Erythroid lineage-specific knockout TFPI results in impaired erythropoiesis through decreasing ferrochelatase expression and heme biosynthesis in central macrophages. Mechanistically, the TFPI interacts with thrombomodulin to promote the downstream ERK1/2-GATA1 signaling pathway to induce heme biosynthesis in central macrophages. Furthermore, TFPI blockade impairs human erythropoiesis in vitro, and normalizes the erythroid compartment in mice with polycythemia. These results show that erythroblast-derived TFPI plays an important role in the regulation of erythropoiesis and reveal an interplay between erythroblasts and central macrophages.


Asunto(s)
Eritroblastos , Eritropoyesis , Factor de Transcripción GATA1 , Hemo , Lipoproteínas , Macrófagos , Policitemia , Policitemia/metabolismo , Policitemia/genética , Policitemia/patología , Eritroblastos/metabolismo , Hemo/metabolismo , Humanos , Animales , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Ratones , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA1/genética , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Trombomodulina/metabolismo , Trombomodulina/genética , Ratones Noqueados , Ferroquelatasa/metabolismo , Ferroquelatasa/genética , Masculino , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Femenino
4.
Sci Rep ; 14(1): 10287, 2024 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704454

RESUMEN

The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.


Asunto(s)
Proteínas de Unión al ARN , Factores de Transcripción SOXD , Humanos , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Línea Celular Tumoral , Regulación del Desarrollo de la Expresión Génica , Eritropoyesis/genética , MicroARNs/genética , MicroARNs/metabolismo , Células Hep G2 , Células K562 , Regulación Neoplásica de la Expresión Génica , Células Eritroides/metabolismo
5.
Luminescence ; 39(4): e4741, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605268

RESUMEN

In the present study, a first validated and green spectrofluorimetric approach for its assessment and evaluation in different matrices was investigated. After using an excitation wavelength of 345 nm, Roxadustat (ROX) demonstrates a highly native fluorescence at an emission of 410 nm. The influences of experimental factors such as pH, diluting solvents, and different organized media were tested, and the most appropriate solvent choice was ethanol. It was confirmed that there was a linear relationship between the concentration of ROX and the relative fluorescence intensity in the range 60.0-1000.0 ng ml-1, with the limit of detection and limit of quantitation, respectively, being 17.0 and 53.0 ng ml-1. The mean recoveries % [±standard deviation (SD), n = 5] for pharmaceutical preparations were 100.11% ± 2.24%, whereas for plasma samples, they were 100.08 ± 1.08% (±SD, n = 5). The results obtained after the application of four greenness criteria, Analytical Eco-Scale metric, NEMI, GAPI, and AGREE metric, confirmed its eco-friendliness. In addition, the whiteness meter (RGB12) confirmed its level of sustainability. The International Council for Harmonisation (ICH) criteria were used to verify the developed method through the study in both spiked plasma samples and content uniformity evaluation. An appropriate standard for various applications in industry and quality control laboratories was developed.


Asunto(s)
Hematínicos , Humanos , Límite de Detección , Espectrometría de Fluorescencia/métodos , Eritropoyesis , Concentración de Iones de Hidrógeno , Solventes/química , Comprimidos/química , Isoquinolinas
6.
Stem Cell Res Ther ; 15(1): 100, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589882

RESUMEN

BACKGROUND: Erythroid and myeloid differentiation disorders are commonly occurred in leukemia. Given that the relationship between erythroid and myeloid lineages is still unclear. To find the co-regulators in erythroid and myeloid differentiation might help to find new target for therapy of myeloid leukemia. In hematopoiesis, ALA (alpha lipoic acid) is reported to inhibit neutrophil lineage determination by targeting transcription factor ELK1 in granulocyte-monocyte progenitors via splicing factor SF3B1. However, further exploration is needed to determine whether ELK1 is a common regulatory factor for erythroid and myeloid differentiation. METHODS: In vitro culture of isolated CD34+, CMPs (common myeloid progenitors) and CD34+ CD371- HSPCs (hematopoietic stem progenitor cells) were performed to assay the differentiation potential of monocytes, neutrophils, and erythrocytes. Overexpression lentivirus of long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 transduced CD34+ HSPCs were transplanted into NSG mice to assay the human lymphocyte and myeloid differentiation differences 3 months after transplantation. Knocking down of SRSF11, which was high expressed in CD371+GMPs (granulocyte-monocyte progenitors), upregulated by ALA and binding to ELK1-RNA splicing site, was performed to analyze the function in erythroid differentiation derived from CD34+ CD123mid CD38+ CD371- HPCs (hematopoietic progenitor cells). RNA sequencing of L-ELK1 and S-ELK1 overexpressed CD34+ CD123mid CD38+ CD371- HPCs were performed to assay the signals changed by ELK1. RESULTS: Here, we presented new evidence that ALA promoted erythroid differentiation by targeting the transcription factor ELK1 in CD34+ CD371- hematopoietic stem progenitor cells (HSPCs). Overexpression of either the long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 inhibited erythroid-cell differentiation, but knockdown of ELK1 did not affect erythroid-cell differentiation. RNAseq analysis of CD34+ CD123mid CD38+ CD371- HPCs showed that L-ELK1 upregulated the expression of genes related to neutrophil activity, phosphorylation, and hypoxia signals, while S-ELK1 mainly regulated hypoxia-related signals. However, most of the genes that were upregulated by L-ELK1 were only moderately upregulated by S-ELK1, which might be due to a lack of serum response factor interaction and regulation domains in S-ELK1 compared to L-ELK1. In summary, the differentiation of neutrophils and erythrocytes might need to rely on the dose of L-ELK1 and S-ELK1 to achieve precise regulation via RNA splicing signals at early lineage commitment. CONCLUSIONS: ALA and ELK1 are found to regulate both human granulopoiesis and erythropoiesis via RNA spliceosome, and ALA-ELK1 signal might be the target of human leukemia therapy.


Asunto(s)
Leucemia , Ácido Tióctico , Humanos , Ratones , Animales , Eritropoyesis , Neutrófilos/metabolismo , Subunidad alfa del Receptor de Interleucina-3 , Proteína Elk-1 con Dominio ets/genética , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Eritrocitos , Hipoxia , Isoformas de Proteínas
7.
EMBO Rep ; 25(5): 2418-2440, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605277

RESUMEN

Microcephaly is a common feature in inherited bone marrow failure syndromes, prompting investigations into shared pathways between neurogenesis and hematopoiesis. To understand this association, we studied the role of the microcephaly gene Mcph1 in hematological development. Our research revealed that Mcph1-knockout mice exhibited congenital macrocytic anemia due to impaired terminal erythroid differentiation during fetal development. Anemia's cause is a failure to complete cell division, evident from tetraploid erythroid progenitors with DNA content exceeding 4n. Gene expression profiling demonstrated activation of the p53 pathway in Mcph1-deficient erythroid precursors, leading to overexpression of Cdkn1a/p21, a major mediator of p53-dependent cell cycle arrest. Surprisingly, fetal brain analysis revealed hypertrophied binucleated neuroprogenitors overexpressing p21 in Mcph1-knockout mice, indicating a shared pathophysiological mechanism underlying both erythroid and neurological defects. However, inactivating p53 in Mcph1-/- mice failed to reverse anemia and microcephaly, suggesting that p53 activation in Mcph1-deficient cells resulted from their proliferation defect rather than causing it. These findings shed new light on Mcph1's function in fetal hematopoietic development, emphasizing the impact of disrupted cell division on neurogenesis and erythropoiesis - a common limiting pathway.


Asunto(s)
Proteínas de Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Eritropoyesis , Ratones Noqueados , Microcefalia , Proteína p53 Supresora de Tumor , Animales , Eritropoyesis/genética , Microcefalia/genética , Microcefalia/patología , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Mutación , Anemia Macrocítica/genética , Anemia Macrocítica/patología , Anemia Macrocítica/metabolismo , Diferenciación Celular/genética , Células Precursoras Eritroides/metabolismo
8.
J Cell Mol Med ; 28(9): e18308, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38683131

RESUMEN

Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Células Eritroides , Hemina , Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , Proteínas Proto-Oncogénicas c-crk , Humanos , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular/efectos de los fármacos , Células Eritroides/metabolismo , Células Eritroides/efectos de los fármacos , Células Eritroides/patología , Células Eritroides/citología , Eritropoyesis/genética , Eritropoyesis/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Hemina/farmacología , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Proteínas Proto-Oncogénicas c-crk/genética
9.
Elife ; 132024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526524

RESUMEN

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Asunto(s)
Hematopoyesis , Macrófagos , Animales , Ratones , Hematopoyesis/genética , Células Madre Hematopoyéticas , Diferenciación Celular , Eritropoyesis , Hígado , Nicho de Células Madre/genética
10.
Nat Immunol ; 25(3): 471-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429458

RESUMEN

Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.


Asunto(s)
COVID-19 , Hierro , Humanos , Eritropoyesis , SARS-CoV-2 , Investigadores , Progresión de la Enfermedad
11.
Sci Rep ; 14(1): 6556, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503801

RESUMEN

Anemia is common in critically ill patients undergoing continuous renal replacement therapy (CRRT). We investigated the impact of anemia requiring red blood cell (RBC) transfusion or erythropoiesis-stimulating agents (ESAs) on patient outcomes after hospital discharge in critically ill patients with acute kidney injury (AKI) requiring CRRT. In this retrospective cohort study using the Health Insurance Review and Assessment database of South Korea, 10,923 adult patients who received CRRT for 3 days or more between 2010 and 2019 and discharged alive were included. Anemia was defined as the need for RBC transfusion or ESAs. Outcomes included cardiovascular events (CVEs) and all-cause mortality after discharge. The anemia group showed a tendency to be older with more females and had more comorbidities compared to the control group. Anemia was not associated with an increased risk of CVEs (adjusted hazard ratio [aHR]: 1.05; 95% confidence interval [CI]: 0.85-1.29), but was associated with an increased risk of all-cause mortality (aHR: 1.41; 95% CI 1.30-1.53). For critically ill patients with AKI requiring CRRT, anemia, defined as requirement for RBC transfusion or ESAs, may increase the long-term risk of all-cause mortality.


Asunto(s)
Lesión Renal Aguda , Anemia , Enfermedades Cardiovasculares , Terapia de Reemplazo Renal Continuo , Hematínicos , Adulto , Femenino , Humanos , Estudios Retrospectivos , Eritropoyesis , Enfermedad Crítica , Hematínicos/uso terapéutico , Anemia/complicaciones , Anemia/tratamiento farmacológico , Lesión Renal Aguda/terapia
12.
Clin Genet ; 106(1): 3-12, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38488342

RESUMEN

In eukaryotic RNA, N6-methyladenosine (m6A) is a prevalent form of methylation modification. The m6A modification process is reversible and dynamic, written by m6A methyltransferase complex, erased by m6A demethylase, and recognized by m6A binding proteins. Through mediating RNA stability, decay, alternative splicing, and translation processes, m6A modification regulates gene expression at the post-transcriptional level. Erythropoiesis is the process of hematopoietic stem cells undergoing proliferation, a series of differentiation and maturation to form red blood cells (RBCs). Thalassemia is a common monogenic disease characterized by excessive production of ineffective RBCs in the peripheral circulation, resulting in hemolytic anemia. Increasing evidence suggests that m6A modification plays a crucial role in erythropoiesis. In this review, we comprehensively summarize the function of m6A modification in erythropoiesis and further generalize the mechanism of m6A modification regulating ineffective erythropoiesis and fetal hemoglobin expression. The purpose is to improve the understanding of the pathogenesis of erythroid dysplasia and offer new perspectives for the diagnosis and treatment of thalassemia.


Asunto(s)
Adenosina , Eritropoyesis , Talasemia , Humanos , Eritropoyesis/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Talasemia/genética , Talasemia/patología , Metilación , Regulación de la Expresión Génica , Metiltransferasas/genética , Metiltransferasas/metabolismo
13.
Nature ; 627(8005): 839-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509363

RESUMEN

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice. We combine these with imaging of myelopoiesis1 to define the anatomy of normal and stress haematopoiesis. In the steady state, across the skeleton, single stem cells and multipotent progenitors distribute through the marrow enriched near megakaryocytes. Lineage-committed progenitors are recruited to blood vessels, where they contribute to lineage-specific microanatomical structures composed of progenitors and immature cells, which function as the production sites for each major blood lineage. This overall anatomy is resilient to insults, as it was maintained after haemorrhage, systemic bacterial infection and granulocyte colony-stimulating factor (G-CSF) treatment, and during ageing. Production sites enable haematopoietic plasticity as they differentially and selectively modulate their numbers and output in response to insults. We found that stress responses are variable across the skeleton: the tibia and the sternum respond in opposite ways to G-CSF, and the skull does not increase erythropoiesis after haemorrhage. Our studies enable in situ analyses of haematopoiesis, define the anatomy of normal and stress responses, identify discrete microanatomical production sites that confer plasticity to haematopoiesis, and uncover unprecedented heterogeneity of stress responses across the skeleton.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Estrés Fisiológico , Animales , Femenino , Masculino , Ratones , Envejecimiento/fisiología , Infecciones Bacterianas/patología , Infecciones Bacterianas/fisiopatología , Vasos Sanguíneos/citología , Linaje de la Célula , Eritropoyesis , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemorragia/patología , Hemorragia/fisiopatología , Linfopoyesis , Megacariocitos/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Mielopoyesis , Cráneo/irrigación sanguínea , Cráneo/patología , Cráneo/fisiopatología , Esternón/irrigación sanguínea , Esternón/citología , Esternón/metabolismo , Estrés Fisiológico/fisiología , Tibia/irrigación sanguínea , Tibia/citología , Tibia/metabolismo
14.
Sci Rep ; 14(1): 5085, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429469

RESUMEN

Vasopressin is a pleiotropic hormone that controls body fluid homeostasis. Vasopressin has also been proposed to be involved in erythropoiesis, thrombocyte activity and inflammation. However, whether increasing vasopressin is associated with changes in hematopoietic markers is not known. To evaluate this gap of knowledge we measured the vasopressin marker copeptin and markers of erythropoiesis (erythrocyte count, hemoglobin (Hb), red blood cell distribution width (RDW), mean corpuscular volume (MCV), erythrocyte volume fraction (EVF)), leukocyte count (total count, lymphocytes, neutrophils) and thrombocyte count in 5312 participants from the Swedish CArdioPulmonary bioImage Study (SCAPIS). The associations between increasing copeptin tertile and the hematopoietic markers were analyzed in multivariate linear regression analyses. We found that increasing copeptin tertile was significantly (p < 0.001) associated with increasing erythrocytes, RDW, EVF, Hb, leukocytes and neutrophils after adjustment for age, sex, current smoking, prevalent diabetes, hypertension, creatinine, body mass index and physical activity. Increasing copeptin tertile was, however, not associated with change in MCV, lymphocyte or thrombocyte count. In conclusion, we found that increasing copeptin levels are positively associated with markers of erythropoiesis and leukocyte count in the general population. These results warrant further research on possible mechanistic effects of vasopressin on hematopoiesis.


Asunto(s)
Índices de Eritrocitos , Eritrocitos , Hematopoyesis , Vasopresinas , Humanos , Eritropoyesis , Hemoglobinas , Vasopresinas/metabolismo
15.
Blood Adv ; 8(7): 1651-1666, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38315834

RESUMEN

ABSTRACT: Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results showed prominent emergence of early erythroblast populations under both modes of anemic stress. Analysis of gene expression revealed distinct phases during the development of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus" subpopulation characterized by relatively low level of transcriptional activities that transitions between early stages of emerging erythroid cells, with moderate protein synthesis activities. Moreover, single-cell analysis conducted on macrophage populations revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a novel marker, CD81, was identified for labeling central macrophages in erythroblastic islands (EBIs), which is functionally required for EBIs to combat anemic stress. These findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts' response to stress, potentially informing the development of innovative therapeutic approaches for addressing anemic-related conditions.


Asunto(s)
Anemia , Bazo , Ratones , Animales , Bazo/metabolismo , Eritroblastos/metabolismo , Anemia/etiología , Anemia/metabolismo , Eritropoyesis/fisiología , Macrófagos/metabolismo
16.
Hum Cell ; 37(3): 648-665, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38388899

RESUMEN

Human myeloid leukemia cells (such as K562) could be used for the study of erythropoiesis, and mature erythroid markers and globins could be induced during leukemia cell differentiation; however, the pathways involved are different compared with those of hematopoietic stem cells (HSCs).We identified the differentially expressed genes (DEGs) of K562 cells and HSCs associated with stem cells and erythroid differentiation. Furthermore, we showed that hemin-induced differentiation of K562 cells could be induced by serum starvation or treatment with the tyrosine kinase inhibitor saracatinib. However, erythroid differentiation of HSCs was inhibited by the deprivation of the important serum component erythropoietin (EPO) or treatment with saracatinib. Finally, we found that the mRNA expression of K562 cells and HSCs was different during saracatinib-treated erythroid differentiation, and the DEGs of K562 cells and HSCs associated with tyrosine-protein kinase were identified.These findings elucidated the cellular phenomenon of saracatinib induction during erythroid differentiation of K562 cells and HSCs, and the potential mechanism is the different mRNA expression profile of tyrosine-protein kinase in K562 cells and HSCs.


Asunto(s)
Benzodioxoles , Eritropoyesis , Hemina , Quinazolinas , Humanos , Hemina/farmacología , Células K562 , Eritropoyesis/genética , Diferenciación Celular/genética , Células Madre Hematopoyéticas , ARN Mensajero , Tirosina , Proteínas Quinasas
17.
Exp Hematol ; 132: 104178, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340948

RESUMEN

Myeloproliferative neoplasms (MPNs) are driven by hyperactivation of JAK-STAT signaling but can demonstrate skewed hematopoiesis upon acquisition of additional somatic mutations. Here, using primary MPN samples and engineered embryonic stem cells, we demonstrate that mutations in JAK2 induced a significant increase in erythroid colony formation, whereas mutations in additional sex combs-like 1 (ASXL1) led to an erythroid colony defect. RNA-sequencing revealed upregulation of protein arginine methyltransferase 6 (PRMT6) induced by mutant ASXL1. Furthermore, genetic perturbation of PRMT6 exacerbated the MPN disease burden, including leukemic engraftment and splenomegaly, in patient-derived xenograft models, highlighting a novel tumor-suppressive function of PRMT6. However, augmented erythroid potential and bone marrow human CD71+ cells following PRMT6 knockdown were reserved only for primary MPN samples harboring ASXL1 mutations. Last, treatment of CD34+ hematopoietic/stem progenitor cells with the PRMT6 inhibitor EPZ020411 induced expression of genes involved in heme metabolism, hemoglobin, and erythropoiesis. These findings highlight interactions between JAK2 and ASXL1 mutations and a unique erythroid regulatory network in the context of mutant ASXL1.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Humanos , Eritropoyesis/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Transducción de Señal , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo
18.
Blood Adv ; 8(10): 2433-2441, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38330179

RESUMEN

ABSTRACT: Pyruvate kinase (PK) deficiency is a rare, hereditary disease characterized by chronic hemolytic anemia. Iron overload is a common complication regardless of age, genotype, or transfusion history. Mitapivat, an oral, allosteric PK activator, improves anemia and hemolysis in adult patients with PK deficiency. Mitapivat's impact on iron overload and ineffective erythropoiesis was evaluated in adults with PK deficiency who were not regularly transfused in the phase 3 ACTIVATE trial and long-term extension (LTE) (#NCT03548220/#NCT03853798). Patients in the LTE received mitapivat throughout ACTIVATE/LTE (baseline to week 96; mitapivat-to-mitapivat [M/M] arm) or switched from placebo (baseline to week 24) to mitapivat (week 24 to week 96; placebo-to-mitapivat [P/M] arm). Changes from baseline in markers of iron overload and erythropoiesis were assessed to week 96. Improvements in hepcidin (mean, 4770.0 ng/L; 95% confidence interval [CI], -1532.3 to 11 072.3), erythroferrone (mean, -9834.9 ng/L; 95% CI, -14 328.4 to -5341.3), soluble transferrin receptor (mean, -56.0 nmol/L; 95% CI, -84.8 to -27.2), and erythropoietin (mean, -32.85 IU/L; 95% CI, -54.65 to -11.06) were observed in the M/M arm (n = 40) from baseline to week 24, sustained to week 96. No improvements were observed in the P/M arm (n = 40) to week 24; however, upon transitioning to mitapivat, improvements similar to those observed in the M/M arm were seen. Mean changes from baseline in liver iron concentration by magnetic resonance imaging at week 96 in the M/M arm and the P/M arm were -2.0 mg Fe/g dry weight (dw; 95% CI, -4.8 to -0.8) and -1.8 mg Fe/g dw (95% CI, -4.4 to 0.80), respectively. Mitapivat is the first disease-modifying pharmacotherapy shown to have beneficial effects on iron overload and ineffective erythropoiesis in patients with PK deficiency. This trial was registered at www.ClinicalTrials.gov as #NCT03548220 (ACTIVATE) and #NCT03853798 (LTE).


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Eritropoyesis , Sobrecarga de Hierro , Piruvato Quinasa , Errores Innatos del Metabolismo del Piruvato , Humanos , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/tratamiento farmacológico , Eritropoyesis/efectos de los fármacos , Adulto , Piruvato Quinasa/deficiencia , Masculino , Femenino , Persona de Mediana Edad , Adulto Joven , Alanina/uso terapéutico , Alanina/análogos & derivados , Piperazinas , Quinolinas
19.
Curr Opin Hematol ; 31(3): 82-88, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334746

RESUMEN

PURPOSE OF REVIEW: Over the last century, the diseases associated with macrocytic anemia have been changing with more patients currently having hematological diseases including malignancies and myelodysplastic syndrome. The intracellular mechanisms underlying the development of anemia with macrocytosis can help in understanding normal erythropoiesis. Adaptations to these diseases involving erythroid progenitor and precursor cells lead to production of fewer but larger red blood cells, and understanding these mechanisms can provide information for possible treatments. RECENT FINDINGS: Both inherited and acquired bone marrow diseases involving primarily impaired or delayed erythroid cell division or secondary adaptions to basic erythroid cellular deficits that results in prolonged cell division frequently present with macrocytic anemia. SUMMARY OF FINDINGS: In marrow failure diseases, large accumulations of iron and heme in early stages of erythroid differentiation make cells in those stages especially susceptible to death, but the erythroid cells that can survive the early stages of terminal differentiation yield fewer but larger erythrocytes that are recognized clinically as macrocytic anemia. Other disorders that limit deoxynucleosides required for DNA synthesis affect a broader range of erythropoietic cells, but they also lead to macrocytic anemia. The source of macrocytosis in other diseases remains uncertain.


Asunto(s)
Anemia Macrocítica , Anemia , Síndromes Mielodisplásicos , Humanos , Eritropoyesis , Anemia/metabolismo , Anemia Macrocítica/metabolismo , Eritrocitos/metabolismo , Síndromes Mielodisplásicos/metabolismo
20.
Curr Opin Hematol ; 31(3): 89-95, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335037

RESUMEN

PURPOSE OF REVIEW: Cytokine-mediated signaling pathways, including JAK/STAT, PI3K/AKT, and Ras/MAPK pathways, play an important role in the process of erythropoiesis. These pathways are involved in the survival, proliferation, and differentiation function of erythropoiesis. RECENT FINDINGS: The JAK/STAT pathway controls erythroid progenitor differentiation, proliferation, and survival. The PI3K/AKT signaling cascade facilitates erythroid progenitor survival, proliferation, and final differentiation. During erythroid maturation, MAPK, triggered by EPO, suppresses myeloid genes, while PI3K is essential for differentiation. Pro-inflammatory cytokines activate signaling pathways that can alter erythropoiesis like EPOR-triggered signaling, including survival, differentiation, and proliferation. SUMMARY: A comprehensive understanding of signaling networks is crucial for the formulation of treatment approaches for hematologic disorders. Further investigation is required to fully understand the mechanisms and interactions of these signaling pathways in erythropoiesis.


Asunto(s)
Eritropoyesis , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Eritropoyesis/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinasas Janus , Fosfatidilinositol 3-Quinasas/metabolismo , Factores de Transcripción STAT/metabolismo , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA