Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.076
Filtrar
1.
Acta Neuropathol ; 147(1): 82, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722375

RESUMEN

Aging affects all cell types in the CNS and plays an important role in CNS diseases. However, the underlying molecular mechanisms driving these age-associated changes and their contribution to diseases are only poorly understood. The white matter in the aging brain as well as in diseases, such as Multiple sclerosis is characterized by subtle abnormalities in myelin sheaths and paranodes, suggesting that oligodendrocytes, the myelin-maintaining cells of the CNS, lose the capacity to preserve a proper myelin structure and potentially function in age and certain diseases. Here, we made use of directly converted oligodendrocytes (dchiOL) from young, adult and old human donors to study age-associated changes. dchiOL from all three age groups differentiated in an comparable manner into O4 + immature oligodendrocytes, but the proportion of MBP + mature dchiOL decreased with increasing donor age. This was associated with an increased ROS production and upregulation of cellular senescence markers such as CDKN1A, CDKN2A in old dchiOL. Comparison of the transcriptomic profiles of dchiOL from adult and old donors revealed 1324 differentially regulated genes with limited overlap with transcriptomic profiles of the donors' fibroblasts or published data sets from directly converted human neurons or primary rodent oligodendroglial lineage cells. Methylome analyses of dchiOL and human white matter tissue samples demonstrate that chronological and epigenetic age correlate in CNS white matter as well as in dchiOL and resulted in the identification of an age-specific epigenetic signature. Furthermore, we observed an accelerated epigenetic aging of the myelinated, normal appearing white matter of multiple sclerosis (MS) patients compared to healthy individuals. Impaired differentiation and upregulation of cellular senescence markers could be induced in young dchiOL in vitro using supernatants from pro-inflammatory microglia. In summary, our data suggest that physiological aging as well as inflammation-induced cellular senescence contribute to oligodendroglial pathology in inflammatory demyelinating diseases such as MS.


Asunto(s)
Envejecimiento , Senescencia Celular , Esclerosis Múltiple , Oligodendroglía , Humanos , Oligodendroglía/patología , Oligodendroglía/metabolismo , Senescencia Celular/fisiología , Envejecimiento/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Adulto , Anciano , Persona de Mediana Edad , Masculino , Femenino , Adulto Joven , Inflamación/patología , Inflamación/metabolismo , Sustancia Blanca/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina
2.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745307

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Interleucina-9 , Ratones Endogámicos C57BL , Microglía , Sinapsis , Factor de Necrosis Tumoral alfa , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Ratones , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Interleucina-9/metabolismo , Femenino , Factor de Necrosis Tumoral alfa/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Glicoproteínas de Membrana/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Modelos Animales de Enfermedad
3.
Mol Biol Rep ; 51(1): 674, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787497

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with inflammation and immune dysfunction. OBJECTIVES: We compared the remyelination and immunomodulation properties of mesenchymal stem cells (MSCs) with their conditioned medium (CM) in the cuprizone model. METHODS: Twenty-four C57BL/ 6 mice were divided into four groups. After cuprizone demyelination, MSCs and their CM were injected into the right lateral ventricle of mice. The expression level of IL-1ß, TNF-α, and BDNF genes was evaluated using the qRT-PCR. APC antibody was used to assess the oligodendrocyte population using the immunofluorescent method. The remyelination and axonal repair were studied by specific staining of the LFB and electron microscopy techniques. RESULTS: Transplantation of MSCs and CM increased the expression of the BDNF gene and decreased the expression of IL-1ß and TNF-α genes compared to the cuprizone group, and these effects in the cell group were more than CM. Furthermore, cell transplantation resulted in a significant improvement in myelination and axonal repair, which was measured by luxol fast blue and transmission electron microscope images. The cell group had a higher number of oligodendrocytes than other groups. CONCLUSIONS: According to the findings, injecting MSCs intraventricularly versus cell-conditioned medium can be a more effective approach to improving chronic demyelination in degenerative diseases like MS.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Modelos Animales de Enfermedad , Inflamación , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Células Madre Mesenquimatosas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Medios de Cultivo Condicionados/farmacología , Inflamación/patología , Inflamación/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Oligodendroglía/metabolismo , Remielinización , Esclerosis Múltiple/patología , Esclerosis Múltiple/terapia , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo , Masculino , Vaina de Mielina/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732082

RESUMEN

Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis.


Asunto(s)
Sistema Nervioso Central , Homeostasis , Inmunidad Innata , Humanos , Animales , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Microglía/inmunología , Microglía/metabolismo
5.
PLoS One ; 19(4): e0300203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564643

RESUMEN

Recent studies highlighted the role of astrocytes in neuroinflammatory diseases, particularly multiple sclerosis, interacting closely with other CNS components but also with the immune cells. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still unclear. In this study we develop an astrocyte in vitro model to evaluate their role in multiple sclerosis after being treated with CSF isolated from both healthy and MS diagnosed patients. Gene expression and ELISA assays reveal that several pro-inflammatory markers IL-1ß, TNF-α and IL-6, were significantly downregulated in astrocytes treated with MS-CSF. In contrast, neurotrophic survival, and growth factors, and GFAP, BDNF, GDNF and VEGF, were markedly elevated upon the same treatment. In summary, this study supports the notion of the astrocyte involvement in MS. The results reveal the neuroprotective role of astrocyte in MS pathogenicity by suppressing excessive inflammation and increasing the expression of tropic factors.


Asunto(s)
Esclerosis Múltiple , Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Esclerosis Múltiple/patología , Astrocitos/metabolismo , Inflamación/patología , Factor de Necrosis Tumoral alfa/metabolismo
6.
Eur J Immunol ; 54(6): e2350761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566526

RESUMEN

In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.


Asunto(s)
Barrera Hematoencefálica , Encefalomielitis Autoinmune Experimental , Células Endoteliales , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Médula Espinal/patología , Médula Espinal/inmunología , Médula Espinal/metabolismo , Linfocitos T CD4-Positivos/inmunología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Modelos Animales de Enfermedad
7.
J Neuroinflammation ; 21(1): 72, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521959

RESUMEN

BACKGROUND: Blood-brain barrier (BBB) dysfunction and immune cell migration into the central nervous system (CNS) are pathogenic drivers of multiple sclerosis (MS). Ways to reinstate BBB function and subsequently limit neuroinflammation present promising strategies to restrict disease progression. However, to date, the molecular players directing BBB impairment in MS remain poorly understood. One suggested candidate to impact BBB function is the transient receptor potential vanilloid-type 4 ion channel (TRPV4), but its specific role in MS pathogenesis remains unclear. Here, we investigated the role of TRPV4 in BBB dysfunction in MS. MAIN TEXT: In human post-mortem MS brain tissue, we observed a region-specific increase in endothelial TRPV4 expression around mixed active/inactive lesions, which coincided with perivascular microglia enrichment in the same area. Using in vitro models, we identified that microglia-derived tumor necrosis factor-α (TNFα) induced brain endothelial TRPV4 expression. Also, we found that TRPV4 levels influenced brain endothelial barrier formation via expression of the brain endothelial tight junction molecule claudin-5. In contrast, during an inflammatory insult, TRPV4 promoted a pathological endothelial molecular signature, as evidenced by enhanced expression of inflammatory mediators and cell adhesion molecules. Moreover, TRPV4 activity mediated T cell extravasation across the brain endothelium. CONCLUSION: Collectively, our findings suggest a novel role for endothelial TRPV4 in MS, in which enhanced expression contributes to MS pathogenesis by driving BBB dysfunction and immune cell migration.


Asunto(s)
Barrera Hematoencefálica , Esclerosis Múltiple , Canales Catiónicos TRPV , Humanos , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Inflamación/metabolismo , Esclerosis Múltiple/patología , Canales Catiónicos TRPV/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473835

RESUMEN

Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.


Asunto(s)
Interleucinas , Esclerosis Múltiple , Humanos , Citocinas , Interleucina-13 , Interleucina-33 , Interleucina-4 , Interleucina-6 , Esclerosis Múltiple/patología
9.
Mult Scler Relat Disord ; 85: 105537, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460252

RESUMEN

BACKGROUND: Many different pathologies may underlie tumefactive demyelinating lesions. Identifying clinical and radiologic distinguishing features before pathologic examination is essential for diagnosis and treatment. In this study, we aimed to determine the clinical and radiologic features affecting the etiology and disease course of patients with tumefactive lesions (TDL). MATERIALS AND METHODS: We included 35 clinicoradiologically or histologically diagnosed TDL patients in our center over 11 years. Patient records were retrospectively evaluated and recorded. Clinical features, cerebral neuroimaging, and histologic biopsy preparations, if any, were assessed by three independent neurologists, two neuroradiologists, and two pathologists at admission and follow-up, respectively. RESULTS: The mean age of patients with TDL was 40.02±14.40 years. Symptom onset was 15 (1-365) days. The most common complaints at initial presentation were hemiparesis or hemiplegia, sensory complaints, and cognitive impairment (aphasia or apraxia). The lesions were most commonly localized in the frontal lobe (42.9 %). Mass effect was 17.1 %, edema 60 %, diffusion restriction 62.1 %, and contrast enhancement 71.9 % (mostly ring-shaped (68.8 %)) on MR images. Acute onset and OCB type-2 positivity were associated with MS diagnosis. On the other hand, CSF protein levels above 45 mg/dL were found to be related to non-MS etiologies. Only the predominance of aphasia or apraxia at onset was a risk factor for early high disability (EDSS>4; 3rd month). Subacute-chronic onset, being older than 40 years, or having brainstem symptoms at onset were independent risk factors for late high disability (2nd year). CONCLUSION: Acute onset or OCB type 2 positivity is a clue for early diagnosis of MS, while elevated CSF protein is a clue for demyelinating diseases other than MS. Presentation with cognitive dysfunction at onset is an independent risk factor for early disability, while age above 40 years, subacute-chronic presentation and brainstem findings at presentation are independent risk factors for late disability.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/complicaciones , Estudios Retrospectivos , Pronóstico , Enfermedades Desmielinizantes/diagnóstico , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/patología
10.
Nanoscale ; 16(15): 7515-7531, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498071

RESUMEN

Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).


Asunto(s)
Encefalomielitis Autoinmune Experimental , Grafito , Esclerosis Múltiple , Células Supresoras de Origen Mieloide , Humanos , Ratones , Animales , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Grafito/farmacología , Inmunosupresores , Ratones Endogámicos C57BL
11.
J Neuroimmunol ; 389: 578313, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401393

RESUMEN

The clinical effect of human Mesenchymal stem cells (hMSCs) transplanted into EAE mice/MS patients is short lived due to poor survival of the transplanted cells. Since Granagard, a nanoformulation of pomegranate seed oil, extended the presence of Neuronal Stem cells transplanted into CJD mice brains, we tested whether this safe food supplement can also elongate the survival of hMSCs transplanted into EAE mice. Indeed, pathological studies 60 days post transplantation identified human cells only in brains of Granagard treated mice, concomitant with increased clinical activity. We conclude that Granagard may prolong the activity of stem cell transplantation in neurological diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Esclerosis Múltiple , Humanos , Animales , Ratones , Esclerosis Múltiple/terapia , Esclerosis Múltiple/patología , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/patología , Encéfalo/patología , Trasplante de Células Madre , Factores Inmunológicos , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/fisiología
12.
Ann Neurol ; 95(5): 907-916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38345145

RESUMEN

OBJECTIVE: Microglia/macrophages line the border of demyelinated lesions in both cerebral white matter and the cortex in the brains of multiple sclerosis patients. Microglia/macrophages associated with chronic white matter lesions are thought to be responsible for slow lesion expansion and disability progression in progressive multiple sclerosis, whereas those lining gray matter lesions are less studied. Profiling these microglia/macrophages could help to focus therapies on genes or pathways specific to lesion expansion and disease progression. METHODS: We compared the morphology and transcript profiles of microglia/macrophages associated with borders of white matter (WM line) and subpial gray matter lesions (GM line) using laser capture microscopy. We performed RNA sequencing on isolated cells followed by immunocytochemistry to determine the distribution of translational products of transcripts increased in WM line microglia. RESULTS: Cells in the WM line appear activated, with shorter processes and larger cell bodies, whereas those in the GM line appear more homeostatic, with smaller cell bodies and multiple thin processes. Transcript profiling revealed 176 genes in WM lines and 111 genes in GM lines as differentially expressed. Transcripts associated with immune activation and iron homeostasis were increased in WM line microglia, whereas genes belonging to the canonical Wnt signaling pathway were increased in GM line microglia. INTERPRETATION: We propose that the mechanisms of demyelination and dynamics of lesion expansion are responsible for differential transcript expression in WM lines and GM lines, and posit that increased expression of the Fc epsilon receptor, spleen tyrosine kinase, and Bruton's tyrosine kinase, play a key role in regulating microglia/macrophage function at the border of chronic active white matter lesions. ANN NEUROL 2024;95:907-916.


Asunto(s)
Sustancia Gris , Macrófagos , Microglía , Esclerosis Múltiple , Sustancia Blanca , Humanos , Microglía/metabolismo , Microglía/patología , Macrófagos/metabolismo , Macrófagos/patología , Sustancia Gris/patología , Sustancia Gris/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Masculino , Femenino , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Persona de Mediana Edad , Transcriptoma , Adulto , Anciano
13.
EBioMedicine ; 100: 104982, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306899

RESUMEN

BACKGROUND: Inflammatory demyelinating diseases of the central nervous system, such as multiple sclerosis, are significant sources of morbidity in young adults despite therapeutic advances. Current murine models of remyelination have limited applicability due to the low white matter content of their brains, which restricts the spatial resolution of diagnostic imaging. Large animal models might be more suitable but pose significant technological, ethical and logistical challenges. METHODS: We induced targeted cerebral demyelinating lesions by serially repeated injections of lysophosphatidylcholine in the minipig brain. Lesions were amenable to follow-up using the same clinical imaging modalities (3T magnetic resonance imaging, 11C-PIB positron emission tomography) and standard histopathology protocols as for human diagnostics (myelin, glia and neuronal cell markers), as well as electron microscopy (EM), to compare against biopsy data from two patients. FINDINGS: We demonstrate controlled, clinically unapparent, reversible and multimodally trackable brain white matter demyelination in a large animal model. De-/remyelination dynamics were slower than reported for rodent models and paralleled by a degree of secondary axonal pathology. Regression modelling of ultrastructural parameters (g-ratio, axon thickness) predicted EM features of cerebral de- and remyelination in human data. INTERPRETATION: We validated our minipig model of demyelinating brain diseases by employing human diagnostic tools and comparing it with biopsy data from patients with cerebral demyelination. FUNDING: This work was supported by the DFG under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198) and TRR 274/1 2020, 408885537 (projects B03 and Z01).


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Sustancia Blanca , Porcinos , Humanos , Animales , Ratones , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Cuprizona , Porcinos Enanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Sustancia Blanca/patología , Microscopía Electrónica , Modelos Animales de Enfermedad
14.
J Cell Physiol ; 239(5): e31230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38403972

RESUMEN

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disorder characterized by demyelination, neuronal damage, and oligodendrocyte depletion. Reliable biomarkers are essential for early diagnosis and disease management. Emerging research highlights the role of mitochondrial dysfunction and oxidative stress in CNS disorders, including MS, in which mitochondria are central to the degenerative process. Adenosine monophosphate-activated protein kinase (AMPK) regulates the mitochondrial energy balance and initiates responses in neurodegenerative conditions. This systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, aimed to comprehensively assess the literature on AMPK pathways, mitochondrial dysfunction, and in vivo studies using MS animal models. The search strategy involved the use of AMPK syntaxes, MS syntaxes, and animal model syntaxes. The PubMed, Scopus, Web of Science, and Google Scholar databases were systematically searched on August 26, 2023 without publication year restrictions. The review identified and analyzed relevant papers to provide a comprehensive overview of the current state of related research. Eight studies utilizing various interventions and methodological approaches were included. Risk of bias assessment revealed some areas of low risk but lacked explicit reporting in others. These studies collectively revealed a complex relationship between AMPK, mitochondrial dysfunction, and MS pathogenesis, with both cuprizone and experimental autoimmune encephalomyelitis models demonstrating associations between AMPK and mitochondrial disorders, including oxidative stress and impaired expression of mitochondrial genes. These studies illuminate the multifaceted role of AMPK in MS animal models, involving energy metabolism, inflammatory processes, oxidative stress, and gene regulation leading to mitochondrial dysfunction. However, unanswered questions about its mechanisms and clinical applications underscore the need for further research to fully harness its potential in addressing MS-related mitochondrial dysfunction.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Encefalomielitis Autoinmune Experimental , Mitocondrias , Esclerosis Múltiple , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Mitocondrias/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/enzimología , Estrés Oxidativo
17.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200201, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38285968

RESUMEN

A 42-year-old woman and active cocaine user complained of subacutely worsening blurred vision and imbalance. Examination of the brain MRI showed rapidly expanding white matter lesions. Brain biopsy was consistent with inflammatory demyelination. Given an unusual presentation and a history of cocaine use, a broad differential diagnosis was considered including neurologic toxidromes.


Asunto(s)
Cocaína , Esclerosis Múltiple , Sustancia Blanca , Femenino , Humanos , Adulto , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen por Resonancia Magnética , Neuroimagen
18.
Cytotherapy ; 26(3): 276-285, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38231166

RESUMEN

BACKGROUND AIMS: Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. METHODS: To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. RESULTS: Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. CONCLUSIONS: This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Células Madre Mesenquimatosas , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/patología , Esclerosis Múltiple/terapia , Esclerosis Múltiple/patología , Ganglios Linfáticos , Ratones Endogámicos C57BL
19.
J Neurovirol ; 30(1): 22-38, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38189894

RESUMEN

Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.


Asunto(s)
Barrera Hematoencefálica , Esclerosis Múltiple , Barrera Hematoencefálica/virología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Humanos , Animales , Esclerosis Múltiple/virología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Ratones , Uniones Estrechas/virología , Uniones Estrechas/metabolismo , Permeabilidad Capilar , Células Endoteliales/virología , Células Endoteliales/metabolismo , Células Endoteliales/patología
20.
Ann Clin Transl Neurol ; 11(1): 45-56, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37903651

RESUMEN

OBJECTIVE: Retrograde trans-synaptic neuroaxonal degeneration is considered a key pathological factor of subclinical retinal neuroaxonal damage in multiple sclerosis (MS). We aim to evaluate the longitudinal association of optic radiation (OR) lesion activity with retinal neuroaxonal damage and its role in correlations between retinal and brain atrophy in people with clinically isolated syndrome and early MS (pweMS). METHODS: Eighty-five pweMS were retrospectively screened from a prospective cohort (Berlin CIS cohort). Participants underwent 3T magnetic resonance imaging (MRI) for OR lesion volume and brain atrophy measurements and optical coherence tomography (OCT) for retinal layer thickness measurements. All pweMS were followed with serial OCT and MRI over a median follow-up of 2.9 (interquartile range: 2.6-3.4) years. Eyes with a history of optic neuritis prior to study enrollment were excluded. Linear mixed models were used to analyze the association of retinal layer thinning with changes in OR lesion volume and brain atrophy. RESULTS: Macular ganglion cell-inner plexiform layer (GCIPL) thinning was more pronounced in pweMS with OR lesion volume increase during follow-up compared to those without (Difference: -0.82 µm [95% CI:-1.49 to -0.15], p = 0.018). Furthermore, GCIPL thinning correlated with both OR lesion volume increase (ß [95% CI] = -0.27 [-0.50 to -0.03], p = 0.028) and brain atrophy (ß [95% CI] = 0.47 [0.25 to 0.70], p < 0.001). Correlations of GCIPL changes with brain atrophy did not differ between pweMS with or without OR lesion increase ( η p 2 = 5.92e-7 , p = 0.762). INTERPRETATION: Faster GCIPL thinning rate is associated with increased OR lesion load. Our results support the value of GCIPL as a sensitive biomarker reflecting both posterior visual pathway pathology and global brain neurodegeneration.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Células Ganglionares de la Retina/patología , Estudios Prospectivos , Estudios Retrospectivos , Enfermedades del Sistema Nervioso Central/complicaciones , Atrofia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA