Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.708
Filtrar
Más filtros











Intervalo de año de publicación
1.
Asian Pac J Cancer Prev ; 25(6): 1977-1986, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38918659

RESUMEN

BACKGROUND: Cytochrome P450 (CYP) are phase I metabolizing enzymes involved in detoxification of chemotherapeutic agents. Among the CYP gene family, including CYP1A1, CYP1B1, CYP2C, CYP2D, CYP2E and CYP17, their significance in cancer susceptibility is well established. However, there remains limited understanding regarding the polymorphisms of CYP2C19*2 and CYP17 and their potential correlation with chemotherapy-induced toxicity reactions in breast cancer (BC) patients. In this study we intended to identify the association of CYP2C19*2 and CYP17 gene polymorphisms on drug response as well as toxicity reactions in BC patients undergoing adriamycin/paclitaxel based chemotherapy within Indian population. METHODS: Two hundred BC patients receiving adriamycin and paclitaxel chemotherapy were enrolled in this study and chemotherapy induced hematological and non-hematological toxicity reactions were noted. The polymorphisms of CYP2C19*2 (681G>A) and CYP17 (34T>C) isoforms of cytochrome p 450 gene was studied by PCR and RFLP analysis. RESULTS: The univariate logistic regression analysis revealed significant associations between CYP2C19*2 (681 G>A) polymorphisms with hematological toxicities i.e., anemia (OR=9.77, 95% CI: 2.84-33.52; p=0.0003), neutropenia (OR=5.72, 95% CI: 1.75-18.68; p=0.003), febrile neutropenia (OR=4.29, 95% CI: 1.32-13.87; p=0.014) and thrombocytopenia (OR=5.86, 95% CI: 1.15-29.72); p=0.032) in BC patients. Additionally BC patients treated with adriamycin exhibited significant association between CYP2C19*2 polymorphism with chemotherapy induced nausea and vomiting (CINV) (OR=99.73, 95% CI: 5.70-174.64); p=0.001), fatigue (OR=83.29, 95% CI: 4.77-145.69); p=0.002), bodyache (OR=4.44, 95% CI: 1.24-15.91); p=0.021) and peripheral neuropathy (OR=12.00, 95% CI: 1.80-79.89); p=0.010. Furthermore, the regression analysis indicated an association between CYP17 with body ache (OR=2.77, 95% CI: 1.21-6.34; p=0.015) and peripheral neuropathy (OR=3.90, 95% CI: 1.59-9.53; p=0.002) in BC patients treated with paclitaxel chemotherapy. CONCLUSION: The findings obtained from this study illustrated significant association of CYP2C9*2 (681G>A) polymorphism with adreamicin based chemotherapy induced toxicities and CYP17 (34T>C) polymorphism with paclitaxel induced bodyache and peripheral neuropathy in BC patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama , Citocromo P-450 CYP2C19 , Doxorrubicina , Paclitaxel , Polimorfismo de Nucleótido Simple , Esteroide 17-alfa-Hidroxilasa , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Paclitaxel/efectos adversos , Doxorrubicina/efectos adversos , Citocromo P-450 CYP2C19/genética , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Adulto , Esteroide 17-alfa-Hidroxilasa/genética , Pronóstico , Estudios de Seguimiento , Anciano
2.
Phys Chem Chem Phys ; 26(24): 16980-16988, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38842434

RESUMEN

The human steroidogenic cytochrome P450 CYP17A1 catalyzes two types of reactions in the biosynthetic pathway leading from pregnenolone to testosterone and several other steroid hormones. The first is the hydroxylation of pregnenolone or progesterone to the corresponding 17α-hydroxy steroid, followed by a lyase reaction that converts these 17α-hydroxy intermediates to the androgens dehydroepiandrosterone and androstenedione, respectively. cytochrome b5 (cytb5) is known to act as both an effector and electron donor for the lyase oxidations, markedly stimulating the rate of the lyase reaction in its presence relative to the rate in its absence. Extensive sequential backbone 1H,15N and 13C nuclear magnetic resonance assignments have now been made for oxidized CYP17A1 bound to the prostate cancer drug and inhibitor abiraterone. This is the first eukaryotic P450 for which such assignments are now available. These assignments allow more complete interpretation of the structural perturbations observed upon cytb5 addition. Possible mechanism(s) for the effector activity of cytb5 are discussed in light of this new information.


Asunto(s)
Citocromos b5 , Esteroide 17-alfa-Hidroxilasa , Esteroide 17-alfa-Hidroxilasa/metabolismo , Esteroide 17-alfa-Hidroxilasa/química , Citocromos b5/metabolismo , Citocromos b5/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Androstenos/química , Androstenos/metabolismo , Conformación Proteica , Oxidación-Reducción , Espectroscopía de Resonancia Magnética
3.
Eur J Med Genet ; 69: 104952, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852772

RESUMEN

21-hydroxylase deficiency stands as the most prevalent form of congenital adrenal hyperplasia, primarily resulting from mutations in the CYP21A2 gene. On the other hand, mutations within the CYP17A1 gene lead to 17α-hydroxylase/17,20-lyase enzyme deficiencies. The scarcity of 17-OH deficiency is noteworthy, accounting for less than 1% of all congenital adrenal hyperplasia cases. The male patient, born from a first-degree cousin marriage, exhibited several symptoms, including left undescended testis, micropenis, penile chord, left sensorineural hearing loss, and gynecomastia. He reported micropenis as a concern at the age of 13.5 years. His hormone profile revealed high levels of serum 17-hydroxyprogesterone, progesterone, and pregnenolone. In this case with a 46 XY karyotype, suspicions arose regarding Cytochrome P450 oxidoreductase deficiency due to ambiguous genitalia and an atypical hormone profile. Analysis unveiled two distinct homozygous and pathogenic variants in the CYP21A2 and CYP17A1 genes. Notably, mineralocorticoid precursors escalated, while cortisol and sex steroid precursors decreased during the high (250 mcg) dose ACTH stimulation test. The mutation c.1169C > G (p.Thr390Arg) in CYP17A1, which is the second documented case in literature, stands out due to its unique set of accompanying features. Mutations occurring in CYP21A2 and CYP17A1 result in complete or partial enzyme deficiencies, and the detection of homozygous mutations in two different enzyme systems within the steroidogenic pathway is noteworthy.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 17-alfa-Hidroxilasa , Esteroide 21-Hidroxilasa , Humanos , Hiperplasia Suprarrenal Congénita/genética , Masculino , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/genética , Adolescente , Mutación
4.
Mol Pharm ; 21(7): 3186-3203, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815167

RESUMEN

Globally, prostate cancer is the most commonly diagnosed tumor and a cause of death in older men. Abiraterone, an orally administered irreversible CYP17 inhibitor, is employed to treat prostate cancer. However, abiraterone has several clinical limitations, such as poor water solubility, low dissolution rate, low bioavailability, and toxic side effects in the liver and kidney. Therefore, there is a need to identify high-efficiency and low-toxicity water-soluble abiraterone derivatives. In this work, we aimed to design and synthesize a series of abiraterone derivatives by methoxypoly(ethylene glycol) (mPEG) modification. Their antitumor activities and toxicology were analyzed in vitro and in vivo. The most potent compound, 2e, retained the principle of action on the CYP17 enzyme target and significantly improved the abiraterone water solubility, cell permeability, and blood safety. No significant abnormalities were observed in toxicology. mPEG-modification significantly improved abiraterone's antitumor activity and efficiency while reducing the associated toxic effects. The finding will provide a theoretical basis for future clinical application of mPEG-modified abiraterone.


Asunto(s)
Androstenos , Antineoplásicos , Polietilenglicoles , Neoplasias de la Próstata , Solubilidad , Masculino , Humanos , Androstenos/farmacología , Androstenos/química , Animales , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Polietilenglicoles/química , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Esteroide 17-alfa-Hidroxilasa/antagonistas & inhibidores , Esteroide 17-alfa-Hidroxilasa/metabolismo
5.
Discov Med ; 36(184): 1012-1019, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798260

RESUMEN

BACKGROUND: 17α-hydroxylase/17,20-lyase deficiency (17OHD) is an autosomal recessive genetic disorder caused by a mutation of the cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). This study reports the case of a 22-year-old Chinese patient (46, XY) with 17OHD and a unilateral adrenal space-occupying lesion. METHODS: The patient underwent serological, radiographic, genetic, and molecular analyses including whole-genome exome sequencing through high-throughput sequencing (HTS) technology to analyze the genetic conditions of both the patient and her parents. Additionally, chromosomal karyotype analysis was performed. The impact of the novel mutation on protein conformation was investigated by examining the three-dimensional structure of human CYP17A1 using the SWISS-MODEL website tool (PDB code 3RUK). RESULTS: The patient had a chromosomal karyotype 46, XY, and presented with hypertension, hypokalemia, and male pseudohermaphroditism. Furthermore, decreased levels of testosterone, dehydroepiandrosterone sulfate, and estradiol, along with increased levels of progesterone, luteinizing hormone, and follicle-stimulating hormone (FSH), were observed. DNA sequencing revealed a homozygous mutation (c.908G>A, p.G303A) in the fifth exon of the CYP17A1. Both parents carried a heterozygous c.908G>A mutation in the same exon, confirming the inheritance of the patient's exonic mutation. CONCLUSION: For the first time, this study reports a novel homozygous mutation (c.908G>A in the fifth exon) in CYP17A1. Modeling analysis of CYP17A1 suggested that the substitution of glycine with aspartic acid at position 303 induces alterations in the number, structure, and electrostatic potential of the protein's local binding sites. The p.G303A mutation may possess pathogenic properties. Our study expands the mutation spectrum of CYP17A1.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Homocigoto , Esteroide 17-alfa-Hidroxilasa , Humanos , Esteroide 17-alfa-Hidroxilasa/genética , Femenino , Hiperplasia Suprarrenal Congénita/genética , Adulto Joven , Pueblo Asiatico/genética , Masculino , Genotipo , Mutación Missense , Pueblos del Este de Asia
6.
Toxicol Appl Pharmacol ; 486: 116945, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688424

RESUMEN

Cytochrome P450 enzymes (CYPs) play a crucial role in the metabolism and synthesis of various compound classes. While drug-metabolizing CYP enzymes are frequently investigated as anti-targets, the inhibition of CYP enzymes involved in adrenal steroidogenesis is not well studied. The steroidogenic enzyme CYP17A1 is a dual-function enzyme catalyzing hydroxylase and lyase reactions relevant for the biosynthesis of adrenal glucocorticoids and androgens. Inhibition of CYP17A1-hydroxylase leads to pseudohyperaldosteronism with subsequent excessive mineralocorticoid receptor activation, hypertension and hypokalemia. In contrast, specific inhibition of the lyase function might be beneficial for the treatment of prostate cancer by decreasing adrenal androgen levels. This study combined in silico and in vitro methods to identify drugs inhibiting CYP17A1. The most potent CYP17A1 inhibitors identified are serdemetan, mocetinostat, nolatrexed, liarozole, and talarozole. While some of these drugs are currently under investigation for the treatment of various cancers, their potential for the treatment of prostate cancer is yet to be explored. The DrugBank database was screened for CYP17A1 inhibitors, to increase the awareness for the risk of drug-induced pseudohyperaldosteronism and to highlight drugs so far unknown for their potential to cause side effects resulting from CYP17A1 inhibition.


Asunto(s)
Simulación por Computador , Esteroide 17-alfa-Hidroxilasa , Esteroide 17-alfa-Hidroxilasa/antagonistas & inhibidores , Esteroide 17-alfa-Hidroxilasa/metabolismo , Humanos , Masculino , Simulación del Acoplamiento Molecular
7.
Environ Toxicol Chem ; 43(5): 1062-1074, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477699

RESUMEN

Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 µg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 µg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.


Asunto(s)
Estrógenos , Esteroide 17-alfa-Hidroxilasa , Vitelogeninas , Pez Cebra , Animales , Masculino , Esteroide 17-alfa-Hidroxilasa/genética , Vitelogeninas/genética , Estrógenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Compuestos de Bencidrilo/toxicidad , Estradiol , Fenoles/toxicidad , Femenino , Fluorocarburos/toxicidad , Testículo/efectos de los fármacos , Testículo/metabolismo
8.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311053

RESUMEN

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Asunto(s)
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilasa , Animales , Humanos , Ratones , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Daño del ADN , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Histona Desacetilasa 6/genética , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Estrés Oxidativo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Endocrine ; 84(3): 1238-1249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38374513

RESUMEN

PURPOSE: To determine the relationship between serum total testosterone (TT) levels and oxidative stress indices in patients with polycystic ovary syndrome (PCOS), and to investigate the effect of oxidative stress on androgen synthesis and its mechanism in rat ovarian theca-interstitial (T-I) cells. METHODS: Clinical, hormonal, metabolic, and oxidative stress parameters were analyzed in a cross-sectional case-control study including 626 patients with PCOS and 296 controls. The effects of oxidized low-density lipoprotein (ox-LDL) and oxidized high-density lipoprotein (ox-HDL) on cell proliferation, TT secretion, and expression of key enzymes involved in testosterone synthesis were evaluated in T-I cells. RESULTS: Serum TT levels were elevated with an increase in ox-LDL levels, whereas glutathione concentrations were lower in the high-TT subgroup than in the low-TT subgroup. The average ovarian volume and ox-LDL and malondialdehyde levels were significant predictors of TT levels in the multivariate regression models. In a rat ovarian T-I cell model, lipoprotein and oxidized lipoprotein treatments stimulated proliferation and promoted testosterone secretion. The mRNA and protein levels of 17α-hydroxylase were significantly higher in oxidized lipoprotein-treated cells than those in lipoprotein-treated cells. The mRNA levels of cholesterol side chain cleavage enzyme and steroidogenic acute regulatory protein were also significantly higher in ox-HDL-treated cells than in HDL-treated cells. CONCLUSIONS: Oxidative stress can promote androgen production by up-regulating the expression of testosterone synthesis-related enzymes in vitro and may be an essential factor in elevating serum TT levels in patients with PCOS.


Asunto(s)
Hiperandrogenismo , Lipoproteínas LDL , Estrés Oxidativo , Síndrome del Ovario Poliquístico , Testosterona , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Animales , Ratas , Testosterona/sangre , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo , Hiperandrogenismo/metabolismo , Adulto , Humanos , Estudios de Casos y Controles , Estudios Transversales , Ovario/metabolismo , Ratas Sprague-Dawley , Adulto Joven , Células Tecales/metabolismo , Proliferación Celular , Andrógenos/sangre , Esteroide 17-alfa-Hidroxilasa/metabolismo , Esteroide 17-alfa-Hidroxilasa/genética , Células Cultivadas
10.
Gene ; 901: 148168, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244949

RESUMEN

BACKGROUND: Recurrent pregnancy loss (RPL) is associated with variable causes. Its etiology remains unexplained in about half of the cases, with no effective treatment available. Individuals with RPL have an irregular iron metabolism. In the present study, we identified key genes impacting iron metabolism that could be used for diagnosing and treating RPL. METHODS: We obtained gene expression profiles from the Gene Expression Omnibus (GEO) database. The Molecular Signatures Database was used to identify 14 gene sets related to iron metabolism, comprising 520 iron metabolism genes. Differential analysis and a weighted gene co-expression network analysis (WGCNA) of gene expression revealed two iron metabolism-related hub genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used on clinical samples to confirm our results. The receiver operating characteristic (ROC) analysis and immune infiltration analysis were conducted. In addition, we analyzed the distribution of genes and performed CellChat analysis by single-cell RNA sequencing. RESULTS: The expression of two hub genes, namely, CDGSH iron sulfur domain 2 (CISD2)and Cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were reduced in RPL, as verified by both qPCR and immunohistochemistry. The Gene Ontology (GO) analysis revealed the genes predominantly engaged in autophagy and iron metabolism. The area under the curve (AUC) demonstrated better diagnostic performance for RPL using CISD2 and CYP17A1. The single-cell transcriptomic analysis of RPL demonstrated that CISD2 is expressed in the majority of cell subpopulations, whereas CYP17A1 is not. The cell cycle analysis revealed highly active natural killer (NK) cells that displayed the highest communications with other cells, including the strongest interaction with macrophages through the migratory inhibitory factor (MIF) pathway. CONCLUSIONS: Our study suggested that CISD2 and CYP17A1 genes are involved in abnormal iron metabolism, thereby contributing to RPL. These genes could be used as potential diagnostic and therapeutic markers for RPL.


Asunto(s)
Hierro , ARN , Femenino , Embarazo , Humanos , Secuencia de Bases , Análisis de Secuencia de ARN , Área Bajo la Curva , Esteroide 17-alfa-Hidroxilasa
11.
J Steroid Biochem Mol Biol ; 236: 106446, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104728

RESUMEN

Prostate cancer (PC) is dependent on androgen receptor (AR) activation by testosterone and 5α-dihydrotestosterone (DHT). Intratumoral androgen accumulation and activation despite systemic androgen deprivation therapy underlies the development of castration-resistant PC (CRPC), but the precise pathways involved remain controversial. Here we investigated the differential contributions of de novo androgen biosynthesis and androgen precursor conversion to androgen accumulation. Steroid flux analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on (CR)PC cell lines and fresh patient PC tissue slices after incubation with classic and alternative biosynthesis intermediates, alongside quantitative PCR analysis for steroidogenic enzyme expression. Activity of CYP17A1 was undetectable in all PC cell lines and patient PC tissue slices. Instead, steroid flux analysis confirmed the generation of testosterone and DHT from adrenal precursors and reactivation of androgen metabolites. Precursor steroids upstream of DHEA were converted down the first steps of the alternative DHT biosynthesis pathway, but did not proceed through to active androgen generation. Comprehensive steroid flux analysis of (CR)PC cells provides strong evidence against intratumoral de novo androgen biosynthesis and demonstrates that androgen precursor steroids downstream of CYP17A1 activities constitute the major source of intracrine androgen generation.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Andrógenos/metabolismo , Antagonistas de Andrógenos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Testosterona/metabolismo , Dihidrotestosterona/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Esteroides/metabolismo , Línea Celular Tumoral , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo
12.
Methods Enzymol ; 689: 39-63, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37802581

RESUMEN

Cytochrome P450 (P450) 17A1 plays a key role in steroidogenesis, in that this enzyme catalyzes the 17α-hydroxylation of both pregnenolone and progesterone, followed by a lyase reaction to cleave the C-20 land C-21 carbons from each steroid. The reactions are important in the production of both glucocorticoids and androgens. The enzyme is critical in humans but is also a drug target in treatment of prostate cancer. Detailed methods are described for the heterologous expression of human P450 17A1 in bacteria, purification of the recombinant enzyme, reconstitution of the enzyme system in the presence of cytochrome b5, and chromatographic procedures for sensitive analyses of reaction products. Historic assay approaches are reviewed. Some information is also provided about outstanding questions in the research field, including catalytic mechanisms and searches for selective inhibitors.


Asunto(s)
Liasas , Humanos , Progesterona/metabolismo , Esteroides , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/química
13.
Pharm Res ; 40(12): 3001-3010, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821768

RESUMEN

BACKGROUND: Abiraterone acetate is an irreversible 17α-hydroxylase/C17, 20-lyase (CYP17) inhibitor approved for the treatment of metastatic castration-resistant prostate cancer (mCRPC) patients. Inhibition of this enzyme leads to low testosterone and cortisol levels in blood. There is growing evidence that clinical efficacy of abiraterone is related to the rate of suppression of serum testosterone. However, quantification of very low levels of circulating testosterone is challenging. We therefore aimed to investigate whether circulating cortisol levels could be used as a surrogate biomarker for CYP17 inhibition in patients with mCRPC treated with abiraterone acetate. PATIENTS AND METHODS: mCRPC patients treated with abiraterone acetate were included. Abiraterone and cortisol levels were measured with a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS). On treatment cortisol and abiraterone concentrations were related to treatment response and progression free survival. RESULTS: In total 117 patients were included with a median cortisol concentration of 1.13 ng/ml (range: 0.03 - 82.2) and median abiraterone trough concentration (Cmin) of 10.2 ng/ml (range: 0.58 - 92.1). In the survival analyses, abiraterone Cmin ≥ 8.4 ng/mL and cortisol < 2.24 ng/mL were associated with a longer prostate-specific antigen (PSA) independent progression-free survival than patients with an abiraterone concentration ≥ 8.4 ng/mL and a cortisol concentration ≥ 2.24 ng/mL (13.8 months vs. 3.7 months). CONCLUSION: Our study shows that cortisol is not an independent predictor of abiraterone response in patients with mCRPC, but it is of added value in combination with abiraterone levels, to predict a response on abiraterone.


Asunto(s)
Acetato de Abiraterona , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Acetato de Abiraterona/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Hidrocortisona , Esteroide 17-alfa-Hidroxilasa , Cromatografía Liquida , Espectrometría de Masas en Tándem , Resultado del Tratamiento , Antígeno Prostático Específico/uso terapéutico , Testosterona/uso terapéutico
14.
Gynecol Endocrinol ; 39(1): 2250001, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37683689

RESUMEN

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder with a related enzyme deficiency involved in the adrenal corticosteroid synthesis pathway due to genetic mutations. 17α-hydroxylase deficiency(17α-OHD) is a rare form of CAH. Herein, we reported clinical data on diagnosis and treatment regimens for a 17α-hydroxylase-deficient patient. A 24-year-old female patient was admitted to the hospital with limb numbness for 7 days and sudden limb weakness. Full laboratory and radio-imaging investigations showed hypokalemia and abdominal occupation. Abnormal rhythm of cortisol(Cor) and adrenocorticotrophic hormone (ACTH)was observed. The diagnosis was confirmed by molecular mutation detection, which showed a homozygous mutation of c.987del in the 17-hydroxylase/17,20-lyase deficiency (17OHD) lease-related CYP17A1 from both biological parents. The patient was treated with prednisone acetate and estradiol valerate. After one year of treatment with predisoone acetate and estradiol valerate, the patient had normal menstruation, increased blood potassium, estradiol and 24h-UFC, and decreased ACTH level. There is no significant change in large adrenal hyperplasia lesions although sexual characteristics and menstrual cycles have recovered. Through this case and literature review, it can be concluded that CAH with 17α-OHD can be diagnosed according to the genetic detection.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Femenino , Humanos , Adulto Joven , Adulto , Hiperplasia Suprarrenal Congénita/complicaciones , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/tratamiento farmacológico , Esteroide 17-alfa-Hidroxilasa/genética , Hormona Adrenocorticotrópica , Estradiol
15.
Acta Biomed ; 94(4): e2023167, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37539608

RESUMEN

BACKGROUND AND AIM: To investigate the association between CYP17A1 (rs74357) polymorphism and the risk of Polycystic Ovary Syndrome (PCOS). METHODS: Literature on the association of CYP17rs74357 gene polymorphism and susceptibility to PCOS was retrieved by searching databases such as PubMed, Science Direct, Google Scholar and Embase from. The association measure was analyzed using an Odds Ratio (OR) and 95% Confidence Interval (CI). All the statistical analyses were executed using CMA 3.0 Software. RESULTS: In the present meta-analysis,24 studies including 3462 PCOS and 2898 controls were analyzed. The overall results validated that the 17 CYP17 T/C (rs74357) gene polymorphism was significantly associated with PCOS risk in 5 genetic models: recessive model (fixed and random effect), dominant model (random effect), CC vs. TT (fixed effect), CT vs. TT (fixed effect), and allele contrast (random effect). Stratified analyses by ethnicity/country also detected significant association between Asian and Caucasian under the recessive, dominant, CC vs. TT, CC vs. CT, and the allele contrast models. CONCLUSIONS: In the present study, CYP17 T/C (rs74357) gene polymorphism increase the susceptibility of PCOS, and the recessive C allele, can be proposed as a predictive factor for the risk of PCOS or an important pathway in PCOS associated metabolic and hormonal dysregulation especially insulin resistance.However, larger sample size andmultiracial studies are needed in the future to confirm the findings.


Asunto(s)
Síndrome del Ovario Poliquístico , Esteroide 17-alfa-Hidroxilasa , Femenino , Humanos , Predisposición Genética a la Enfermedad , Síndrome del Ovario Poliquístico/genética , Polimorfismo Genético , Esteroide 17-alfa-Hidroxilasa/genética
16.
BMC Womens Health ; 23(1): 408, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542252

RESUMEN

BACKGROUND: 17α-hydroxylase deficiency, which is caused by a CYP17A1 gene mutation, is a rare type of congenital adrenocortical hyperplasia that mainly manifests as hypertension, hypokalaemia and sexual dysplasia. To date, few pregnancies associated with this syndrome have been reported. CASE PRESENTATION: We describe a 35-year-old Chinese woman with nonclassical congenital adrenal hyperplasia (NCCAH) due to 17α-hydroxylase/17,20-lyase deficiency who achieved pregnancy after in vitro fertilization (IVF) and frozen-thawed embryo transfer. She had secondary amenorrhea since she was 27, and subsequently, high level of progesterone in the follicular phase was found during a blood test. A compound heterozygous mutation was found in the CYP17A1 gene, c.1263G > A and c.985_987delinsAA. The patient was given standardized treatment with dexamethasone. Due to ovulation disorder, IVF was performed. She underwent whole embryo vitrification freezing. Frozen-thawed embryo transplantation was performed following the artificial cycle protocol of endometrium preparation, resulting in a singleton pregnancy. At 39 weeks and 1 day of gestation, caesarean section was performed due to the breech position of the foetus. CONCLUSION: A high level of progesterone reduces endometrial receptivity. Standardized treatment with dexamethasone and frozen-thawed embryo transfer with an artificial cycle protocol of endometrium preparation should be the choice for infertile female patients with CYP17A1 deficiency.


Asunto(s)
Nacimiento Vivo , Esteroide 17-alfa-Hidroxilasa , Humanos , Femenino , Embarazo , Adulto , Esteroide 17-alfa-Hidroxilasa/genética , Progesterona , Oxigenasas de Función Mixta , Cesárea , Dexametasona
17.
Taiwan J Obstet Gynecol ; 62(4): 566-570, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37407196

RESUMEN

OBJECTIVE: Ovarian fibromas are benign, sex cord-stromal tumors occurring in both peri- and post-menopausal women. Generally, these tumors are non-functional and do not produce hormones. However, this case report proves the first case of steroid hormone synthesis in an ovarian fibroma by immunohistochemistry. CASE REPORT: A 77-year-old post-menopausal woman presented with a left ovarian tumor, abnormal endometrial thickness, and high levels of estradiol (E2). The tumor was found to be a fibroma, which was positive for alpha-inhibin. We examined estrogen-producing enzymes using immunohistochemistry. The tumor was positive for estrogen receptor, progesterone receptor, 17ß-hydroxysteroid dehydrogenase (HSD)-1, adrenal 4 binding protein/steroidogenic factor 1, 17ß-HSD-5, steroid sulfatase, and P450c17. CONCLUSION: This case study shows that E2 can be locally produced from circulating inactive steroids, by estrogen-producing enzymes. This is the first report of steroid hormone synthesis in an ovarian fibroma.


Asunto(s)
Fibroma , Neoplasias Ováricas , Femenino , Humanos , Anciano , Posmenopausia , Neoplasias Ováricas/patología , Esteroides , Estrógenos , Estradiol , Esteroide 17-alfa-Hidroxilasa/metabolismo
18.
J Med Chem ; 66(14): 9972-9991, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37458396

RESUMEN

The androgen/androgen receptor (AR) signaling pathway plays an important role in castration-resistant prostate cancer (CRPC). Bifunctional agents that simultaneously degrade AR and inhibit androgen synthesis are expected to block the androgen/AR signaling pathway more thoroughly, demonstrating the promising therapeutic potential for CRPC, even enzalutamide-resistant CRPC. Herein, a series of steroid analogs were designed, synthesized, and identified as selective AR degraders, among which YXG-158 (23-h) was the most potent antitumor compound with dual functions of AR degradation and CYP17A1 inhibition. In addition, 23-h abrogated the hERG inhibition and exhibited excellent PK profiles. In vivo, 23-h effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited robust antitumor efficacy both in enzalutamide-sensitive (LNCaP/AR) and enzalutamide-resistant (C4-2b-ENZ) xenograft models. Thus, 23-h was chosen as a preclinical candidate for the treatment of enzalutamide-resistant prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Andrógenos , Resistencia a Antineoplásicos , Línea Celular Tumoral , Antagonistas de Andrógenos/farmacología , Nitrilos/farmacología , Inhibidores Enzimáticos/farmacología , Esteroides/farmacología , Proliferación Celular , Esteroide 17-alfa-Hidroxilasa
19.
Reprod Toxicol ; 119: 108418, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37268150

RESUMEN

This study aims to establish whether adrenomedullin (ADM) is capable to restore the steroidogenic functions of Leydig cells by suppressing transforming growth factor-ß1 (TGF-ß1) through Hippo signaling. Primary Leydig cells were treated with lipopolysaccharide (LPS), an adeno-associated virus vector that expressed ADM (Ad-ADM) or sh-RNA of TGF-ß1 (Ad-sh-TGF-ß1). The cell viability and medium concentrations of testosterone were detected. Gene expression and protein levels were determined for steroidogenic enzymes, TGF-ß1, RhoA, YAP, TAZ and TEAD1. The role of Ad-ADM in the regulation of TGF-ß1 promoter was confirmed by ChIP and Co-IP. Similar to Ad-sh-TGF-ß1, Ad-ADM mitigated the decline in the number of Leydig cells and plasma concentrations of testosterone by restoring the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3ß-HSD, CYP17 and 17ß-HSD. Similar to Ad-sh-TGF-ß1, Ad-ADM not only inhibited the LPS-induced cytotoxicity and cell apoptosis but also restored the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3ß-HSD, CYP17 and 17ß-HSD, along with the medium concentrations of testosterone in LPS-induced Leydig cells. Like Ad-sh-TGF-ß1, Ad-ADM improved LPS-induced TGF-ß1 expression. In addition, Ad-ADM suppressed RhoA activation, enhanced the phosphorylation of YAP and TAZ, reduced the expression of TEAD1 which interacted with HDAC5 and then bound to TGF-ß1 gene promoter in LPS-exposed Leydig cells. It is thus suspected that ADM can exert anti-apoptotic effect to restore the steroidogenic functions of Leydig cells by suppressing TGF-ß1 through Hippo signaling.


Asunto(s)
Células Intersticiales del Testículo , Factor de Crecimiento Transformador beta1 , Masculino , Humanos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Vía de Señalización Hippo , Adrenomedulina/genética , Adrenomedulina/metabolismo , Adrenomedulina/farmacología , Esteroide 17-alfa-Hidroxilasa , Lipopolisacáridos/farmacología , Testosterona/metabolismo
20.
J Med Chem ; 66(10): 6542-6566, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37191389

RESUMEN

CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Esteroides , Esteroide 17-alfa-Hidroxilasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA