Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804694

RESUMEN

Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.


Asunto(s)
Evolución Biológica , Cloroplastos/genética , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Estramenopilos/fisiología , Metabolismo Energético , Redes y Vías Metabólicas
2.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31732569

RESUMEN

Human viruses are ubiquitous contaminants in surface waters, where they can persist over extended periods of time. Among the factors governing their environmental persistence, the control (removal or inactivation) by microorganisms remains poorly understood. Here, we determined the contribution of indigenous bacteria and protists to the decay of human viruses in surface waters. Incubation of echovirus 11 (E11) in freshwater from Lake Geneva and seawater from the Mediterranean Sea led to a 2.5-log10 reduction in the infectious virus concentration within 48 h at 22°C, whereas E11 was stable in sterile controls. The observed virus reduction was attributed to the action of both bacteria and protists in the biologically active matrices. The effect of microorganisms on viruses was temperature dependent, with a complete inhibition of microbial virus control in lake water at temperatures of ≤16°C. Among three protist isolates tested (Paraphysomonas sp., Uronema marinum, and Caecitellus paraparvulus), Caecitellus paraparvulus was particularly efficient at controlling E11 (2.1-log10 reduction over 4 days with an initial protist concentration of 103 cells ml-1). In addition, other viruses (human adenovirus type 2 and bacteriophage H6) exhibited different grazing kinetics than E11, indicating that the efficacy of antiviral action also depended on the type of virus. In conclusion, indigenous bacteria and protists in lake water and seawater can modulate the persistence of E11. These results pave the way for further research to understand how microorganisms control human viral pathogens in aquatic ecosystems and to exploit this process as a treatment solution to enhance microbial water safety.IMPORTANCE Waterborne human viruses can persist in the environment, causing a risk to human health over long periods of time. In this work, we demonstrate that in both freshwater and seawater environments, indigenous bacteria and protists can graze on waterborne viruses and thereby reduce their persistence. We furthermore demonstrate that the efficiency of the grazing process depends on temperature, virus type, and protist species. These findings may facilitate the design of biological methods for the disinfection of water and wastewater.


Asunto(s)
Cadena Alimentaria , Lagos , Viabilidad Microbiana , Virosis/virología , Fenómenos Fisiológicos de los Virus , Enfermedades Transmitidas por el Agua/virología , Océano Atlántico , Fenómenos Fisiológicos Bacterianos , Chrysophyta/fisiología , Lagos/microbiología , Lagos/parasitología , Lagos/virología , Mar Mediterráneo , Oligohimenóforos/fisiología , Agua de Mar/microbiología , Agua de Mar/parasitología , Agua de Mar/virología , España , Especificidad de la Especie , Estramenopilos/fisiología , Suiza , Virus/clasificación
3.
Artículo en Inglés | MEDLINE | ID: mdl-28288702

RESUMEN

Whole cell Schizochytrium sp. is a rich source of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) including docosahexaenoic acid (DHA), an important nutrient for brain health. Aged beagle dogs experienced on a visuospatial task of working memory, variable-delay delayed-non-matching-to-position were used to assess efficacy of DHA-rich microalgae based upon DHA wt% of total phospholipids and 8-iso-PGF2α concentrations in plasma, and performance on cognitive assessments of visual object discrimination, learning, and memory consolidation after 25 weeks on fortified diet. Improved DHA status (p<0.001) and initial learning of the protocols for visual and variable contrast discrimination (p<0.05), but not long-term recall of the concurrent discrimination task were observed in animals fed the algal-fortified diet. Overall, results were consistent with dried Schizochytrium sp. as a source of n-3 LCPUFA nutrition to support DHA status in large mammals, and healthy brain function in a canine model of senescence.


Asunto(s)
Envejecimiento/fisiología , Aprendizaje Discriminativo , Estramenopilos/fisiología , Envejecimiento/sangre , Animales , Grasas Insaturadas en la Dieta/administración & dosificación , Dinoprost/análogos & derivados , Dinoprost/sangre , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Perros , Humanos , Memoria a Corto Plazo , Fosfolípidos/sangre , Estramenopilos/química
4.
Harmful Algae ; 62: 136-147, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28118888

RESUMEN

The algicidal and growth-inhibiting bacteria associated with seagrasses and macroalgae were characterized during the summer of 2012 and 2013 throughout Puget Sound, WA, USA. In 2012, Heterosigma akashiwo-killing bacteria were observed in concentrations of 2.8×106CFUg-1 wet in the outer organic layer (biofilm) on the common eelgrass (Zostera marina) in north Padilla Bay. Bacteria that inhibited the growth of Alexandrium tamarense were detected within the biofilm formed on the eelgrass canopy at Dumas Bay and North Bay at densities of ∼108CFUg-1 wet weight. Additionally, up to 4100CFUmL-1 of algicidal and growth-inhibiting bacteria affecting both A. tamarense and H. akashiwo were detected in seawater adjacent to seven different eelgrass beds. In 2013, H. akashiwo-killing bacteria were found on Z. marina and Ulva lactuca with the highest densities of ∼108CFUg-1 wet weight at Shallow Bay, Sucia Island. Bacteria that inhibited the growth of H. akashiwo and A. tamarense were also detected on Z. marina and Z. japonica at central Padilla Bay. Heterosigma akashiwo cysts were detected at a concentration of 3400cystsg-1 wet weight in the sediment from Westcott Bay (northern San Juan Island), a location where eelgrass disappeared in 2002. These findings provide new insights on the ecology of algicidal and growth-inhibiting bacteria, and suggest that seagrass and macroalgae provide an environment that may influence the abundance of harmful algae in this region. This work highlights the importance of protection and restoration of native seagrasses and macroalgae in nearshore environments, in particular those regions where shellfish restoration initiatives are in place to satisfy a growing demand for seafood.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Dinoflagelados/fisiología , Estramenopilos/fisiología , Ulva/microbiología , Zosteraceae/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Herbicidas/análisis , Reguladores del Crecimiento de las Plantas/análisis , Algas Marinas/microbiología , Washingtón
5.
J Phycol ; 53(1): 118-130, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27779759

RESUMEN

To date, the life stages of pelagophytes have been poorly described. This study describes the ability of Aureoumbra lagunensis to enter a resting stage in response to environmental stressors including high temperature, nutrient depletion, and darkness as well as their ability to revert from resting cells back to vegetative cells after exposure to optimal light, temperature, and nutrient conditions. Resting cells became round in shape and larger in size, filled with red accumulation bodies, had smaller and fewer plastids, more vacuolar space, contained lower concentrations of chl a and RNA, displayed reduced photosynthetic efficiency, and lower respiration rates relative to vegetative cells. Analysis of vegetative and resting cells using Raman microspectrometry indicated resting cells were enriched in sterols within red accumulation bodies and were depleted in pigments relative to vegetative cells. Upon reverting to vegetative cells, cells increased their chl a content, photosynthetic efficiency, respiration rate, and growth rate and lost accumulation bodies as they became smaller. The time required for resting cells to resume vegetative growth was proportional to both the duration and temperature of dark storage, possibly due to higher metabolic demands on stored energy (sterols) reserves during longer period of storage and/or storage at higher temperature (20°C vs. 10°C). Resting cells kept in the dark at 10°C for 7 months readily reverted back to vegetative cells when transferred to optimal conditions. Thus, the ability of Aureoumbra to form a resting stage likely enables them to form annual blooms within subtropic ecosystems, resist temperature extremes, and may facilitate geographic expansion via anthropogenic transport.


Asunto(s)
Floraciones de Algas Nocivas , Estramenopilos/fisiología , Microscopía Electrónica de Transmisión , Estramenopilos/química , Estramenopilos/crecimiento & desarrollo , Estramenopilos/ultraestructura
6.
Biotechnol Lett ; 38(5): 847-54, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26857607

RESUMEN

OBJECTIVES: To biochemically characterize synthetic peptides to control harmful algal blooms (HABs) that cause red tides in marine water ecosystems. RESULTS: We present an analysis of several short synthetic peptides and their efficacy as algicidal agents. By altering the amino acid composition of the peptides we addressed the mode of algicidal action and determine the optimal balance of cationic and hydrophobic content for killing. In a controlled setting, these synthetic peptides disrupted both plasma and chloroplast membranes of several species known to result in HABs. This disruption was a direct result of the hydrophobic and cationic content of the peptide. Furthermore, by using an anti-HAB bioassay in scallops, we determined that these peptides were algicidal without being cytotoxic to other marine organisms. CONCLUSIONS: These synthetic peptides may prove promising for general marine ecosystem remediation where HABs have become widespread and resulted in serious economic loss.


Asunto(s)
Antiinfecciosos/farmacología , Dinoflagelados/efectos de los fármacos , Floraciones de Algas Nocivas/efectos de los fármacos , Péptidos/farmacología , Estramenopilos/efectos de los fármacos , Animales , Antiinfecciosos/química , Bioensayo , Cationes/análisis , Membrana Celular/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Dinoflagelados/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Pectinidae/microbiología , Péptidos/química , Péptidos/genética , Estramenopilos/fisiología
7.
Harmful Algae ; 56: 67-76, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-28073497

RESUMEN

A number of marine and freshwater harmful algal bloom (HAB) species have colonized new areas and expanded their habitat range in recent years. Nevertheless it is notoriously difficult to establish when colonization first occurred, what the dispersal routes are, and to separate recent invasion from increases in existent but small populations. The freshwater raphidophyte Gonyostomum semen is a nuisance species that has expanded its habitat range and increased in abundance in northern Europe during the past decades. To evaluate to what extent sediments can be used for determining historic occurrence of G. semen, a quantitative real-time PCR method for detecting cysts of this algae was developed. This paper presents a qPCR protocol with a set of primers that are specific to Gonyostomum and with PCR conditions optimized for sediment samples from humic lakes, which are the common habitat of G. semen. With this sensitive method as few as 1.6 cysts per PCR reaction could be reliably quantified, corresponding to 320 cysts per g wet weight sediment. Cysts were present in sediments with ages ranging from years to decades and their persistence allows detection of historic populations up to at least 50 years old. With this qPCR assay it will be possible to trace the presence of G. semen in environments prior to the onset of algae-specific monitoring programs as well as for quantification in water column samples.


Asunto(s)
Monitoreo del Ambiente/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Estramenopilos/genética , Europa (Continente) , Agua Dulce , Floraciones de Algas Nocivas , Estramenopilos/fisiología
9.
PLoS One ; 10(7): e0131821, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26135124

RESUMEN

A new relative of the chrysophyte genus Chrysopodocystis was found in Tenerife and termed Guanchochroma wildpretii. This unicellular alga was most noticeably discernible from Chrysopodocystis socialis (the only species of this genus) by the presence of a cyst-like stage with a multilayered lorica, which also functions as a dispersal unit and shows secondary wall growth. Secondary expansion of loricae (cell casings not involved in cell division, usually with a more or less pronounced opening) has never been observed previously and marks a unique feature of the new taxon. Plastids are non-randomly distributed within cells of G. wildpretii. 18S rRNA gene analyses identified the two species as sister lineages and placed them in a monophyletic group with the Synchromophyceae, a heterokont algal (Ochrophyta) class characterized by the presence of chloroplast complexes. Yet, neither Chrysopodocystis nor Guanchochroma showed this feature in ultrastructure analyses. Additionally, their 18S rRNA genes possessed distinct inserts, the highest GC-content known for Ochrophyta and exceptionally long branches on the Ochrophyta 18S rDNA phylogenetic tree, suggesting substantially increased substitution rates along their branch compared to Synchromophyceae. Plastid marker data (rbcL) recovered a monophyletic clade of Chrysopodocystis, Guanchochroma and Synchromophyceae as well, yet with lower supports for internal split order due to limited resolution of the marker. Evidence for the sequence of events leading to the formation of the plastid complex of Synchromophyceae still remains ambiguous because of the apparently short timeframe in which they occurred.


Asunto(s)
Estramenopilos/genética , Estramenopilos/fisiología , Composición de Base , Evolución Biológica , Cloroplastos/genética , ADN Ribosómico/genética , Ecosistema , Evolución Molecular , Marcadores Genéticos/genética , Conformación de Ácido Nucleico , Filogenia , Pigmentación , Plastidios/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Estramenopilos/clasificación
10.
Bioresour Technol ; 137: 63-73, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23587810

RESUMEN

This paper reports accurate measurements of the radiation characteristics and optical properties of Nannochloropsis oculata in the photosynthetically active radiation (PAR) region. These marine microalgae were grown in 2 cm thick culture bottles with vented caps exposed, on one side, to either white fluorescent light bulbs or red LEDs emitting at 630 nm. The illuminance varied from 2000 to 10,000 lux. The microalgae average equivalent diameter ranged from 2.52 to 2.63 µm. Their radiation characteristics and optical properties were statistically identical over most of the PAR region. Other N. oculata grown with 2 vol.% CO2 injection in 1cm thick flat bottles exposed to light from both sides reached a significantly larger mass concentration and featured lower pigment concentration and smaller absorption cross-sections. This was due to nutrient limited growth conditions. The refraction index was independent of illuminance, spectrum, and growth conditions and featured resonance at wavelengths corresponding to absorption peaks.


Asunto(s)
Microalgas/efectos de la radiación , Estramenopilos/efectos de la radiación , Absorción , Biocombustibles , Técnicas de Cultivo de Célula , Luz , Microalgas/metabolismo , Microalgas/fisiología , Modelos Biológicos , Fotosíntesis , Estramenopilos/metabolismo , Estramenopilos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA