Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.977
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Immunol ; 15: 1338162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957470

RESUMEN

Introduction: Chemoresistance constitutes a prevalent factor that significantly impacts thesurvival of patients undergoing treatment for smal-cell lung cancer (SCLC). Chemotherapy resistance in SCLC patients is generally classified as primary or acquired resistance, each governedby distinct mechanisms that remain inadequately researched. Methods: In this study, we performed transcriptome screening of peripheral blood plasma obtainedfrom 17 patients before and after receiving combined etoposide and platinum treatment. We firs testimated pseudo-single-cell analysis using xCell and ESTIMATE and identified differentially expressed genes (DEGs), then performed network analysis to discover key hub genes involved in chemotherapy resistance. Results: Our analysis showed a significant increase in class-switched memory B cell scores acrossboth chemotherapy resistance patterns, indicating their potential crucial role in mediatingresistance. Moreover, network analysis identifed PRICKLE3, TNFSFI0, ACSLl and EP300 as potential contributors to primary resistance, with SNWl, SENP2 and SMNDCl emerging assignificant factors in acquired resistance, providing valuable insights into chemotherapy resistancein SCLC. Discussion: These findings offer valuable insights for understanding chemotherapy resistance and related gene signatures in SCLC, which could help further biological validation studies.


Asunto(s)
Biomarcadores de Tumor , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Transcriptoma , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/sangre , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangre , Resistencia a Antineoplásicos/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Femenino , Masculino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Etopósido/uso terapéutico , Etopósido/farmacología
2.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955418

RESUMEN

PURPOSE: Small-cell lung cancer (SCLC) is an aggressive disease with a dismal prognosis. The addition of immune checkpoints inhibitors to standard platinum-based chemotherapy in first-line setting achieves a durable benefit only in a patient subgroup. Thus, the identification of predictive biomarkers is an urgent unmet medical need. EXPERIMENTAL DESIGN: Tumor samples from naive extensive-stage (ES) SCLC patients receiving atezolizumab plus carboplatin-etoposide were analyzed by gene expression profiling and two 9-color multiplex immunofluorescence panels, to characterize the immune infiltrate and SCLC subtypes. Associations of tissue biomarkers with time-to-treatment failure (TTF), progression-free survival (PFS) and overall survival (OS), were assessed. RESULTS: 42 patients were included. Higher expression of exhausted CD8-related genes was independently associated with a longer TTF and PFS while increased density of B lymphocytes correlated with longer TTF and OS. Higher percentage of M2-like macrophages close to tumor cells and of CD8+T cells close to CD4+T lymphocytes correlated with increased risk of TF and longer survival, respectively. A lower risk of TF, disease progression and death was associated with a higher density of ASCL1+tumor cells while the expression of POU2F3 correlated with a shorter survival. A composite score combining the expression of exhausted CD8-related genes, B lymphocyte density, ASCL1 tumor expression and quantification of CD163+macrophages close to tumor cells, was able to stratify patients into high-risk and low-risk groups. CONCLUSIONS: In conclusion, we identified tissue biomarkers and a combined score that can predict a higher benefit from chemoimmunotherapy in ES-SCLC patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Carboplatino , Etopósido , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Microambiente Tumoral , Humanos , Carboplatino/uso terapéutico , Carboplatino/administración & dosificación , Carboplatino/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Masculino , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Femenino , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Etopósido/uso terapéutico , Etopósido/farmacología , Etopósido/administración & dosificación , Anciano , Persona de Mediana Edad , Perfilación de la Expresión Génica/métodos , Adulto , Estadificación de Neoplasias
3.
Theranostics ; 14(9): 3439-3469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948053

RESUMEN

Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.


Asunto(s)
Progresión de la Enfermedad , Etopósido , Neuroblastoma , Microambiente Tumoral , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patología , Microambiente Tumoral/efectos de los fármacos , Humanos , Animales , Ratones , Línea Celular Tumoral , Etopósido/farmacología , Etopósido/uso terapéutico , Pronóstico , Reprogramación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Terapia Molecular Dirigida/métodos , Aprendizaje Automático , Apoptosis/efectos de los fármacos , Reprogramación Metabólica
4.
BMB Rep ; 57(6): 299-304, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835116

RESUMEN

Upregulation of PRAME (preferentially expressed antigen of melanoma) has been implicated in the progression of a variety of cancers, including melanoma. The tumor suppressor p53 is a transcriptional regulator that mediates cell cycle arrest and apoptosis in response to stress signals. Here, we report that PRAME is a novel repressive target of p53. This was supported by analysis of melanoma cell lines carrying wild-type p53 and human melanoma databases. mRNA expression of PRAME was downregulated by p53 overexpression and activation using DNA-damaging agents, but upregulated by p53 depletion. We identified a p53-responsive element (p53RE) in the promoter region of PRAME. Luciferase and ChIP assays showed that p53 represses the transcriptional activity of the PRAME promoter and is recruited to the p53RE together with HDAC1 upon etoposide treatment. The functional significance of p53 activationmediated PRAME downregulation was demonstrated by measuring colony formation and p27 expression in melanoma cells. These data suggest that p53 activation, which leads to PRAME downregulation, could be a therapeutic strategy in melanoma cells. [BMB Reports 2024; 57(6): 299-304].


Asunto(s)
Antígenos de Neoplasias , Melanoma , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Regiones Promotoras Genéticas/genética , Regulación Neoplásica de la Expresión Génica , Etopósido/farmacología , Histona Desacetilasa 1/metabolismo , Regulación hacia Abajo/efectos de los fármacos
5.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843934

RESUMEN

RNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54nrb is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of Nono deletion in the murine KP (KRas G12D , Trp53 -/- ) cell-based lung cancer model. We show that the deletion of Nono impairs the response to DNA damage induced by the topoisomerase II inhibitor etoposide or the radiomimetic drug bleomycin. Nono-deficient KP (KPN) cells display hyperactivation of DSB signalling and high levels of DSBs. The defects in the DDR are accompanied by reduced RNA polymerase II promoter occupancy, impaired nascent RNA synthesis, and attenuated induction of the DDR factor growth arrest and DNA damage-inducible beta (Gadd45b). Our data characterise Gadd45b as a putative Nono-dependent effector of the DDR and suggest that Nono mediates a genome-protective crosstalk of the DDR with the RNA metabolism via induction of Gadd45b.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ARN , Animales , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Roturas del ADN de Doble Cadena , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/genética , Bleomicina/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Etopósido/farmacología , Transducción de Señal , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , ARN Polimerasa II/metabolismo , Humanos , Proteinas GADD45
6.
Langmuir ; 40(24): 12792-12801, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848468

RESUMEN

Herein, we constructed the branch-shaped SiO2/nano GO (nGO)/Fe3O4/selenium quantum dots (QDs) (SeQDs) nanoparticles (SGF/SeQDs) embodying magnetism, fluorescence, and microwave stimulus response properties to enhance the performance of releasing drugs. The SGF/SeQDs composite was characterized by technologies including powder X-ray diffraction, transmission electron microscopy, infrared spectroscopy, etc. In the nanoparticles, the branch-shaped SiO2 provides a large specific surface area, nGO as the dielectric loss-style material promotes microwave-absorbing performance, and the Fe3O4 serves as a magnetic targeting agent and microwave absorber. Integrating nGO and Fe3O4 could further strengthen the microwave absorption of the entire composite; selenium features both fluorescence and anticancer effects. The synthesized nanoparticles as carriers exhibited a branch-like mesoporous sphere of ∼260 nm, a specific surface area of 258.57 m2 g-1, a saturation magnetization of 24.59 emu g-1, and good microwave thermal conversion performance that the temperature was elevated from 25 to 70 °C under microwave irradiation. These physical characteristics, including large pore volume (5.30 nm), high specific surface area, and fibrous morphology, are in favor of loading drugs. Meanwhile, the cumulative etoposide (VP16) loading rate of the nanoparticles reached to 21 wt % after 360 min. The noncovalent interaction between the VP16 and SGF/SeQDs was mainly the hydrogen-bonding effect during the loading process. Furthermore, the drug release rates at 180 min were up to 81.46, 61.92, and 56.84 wt % at pH 4, 5, and 7, respectively. At 25, 37, and 50 °C, the rates of drug release reach 25.40, 56.84, and 65.32 wt %, respectively. After microwave stimulation at pH 7, the rate of releasing drug increased distinctly from 56.84 to 71.74 wt % compared to that of nonmicrowave irradiation. Cytotoxicity tests manifested that the carrier had good biocompatibility. Therefore, the nanoparticles are looking forward to paving one platform for further applications in biomedicine and drug delivery systems.


Asunto(s)
Portadores de Fármacos , Puntos Cuánticos , Selenio , Dióxido de Silicio , Dióxido de Silicio/química , Portadores de Fármacos/química , Portadores de Fármacos/síntesis química , Humanos , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Selenio/química , Microondas , Liberación de Fármacos , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Etopósido/química , Etopósido/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Tamaño de la Partícula , Propiedades de Superficie , Óxido Ferrosoférrico/química
7.
Mol Pharmacol ; 106(1): 33-46, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38719474

RESUMEN

DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is an essential enzyme for proper chromosome dysjunction by producing transient DNA double-stranded breaks and is an important target for DNA damage-stabilizing anticancer agents, such as etoposide. Therapeutic effects of TOP2α poisons can be limited due to acquired drug resistance. We previously demonstrated decreased TOP2α/170 levels in an etoposide-resistant human leukemia K562 subline, designated K/VP.5, accompanied by increased expression of a C-terminal truncated TOP2α isoform (90 kDa; TOP2α/90), which heterodimerized with TOP2α/170 and was a determinant of resistance by exhibiting dominant-negative effects against etoposide activity. Based on 3'-rapid amplification of cDNA ends, we confirmed TOP2α/90 as the translation product of a TOP2α mRNA in which a cryptic polyadenylation site (PAS) harbored in intron 19 (I19) was used. In this report, we investigated whether the resultant intronic polyadenylation (IPA) would be attenuated by blocking or mutating the I19 PAS, thereby circumventing acquired drug resistance. An antisense morpholino oligonucleotide was used to hybridize/block the PAS in TOP2α pre-mRNA in K/VP.5 cells, resulting in decreased TOP2α/90 mRNA/protein levels in K/VP.5 cells and partially circumventing drug resistance. Subsequently, CRISPR/CRISPR-associated protein 9 with homology-directed repair was used to mutate the cryptic I19 PAS (AATAAA→ACCCAA) to prevent IPA. Gene-edited clones exhibited increased TOP2α/170 and decreased TOP2α/90 mRNA/protein and demonstrated restored sensitivity to etoposide and other TOP2α-targeted drugs. Together, results indicated that blocking/mutating a cryptic I19 PAS in K/VP.5 cells reduced IPA and restored sensitivity to TOP2α-targeting drugs. SIGNIFICANCE STATEMENT: The results presented in this study indicate that CRISPR/CRISPR-associated protein 9 gene editing of a cryptic polyadenylation site (PAS) within I19 of the TOP2α gene results in the reversal of acquired resistance to etoposide and other TOP2-targeted drugs. An antisense morpholino oligonucleotide targeting the PAS also partially circumvented resistance.


Asunto(s)
ADN-Topoisomerasas de Tipo II , Resistencia a Antineoplásicos , Etopósido , Intrones , Poliadenilación , Humanos , Etopósido/farmacología , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Células K562 , Poliadenilación/efectos de los fármacos , Poliadenilación/genética , Intrones/genética , Sistemas CRISPR-Cas
8.
Eur J Pharmacol ; 975: 176647, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754534

RESUMEN

The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC50 value of 2.3 µM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.


Asunto(s)
Antineoplásicos , Autoantígeno Ku , Humanos , Autoantígeno Ku/metabolismo , Animales , Línea Celular Tumoral , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Daño del ADN/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ensayos Antitumor por Modelo de Xenoinjerto , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Etopósido/farmacología , Descubrimiento de Drogas , Roturas del ADN de Doble Cadena/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos
9.
Sci Rep ; 14(1): 10835, 2024 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736022

RESUMEN

Research on the relationships between oligoelements (OE) and the development of cancer or its prevention is a field that is gaining increasing relevance. The aim was to evaluate OE and their interactions with oncology treatments (cytarabine or etoposide) to determine the effects of this combination on biogenic amines and oxidative stress biomarkers in the brain regions of young Wistar rats. Dopamine (DA), 5-Hydroxyindoleacetic acid (5-Hiaa), Glutathione (Gsh), Tiobarbituric acid reactive substances (TBARS) and Ca+2, Mg+2 ATPase enzyme activity were measured in brain regions tissues using spectrophometric and fluorometric methods previously validated. The combination of oligoelements and cytarabine increased dopamine in the striatum but decreased it in cerebellum/medulla-oblongata, whereas the combination of oligoelements and etoposide reduced lipid peroxidation. These results suggest that supplementation with oligoelements modifies the effects of cytarabine and etoposide by redox pathways, and may become promising therapeutic targets in patients with cancer.


Asunto(s)
Encéfalo , Citarabina , Dopamina , Etopósido , Estrés Oxidativo , Ratas Wistar , Animales , Etopósido/farmacología , Estrés Oxidativo/efectos de los fármacos , Citarabina/farmacología , Dopamina/metabolismo , Ratas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Masculino , Peroxidación de Lípido/efectos de los fármacos , Suplementos Dietéticos , Glutatión/metabolismo
10.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731850

RESUMEN

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Asunto(s)
Ciclo Celular , Podofilotoxina , Proteómica , Humanos , Podofilotoxina/farmacología , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteómica/métodos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Etopósido/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Células HT29 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
11.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791158

RESUMEN

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Asunto(s)
Doxorrubicina , Sinergismo Farmacológico , Inhibidores de Topoisomerasa II , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Humanos , Animales , Femenino , Ratones , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/análogos & derivados , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Sulfonas/farmacología , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Polietilenglicoles/farmacología , Etopósido/farmacología , Etopósido/uso terapéutico , ADN-Topoisomerasas de Tipo II/metabolismo , Epirrubicina/farmacología
12.
J Med Chem ; 67(9): 7301-7311, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38635879

RESUMEN

Although the selective and effective clearance of senescent cancer cells can improve cancer treatment, their development is confronted by many challenges. As part of efforts designed to overcome these problems, prodrugs, whose design is based on senescence-associated ß-galactosidase (SA-ß-gal), have been developed to selectively eliminate senescent cells. However, chemotherapies relying on targeted molecular inhibitors as senolytic drugs can induce drug resistance. In the current investigation, we devised a new strategy for selective degradation of target proteins in senescent cancer cells that utilizes a prodrug composed of the SA-ß-gal substrate galactose (galacto) and the proteolysis-targeting chimeras (PROTACs) as senolytic agents. Prodrugs Gal-ARV-771 and Gal-MS99 were found to display senolytic indexes higher than those of ARV-771 and MS99. Significantly, results of in vivo studies utilizing a human lung A549 xenograft mouse model demonstrated that concomitant treatment with etoposide and Gal-ARV-771 leads to a significant inhibition of tumor growth without eliciting significant toxicity.


Asunto(s)
Senescencia Celular , Galactosa , Profármacos , Proteolisis , Humanos , Animales , Senescencia Celular/efectos de los fármacos , Galactosa/química , Galactosa/farmacología , Profármacos/farmacología , Profármacos/química , Profármacos/uso terapéutico , Ratones , Proteolisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Galactosidasa/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células A549 , Etopósido/farmacología , Senoterapéuticos/farmacología , Senoterapéuticos/química , Quimera Dirigida a la Proteólisis
13.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674157

RESUMEN

Protein tyrosine phosphatase receptor type E (PTPRE) is a member of the "classical" protein tyrosine phosphatase subfamily and regulates a variety of cellular processes in a tissue-specific manner by antagonizing the function of protein tyrosine kinases. PTPRE plays a tumorigenic role in different human cancer cells, but its role in retinoblastoma (RB), the most common malignant eye cancer in children, remains to be elucidated. Etoposide-resistant RB cell lines and RB patients display significant higher PTPRE expression levels compared to chemosensitive counterparts and the healthy human retina, respectively. PTPRE promotor methylation analyses revealed that PTPRE expression in RB is not regulated via this mechanism. Lentiviral PTPRE knockdown (KD) induced a significant decrease in growth kinetics, cell viability, and anchorage-independent growth of etoposide-resistant Y79 and WERI RB cells. Caspase-dependent apoptosis rates were significantly increased and a re-sensitization for etoposide could be observed after PTPRE depletion. In vivo chicken chorioallantoic membrane (CAM) assays revealed decreased tumor formation capacity as well as reduced tumor size and weight following PTPRE KD. Expression levels of miR631 were significantly downregulated in etoposide-resistant RB cells and patients. Transient miR631 overexpression resulted in significantly decreased PTPRE levels and concomitantly decreased proliferation and increased apoptosis levels in etoposide-resistant RB cells. These impacts mirror PTPRE KD effects, indicating a regulation of PTPRE via this miR. Additionally, PTPRE KD led to altered phosphorylation of protein kinase SGK3 and-dependent on the cell line-AKT and ERK1/2, suggesting potential PTPRE downstream signaling pathways. In summary, these results indicate an oncogenic role of PTPRE in chemoresistant retinoblastoma.


Asunto(s)
Apoptosis , Resistencia a Antineoplásicos , Etopósido , Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/metabolismo , Retinoblastoma/genética , Retinoblastoma/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Animales , Apoptosis/efectos de los fármacos , Etopósido/farmacología , Etopósido/uso terapéutico , Neoplasias de la Retina/metabolismo , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Neoplasias de la Retina/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino
14.
J Clin Invest ; 134(10)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451729

RESUMEN

Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , ADN-Topoisomerasas de Tipo II , Resistencia a Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Inhibidores de Topoisomerasa II , Humanos , Acrilamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Compuestos de Anilina/farmacología , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Línea Celular Tumoral , Inhibidores de Topoisomerasa II/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Ratones , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Sinergismo Farmacológico , Daño del ADN , Piperazinas/farmacología , Etopósido/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
FEBS Open Bio ; 14(6): 1001-1010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531625

RESUMEN

Myeloperoxidase (MPO) is found almost exclusively in granulocytes and immature myeloid cells. It plays a key role in the innate immune system, catalysing the formation of reactive oxygen species that are important in anti-microbial action, but MPO also oxidatively transforms the topoisomerase II (TOP2) poison etoposide to chemical forms that have elevated DNA damaging properties. TOP2 poisons such as etoposide are widely used anti-cancer drugs, but they are linked to cases of secondary acute myeloid leukaemias through a mechanism that involves DNA damage and presumably erroneous repair leading to leukaemogenic chromosome translocations. This leads to the possibility that myeloperoxidase inhibitors could reduce the rate of therapy-related leukaemia by protecting haematopoietic cells from TOP2 poison-mediated genotoxic damage while preserving the anti-cancer efficacy of the treatment. We show here that myeloperoxidase inhibition reduces etoposide-induced TOP2B-DNA covalent complexes and resulting DNA double-strand break formation in primary ex vivo expanded CD34+ progenitor cells and unfractionated bone marrow mononuclear cells. Since MPO inhibitors are currently being developed as anti-inflammatory agents this raises the possibility that repurposing of these potential new drugs could provide a means of suppressing secondary acute myeloid leukaemias associated with therapies containing TOP2 poisons.


Asunto(s)
Daño del ADN , ADN-Topoisomerasas de Tipo II , Etopósido , Peroxidasa , Proteínas de Unión a Poli-ADP-Ribosa , Etopósido/farmacología , Humanos , Peroxidasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo
16.
J Pharmacol Exp Ther ; 389(2): 186-196, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508753

RESUMEN

DNA topoisomerase IIß (TOP2ß/180; 180 kDa) is a nuclear enzyme that regulates DNA topology by generation of short-lived DNA double-strand breaks, primarily during transcription. TOP2ß/180 can be a target for DNA damage-stabilizing anticancer drugs, whose efficacy is often limited by chemoresistance. Our laboratory previously demonstrated reduced levels of TOP2ß/180 (and the paralog TOP2α/170) in an acquired etoposide-resistant human leukemia (K562) clonal cell line, K/VP.5, in part due to overexpression of microRNA-9-3p/5p impacting post-transcriptional events. To evaluate the effect on drug sensitivity upon reduction/elimination of TOP2ß/180, a premature stop codon was generated at the TOP2ß/180 gene exon 19/intron 19 boundary (AGAA//GTAA→ATAG//GTAA) in parental K562 cells (which contain four TOP2ß/180 alleles) by CRISPR/Cas9 editing with homology-directed repair to disrupt production of full-length TOP2ß/180. Gene-edited clones were identified and verified by quantitative polymerase chain reaction and Sanger sequencing, respectively. Characterization of TOP2ß/180 gene-edited clones, with one or all four TOP2ß/180 alleles mutated, revealed partial or complete loss of TOP2ß mRNA/protein, respectively. The loss of TOP2ß/180 protein correlated with decreased (2-{4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy}propionic acid)-induced DNA damage and partial resistance in growth inhibition assays. Partial resistance to mitoxantrone was also noted in the gene-edited clone with all four TOP2ß/180 alleles modified. No cross-resistance to etoposide or mAMSA was noted in the gene-edited clones. Results demonstrated the role of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents. SIGNIFICANCE STATEMENT: Data indicated that CRISPR/Cas9 editing of the exon 19/intron 19 boundary in the TOP2ß/180 gene to introduce a premature stop codon resulted in partial to complete disruption of TOP2ß/180 expression in human leukemia (K562) cells depending on the number of edited alleles. Edited clones were partially resistant to mitoxantrone and XK469, while lacking resistance to etoposide and mAMSA. Results demonstrated the import of TOP2ß/180 in drug sensitivity/resistance in K562 cells and revealed differential paralog activity of TOP2-targeted agents.


Asunto(s)
Antineoplásicos , Leucemia , Humanos , Etopósido/farmacología , Células K562 , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Mitoxantrona , Sistemas CRISPR-Cas/genética , Codón sin Sentido , Antineoplásicos/farmacología , ADN , Fenotipo
17.
Biol Chem ; 405(5): 341-349, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38424700

RESUMEN

Therapy-related leukemia carries a poor prognosis, and leukemia after chemotherapy is a growing risk in clinic, whose mechanism is still not well understood. Ikaros transcription factor is an important regulator in hematopoietic cells development and differentiation. In the absence of Ikaros, lymphoid cell differentiation is blocked at an extremely early stage, and myeloid cell differentiation is also significantly affected. In this work, we showed that chemotherapeutic drug etoposide reduced the protein levels of several isoforms of Ikaros including IK1, IK2 and IK4, but not IK6 or IK7, by accelerating protein degradation, in leukemic cells. To investigate the molecular mechanism of Ikaros degradation induced by etoposide, immunoprecipitation coupled with LC-MS/MS analysis was conducted to identify changes in protein interaction with Ikaros before and after etoposide treatment, which uncovered KCTD5 protein. Our further study demonstrates that KCTD5 is the key stabilizing factor of Ikaros and chemotherapeutic drug etoposide induces Ikaros protein degradation through decreasing the interaction of Ikaros with KCTD5. These results suggest that etoposide may induce leukemic transformation by downregulating Ikaros via KCTD5, and our work may provide insights to attenuate the negative impact of chemotherapy on hematopoiesis.


Asunto(s)
Etopósido , Factor de Transcripción Ikaros , Factor de Transcripción Ikaros/metabolismo , Etopósido/farmacología , Humanos , Proteolisis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología
18.
Ann Agric Environ Med ; 31(1): 37-46, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38549475

RESUMEN

INTRODUCTION AND OBJECTIVE: Including additional compounds that disturb the energy metabolism of cancer cells in advanced cancer therapy regimens may be an approach to overcome the problem of drug resistance and the therapeutic effectiveness of classic chemotherapeutics. One of the compounds that decouple oxidative phosphorylation, and thus alter the activity of energy-producing pathways, is 2,4-DNP (2,4- dinitrophenol). OBJECTIVE: The aim of the study was to assess the ability of the 2,4-DNP to sensitize prostate cancer cells to the action of cisplatin and etoposide, or to intensify their action. MATERIAL AND METHODS: The research was carried out on three prostate cancer cell lines (LNCaP, PC-3, DU-145. To assess the effect of cisplatin or etoposide with 2,4-DNP on prostate cancer cells, MTT assay, analysis of the cell cycle and apoptosis detection was performed. Oxidative stress was investigated by CellRox fluorescence staining and expression of genes related to antioxidant defence. In addition, analysis was conducted of the expression of genes related to cell cycle inhibition, transporters associated with multi-drug resistance and DNA repair. RESULTS: The study showed that the simultaneous incubation of 2,4-DNP with cisplatin or etoposide enhances the cytotoxic effect of the chemotherapeutic agent only in LNCaP cells (oxidative phenotype). CONCLUSIONS: The enhanced cytotoxic effect of chemotherapeutics by 2,4-DNP may be the result of disturbed redox balance, reduced ability of cells to repair DNA, and the oxidative metabolic phenotype of prostate cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Etopósido/farmacología , Etopósido/uso terapéutico , 2,4-Dinitrofenol/farmacología , 2,4-Dinitrofenol/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular , Apoptosis , Línea Celular Tumoral
19.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339011

RESUMEN

In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.


Asunto(s)
Receptor de Factor de Crecimiento Nervioso , Neoplasias de la Retina , Retinoblastoma , Canales Catiónicos TRPM , Humanos , Línea Celular , Etopósido/farmacología , Etopósido/uso terapéutico , Proteínas de la Membrana/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Receptor Cannabinoide CB1/metabolismo
20.
Bioorg Chem ; 145: 107223, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387399

RESUMEN

Herein, we envisioned the design and synthesis of novel pyrazolopyrimidines (confirmed by elemental analysis, 1H and 13C NMR, and mass spectra) as multitarget-directed drug candidates acting as EGFR/TOPO II inhibitors, DNA intercalators, and apoptosis inducers. The target diphenyl-tethered pyrazolopyrimidines were synthesized starting from the reaction of phenyl hydrazine and ethoxymethylenemalononitrile to give aminopyrazole-carbonitrile 2. The latter hydrolysis with NaOH and subsequent reaction with 4-chlorobenzaldhyde afforded the corresponding pyrazolo[3,4-d]pyrimidin-4-ol 4. Chlorination of 4 with POCl3 and sequential reaction with different amines afforded the target compounds in good yields (up to 73 %). The growth inhibition % of the new derivatives (6a-m) was investigated against different cancer and normal cells and the IC50 values of the most promising candidates were estimated for HNO97, MDA-MB-468, FaDu, and HeLa cancer cells. The frontier derivatives (6a, 6i, 6k, 6l, and 6m) were pursued for their EGFR inhibitory activity. Compound 6l decreased EGFR protein concentration by a 6.10-fold change, compared to imatinib as a reference standard. On the other side, compounds (6a, 6i, 6k, 6l, and 6m) underwent topoisomerase II (TOPO II) inhibitory assay. In particular, compounds 6a and 6l exhibited IC50s of 17.89 and 19.39 µM, respectively, surpassing etoposide with IC50 of 20.82 µM. Besides, the DNA fragmentation images described the great potential of both candidates 6a and 6l in inducing DNA degradation at lower concentrations compared to etoposide and doxorubicin. Moreover, compound 6l, with the most promising EGFR/TOPO II inhibition and DNA intercalation, was selected for further investigation for its apoptosis induction ability by measuring caspases 3, 7, 8, and 9, Bax, p53, MMP2, MMP9, and BCL-2 proteins. Additionally, molecular docking was used to explain the SAR results based on the differences in the molecular features of the investigated congeners and the target receptors' topology.


Asunto(s)
Antineoplásicos , Compuestos de Bifenilo , Humanos , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Etopósido/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular , Inhibidores de Topoisomerasa II , Apoptosis , Receptores ErbB/metabolismo , ADN , Ensayos de Selección de Medicamentos Antitumorales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA