Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
J Radiat Res ; 65(3): 303-314, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38637316

RESUMEN

Angiosarcoma is a rare refractory soft-tissue tumor with a poor prognosis and is treated by radiotherapy. The fibroblast growth factor 1 (FGF1) mutant, with enhanced thermostability due to several substituted amino acids, inhibits angiosarcoma cell metastasis, yet the mechanism of action is unclear. This study aims to clarify the FGF1 mutant mechanism of action using ISOS-1 mouse angiosarcoma cells. The wild-type FGF1 or FGF1 mutant was added to ISOS-1 cells and cultured, evaluating cell numbers over time. The invasive and migratory capacity of ISOS-1 cells was assessed by transwell analysis. ISOS-1 cell radiosensitivity was assessed by colony formation assay after X-ray irradiation. To examine whether mitogen-activated protein kinase (MEK) inhibitor counteracts the FGF1 mutant effects, a combination of MEK inhibitor and FGF1 mutant was added to ISOS-1 cells and cultured. The FGF1 mutant was observed to inhibit ISOS-1 cell proliferation, invasion and migration by sustained FGF1 signaling activation. A MEK inhibitor suppressed the FGF1 mutant-induced inhibition of proliferation, invasion and migration of ISOS-1 cells. Furthermore, the FGF1 mutant enhanced radiosensitivity of ISOS-1 cells, but MEK inhibition suppressed the increased radiosensitivity. In addition, we found that the FGF1 mutant strongly inhibits actin polymerization, suggesting that actin cytoskeletal dynamics are closely related to ISOS-1 cell radiosensitivity. Overall, this study demonstrated that in ISOS-1 cells, the FGF1 mutant inhibits proliferation, invasion and migration while enhancing radiosensitivity through sustained activation of the MEK-mediated signaling pathway.


Asunto(s)
Movimiento Celular , Proliferación Celular , Factor 1 de Crecimiento de Fibroblastos , Hemangiosarcoma , Sistema de Señalización de MAP Quinasas , Invasividad Neoplásica , Tolerancia a Radiación , Animales , Ratones , Movimiento Celular/efectos de los fármacos , Movimiento Celular/efectos de la radiación , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Hemangiosarcoma/patología , Hemangiosarcoma/metabolismo , Hemangiosarcoma/radioterapia
2.
Nanoscale ; 16(17): 8352-8360, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563277

RESUMEN

Detection and characterization of protein-protein interactions are essential for many cellular processes, such as cell growth, tissue repair, drug delivery, and other physiological functions. In our research, we have utilized emerging solid-state nanopore sensing technology, which is highly sensitive to better understand heparin and fibroblast growth factor 1 (FGF-1) protein interactions at a single-molecule level without any modifications. Understanding the structure and behavior of heparin-FGF-1 complexes at the single-molecule level is very important. An abnormality in their formation can lead to life-threatening conditions like tumor growth, fibrosis, and neurological disorders. Using a controlled dielectric breakdown pore fabrication approach, we have characterized individual heparin and FGF-1 (one of the 22 known FGFs in humans) proteins through the fabrication of 17 ± 1 nm nanopores. Compared to heparin, the positively charged heparin-binding domains of some FGF-1 proteins translocationally react with the pore walls, giving rise to a distinguishable second peak with higher current blockade. Additionally, we have confirmed that the dynamic FGF-1 is stabilized upon binding with heparin-FGF-1 at the single-molecule level. The larger current blockades from the complexes relative to individual heparin and the FGF-1 recorded during the translocation ensure the binding of heparin-FGF-1 proteins, forming binding complexes with higher excluded volumes. Taken together, we demonstrate that solid-state nanopores can be employed to investigate the properties of individual proteins and their complex interactions, potentially paving the way for innovative medical therapies and advancements.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos , Heparina , Nanoporos , Unión Proteica , Factor 1 de Crecimiento de Fibroblastos/química , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Heparina/química , Heparina/metabolismo , Humanos
3.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542166

RESUMEN

Diabetic retinopathy (DR) severely affects vision in individuals with diabetes. High glucose (HG) induces oxidative stress in retinal cells, a key contributor to DR development. Previous studies suggest that fibroblast growth factor-1 (FGF-1) can mitigate hyperglycemia and protect tissues from HG-induced damage. However, the specific effects and mechanisms of FGF-1 on DR remain unclear. In our study, FGF-1-pretreated adult retinal pigment epithelial (ARPE)-19 cells were employed to investigate. Results indicate that FGF-1 significantly attenuated HG-induced oxidative stress, including reactive oxygen species, DNA damage, protein carbonyl content, and lipid peroxidation. FGF-1 also modulated the expression of oxidative and antioxidative enzymes. Mechanistic investigations showed that HG induced high endoplasmic reticulum (ER) stress and upregulated specific proteins associated with apoptosis. FGF-1 effectively alleviated ER stress, reduced apoptosis, and restored autophagy through the adenosine monophosphate-activated protein kinase/mammalian target of the rapamycin signaling pathway. We observed that the changes induced by HG were dose-dependently reversed by FGF-1. Higher concentrations of FGF-1 (5 and 10 ng/mL) exhibited increased effectiveness in mitigating HG-induced damage, reaching statistical significance (p < 0.05). In conclusion, our study underscores the promising potential of FGF-1 as a safeguard against DR. FGF-1 emerges as a formidable intervention, attenuating oxidative stress, ER stress, and apoptosis, while concurrently promoting autophagy. This multifaceted impact positions FGF-1 as a compelling candidate for alleviating retinal cell damage in the complex pathogenesis of DR.


Asunto(s)
Retinopatía Diabética , Factor 1 de Crecimiento de Fibroblastos , Humanos , Factor 1 de Crecimiento de Fibroblastos/farmacología , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Carbonilación Proteica , Epitelio Pigmentado de la Retina/metabolismo , Estrés Oxidativo , Apoptosis , Estrés del Retículo Endoplásmico , Autofagia , Retinopatía Diabética/metabolismo , Glucosa/toxicidad , Glucosa/metabolismo , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismo
4.
ACS Appl Mater Interfaces ; 16(2): 1969-1984, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38181175

RESUMEN

Exosomes possess several inherent properties that make them ideal for biomedical applications, including robust stability, biocompatibility, minimal immunogenicity, and the ability to cross biological barriers. These natural nanoparticles have recently been developed as drug delivery vesicles. To do so, therapeutic molecules must be efficiently loaded into exosomes first. Very recently, we developed a cell-penetrating peptide (CPP)-based platform for loading of nucleic acids and small molecules into exosomes by taking advantage of the membrane-penetration power of CPPs. Here, we extended this simple but effective platform by loading a protein cargo into exosomes isolated from either mesenchymal stem cells from three different sources or two different cancer cell lines. The protein cargo is a fusion protein YARA-FGF1-GFP through the covalent conjugation of a model CPP called YARA to human fibroblast growth factor 1 (FGF1) and green fluorescence protein (GFP). Loading of YARA-FGF1-GFP into exosomes was time-dependent and reached a maximum of about 1600 YARA-FGF1-GFP molecules in each exosome after 16 h. The ladened exosomes were effectively internalized by mammalian cells, and subsequently, the loaded protein cargo YARA-FGF1-GFP was delivered intracellularly. In comparison to YARA, YARA-FGF1-GFP, the unloaded exosomes, and the exosomes loaded with YARA, the exosomes loaded with YARA-FGF1-GFP substantially promoted the migration, proliferation, and invasion capabilities of mouse and human fibroblasts, which are important factors for wound repair. The work extended our CPP-based exosomal cargo loading platform and established a foundation for developing novel wound-healing therapies using exosomes loaded with FGF1 and other growth factors.


Asunto(s)
Exosomas , Factor 1 de Crecimiento de Fibroblastos , Animales , Humanos , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Exosomas/metabolismo , Cicatrización de Heridas , Proliferación Celular , Fibroblastos , Mamíferos
5.
Cell Mol Life Sci ; 80(10): 311, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37783936

RESUMEN

Fibroblast growth factor 1 (FGF1) acts by activating specific tyrosine kinase receptors on the cell surface. In addition to this classical mode of action, FGF1 also exhibits intracellular activity. Recently, we found that FGF1 translocated into the cell interior exhibits anti-apoptotic activity independent of receptor activation and downstream signaling. Here, we show that expression of FGF1 increases the survival of cells treated with various apoptosis inducers, but only when wild-type p53 is present. The p53-negative cells were not protected by either ectopically expressed or translocated FGF1. We also confirmed the requirement of p53 for the anti-apoptotic intracellular activity of FGF1 by silencing p53, resulting in loss of the protective effect of FGF1. In contrast, in p53-negative cells, intracellular FGF1 regained its anti-apoptotic properties after transfection with wild-type p53. We also found that FGF1 directly interacts with p53 in cells and that the binding region is located in the DBD domain of p53. We therefore postulate that intracellular FGF1 protects cells from apoptosis by directly interacting with p53.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos , Proteína p53 Supresora de Tumor , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Apoptosis
6.
Breast Cancer Res ; 25(1): 99, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608351

RESUMEN

BACKGROUND: Obesity increases breast cancer risk and breast cancer-specific mortality, particularly for people with estrogen receptor (ER)-positive tumors. Body mass index (BMI) is used to define obesity, but it may not be the best predictor of breast cancer risk or prognosis on an individual level. Adult weight gain is an independent indicator of breast cancer risk. Our previous work described a murine model of obesity, ER-positive breast cancer, and weight gain and identified fibroblast growth factor receptor (FGFR) as a potential driver of tumor progression. During adipose tissue expansion, the FGF1 ligand is produced by hypertrophic adipocytes as a stimulus to stromal preadipocytes that proliferate and differentiate to provide additional lipid storage capacity. In breast adipose tissue, FGF1 production may stimulate cancer cell proliferation and tumor progression. METHODS: We explored the effects of FGF1 on ER-positive endocrine-sensitive and resistant breast cancer and compared that to the effects of the canonical ER ligand, estradiol. We used untargeted proteomics, specific immunoblot assays, gene expression profiling, and functional metabolic assessments of breast cancer cells. The results were validated in tumors from obese mice and breast cancer datasets from women with obesity. RESULTS: FGF1 stimulated ER phosphorylation independently of estradiol in cells that grow in obese female mice after estrogen deprivation treatment. Phospho- and total proteomic, genomic, and functional analyses of endocrine-sensitive and resistant breast cancer cells show that FGF1 promoted a cellular phenotype characterized by glycolytic metabolism. In endocrine-sensitive but not endocrine-resistant breast cancer cells, mitochondrial metabolism was also regulated by FGF1. Comparison of gene expression profiles indicated that tumors from women with obesity shared hallmarks with endocrine-resistant breast cancer cells. CONCLUSIONS: Collectively, our data suggest that one mechanism by which obesity and weight gain promote breast cancer progression is through estrogen-independent ER activation and cancer cell metabolic reprogramming, partly driven by FGF/FGFR. The first-line treatment for many patients with ER-positive breast cancer is inhibition of estrogen synthesis using aromatase inhibitors. In women with obesity who are experiencing weight gain, locally produced FGF1 may activate ER to promote cancer cell metabolic reprogramming and tumor progression independently of estrogen.


Asunto(s)
Neoplasias de la Mama , Factor 1 de Crecimiento de Fibroblastos , Receptores de Estrógenos , Animales , Femenino , Ratones , Estradiol , Estrógenos , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Ligandos , Obesidad/complicaciones , Proteómica , Receptores de Estrógenos/genética , Aumento de Peso , Neoplasias de la Mama/metabolismo
7.
Gut Microbes ; 15(1): 2238959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37505920

RESUMEN

Gut microbiota-diet interaction has been identified as a key factor of metabolic associated fatty liver disease (MAFLD). Recent studies suggested that dietary polyphenols may protect against MAFLD by regulating gut microbiota; however, the underlying mechanisms remain elusive. We first investigated the effects of cyanidin 3-glucoside and its phenolic metabolites on high-fat diet induced MAFLD in C57BL/6J mice, and protocatechuic acid (PCA) showed a significant positive effect. Next, regulation of PCA on lipid metabolism and gut microbiota were explored by MAFLD mouse model and fecal microbiota transplantation (FMT) experiment. Dietary PCA reduced intraperitoneal and hepatic fat deposition with lower levels of transaminases (AST & ALT) and inflammatory cytokines (IL-1ß, IL-2, IL-6, TNF-α & MCP-1), but higher HDL-c/LDL-c ratio. Characterization of gut microbiota indicated that PCA decreased the Firmicutes/Bacteroidetes ratio mainly by reducing the relative abundance of genus Enterococcus, which was positively correlated with the levels of LDL-c, AST, ALT and most of the up-regulated hepatic lipids by lipidomics analysis. FMT experiments showed that Enterococcus faecalis caused hepatic inflammation, fat deposition and insulin resistance with decreased expression of carnitine palmitoyltransferase-1 alpha (CPT1α), which can be reversed by PCA through inhibiting Enterococcus faecalis. Transcriptomics analysis suggested that Enterococcus faecalis caused a significant decrease in the expression of fibroblast growth factor 1 (Fgf1), and PCA recovered the expression of Fgf1 with insulin-like growth factor binding protein 2 (Igfbp2), insulin receptor substrate 1 (Irs1) and insulin receptor substrate 2 (Irs2). These results demonstrated that high proportion of gut Enterococcus faecalis accelerates MAFLD with decreased expression of CPT1α and Fgf1, which can be prevented by dietary supplementation of PCA.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , LDL-Colesterol , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos
8.
ACS Appl Mater Interfaces ; 15(5): 6397-6410, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36625595

RESUMEN

Drugs for metabolic diseases usually require systemic administration and act on multiple tissues, which may produce some unpredictable side effects. There have been many successful studies on targeted drugs, especially antitumor drugs. However, there is still little research on metabolic disease drugs targeting specific tissues. Fibroblast growth factor 1 (FGF1) is a potential therapy for type 2 diabetes (T2D) without the risk of hypoglycemia. However, the major impediment to the clinical application of FGF1 is its mitogenic potential. We previously engineered an FGF1 variant (named FGF1ΔHBS) to tune down its mitogenic activity via reducing the heparin-binding ability. However, other notable side effects still remained, including severe appetite inhibition, pathogenic loss of body weight, and increase in fatality rate. In this study, we used AlphaFold2 and PyMOL visualization tools to construct a novel FGF1ΔHBS conjugate fused with skeletal muscle-targeted (MT) peptide through a flexible peptide linker termed MT-FGF1ΔHBS. We found that MT-FGF1ΔHBS specifically homed to skeletal muscle tissue after systemic administration and induced a potent glucose-lowering effect in T2D mice without hypoglycemia. Mechanistically, MT-FGF1ΔHBS elicits the glucose-lowering effect via AMPK activation to promote the GLUT4 expression and translocation in skeletal muscle cells. Notably, compared with native FGF1ΔHBS, MT-FGF1ΔHBS had minimal effects on food intake and body weight and did not induce any hyperplasia in major tissues of both T2D and normal mice, indicating that this muscle-homing protein may be a promising candidate for T2D treatment. Our targeted peptide strategy based on computer-aided structure prediction in this study could be effectively applied for delivering agents to functional tissues to treat metabolic or other diseases, offering enhanced efficacy and reducing systemic off-target side effects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Ratones , Animales , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Factor 1 de Crecimiento de Fibroblastos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético , Péptidos/metabolismo , Glucosa/metabolismo , Hipoglucemia/metabolismo , Peso Corporal
9.
Transl Vis Sci Technol ; 11(10): 2, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36180030

RESUMEN

Purpose: Maintenance of a filtering bleb is essential for long-term intraocular pressure control after trabeculectomy. Surgical site fibrosis and excessive extracellular matrix production are common causes of trabeculectomy failure, mediated by several growth factors. We aimed to evaluate the levels of five growth factors and their correlation with trabeculectomy outcomes in patients with primary open-angle glaucoma (POAG). Methods: We collected aqueous humor samples intraoperatively from patients with POAG who underwent trabeculectomy and measured the concentrations of transforming growth factor-ß (TGF-ß), acidic fibroblast growth factor (aFGF), insulin-like growth factor-1, vascular endothelial growth factor, and platelet-derived growth factor using multiplexed immunoassay kits. Intraocular pressure was measured with Goldmann applanation tonometry at 1 week and at 1, 3, 6, 12, 18, and 24 months after trabeculectomy. We allocated the eyes based on surgical outcome into a success or failure group. Results: Significantly high levels of aFGF and TGF-ß were observed in the failure group (both P < 0.0001) and were significant risk factors for trabeculectomy outcomes. Higher success rates were observed over the 24-month follow-up period in eyes with low aFGF and TGF-ß levels compared to eyes with high levels (P = 0.0031 and P = 0.0007, respectively). The levels of TGF-ß were significantly positively correlated with aFGF. Conclusions: In POAG patients, high aFGF and TGF-ß levels were significant risk factors for trabeculectomy failure. Translational Relevance: Modulation of aFGF and TGF-ß expression may have potential clinical applications after filtration surgery.


Asunto(s)
Glaucoma de Ángulo Abierto , Trabeculectomía , Humor Acuoso/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Glaucoma de Ángulo Abierto/etiología , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/cirugía , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estudios Prospectivos , Trabeculectomía/efectos adversos , Factor de Crecimiento Transformador beta/metabolismo , Factores de Crecimiento Transformadores/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(40): e2122382119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161959

RESUMEN

Fibroblast growth factor 1 (FGF1) is an autocrine growth factor released from adipose tissue during over-nutrition or fasting to feeding transition. While local actions underlie the majority of FGF1's anti-diabetic functions, the molecular mechanisms downstream of adipose FGF receptor signaling are unclear. We investigated the effects of FGF1 on glucose uptake and its underlying mechanism in murine 3T3-L1 adipocytes and in ex vivo adipose explants from mice. FGF1 increased glucose uptake in 3T3-L1 adipocytes and epididymal WAT (eWAT) and inguinal WAT (iWAT). Conversely, glucose uptake was reduced in eWAT and iWAT of FGF1 knockout mice. We show that FGF1 acutely increased adipocyte glucose uptake via activation of the insulin-sensitive glucose transporter GLUT4, involving dynamic crosstalk between the MEK1/2 and Akt signaling proteins. Prolonged exposure to FGF1 stimulated adipocyte glucose uptake by MEK1/2-dependent transcription of the basal glucose transporter GLUT1. We have thus identified an alternative pathway to stimulate glucose uptake in adipocytes, independent from insulin, which could open new avenues for treating patients with type 2 diabetes.


Asunto(s)
Adipocitos , Factor 1 de Crecimiento de Fibroblastos , Glucosa , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
11.
Stem Cell Res Ther ; 13(1): 435, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056394

RESUMEN

BACKGROUND: Skin ageing caused by long-term ultraviolet (UV) irradiation is a complex biological process that involves multiple signalling pathways. Stem cell-conditioned media is believed to have anti-ageing effects on the skin. The purpose of this study was to explore the biological effects of UVB irradiation and anti-photoaging effects of human umbilical cord mesenchymal stem cell-conditioned medium (hUC-MSC-CM) on HaCaT cells using multi-omics analysis with a novel cellular photoaging model. METHODS: A cellular model of photoaging was constructed by irradiating serum-starved HaCaT cells with 20 mJ/cm2 UVB. Transcriptomics and proteomics analyses were used to explore the biological effects of UVB irradiation on photoaged HaCaT cells. Changes in cell proliferation, apoptosis, and migration, the cell cycle, and expression of senescence genes and proteins were measured to assess the protective effects of hUC-MSC-CM in the cellular photoaging model. RESULTS: The results of the multi-omics analysis revealed that UVB irradiation affected various biological functions of cells, including cell proliferation and the cell cycle, and induced a senescence-associated secretory phenotype. hUC-MSC-CM treatment reduced cell apoptosis, inhibited G1 phase arrest in the cell cycle, reduced the production of reactive oxygen species, and promoted cell motility. The qRT-PCR results indicated that MYC, IL-8, FGF-1, and EREG were key genes involved in the anti-photoaging effects of hUC-MSC-CM. The western blotting results demonstrated that C-FOS, C-JUN, TGFß, p53, FGF-1, and cyclin A2 were key proteins involved in the anti-photoaging effects of hUC-MSC-CM. CONCLUSION: Serum-starved HaCaT cells irradiated with 20 mJ/cm2 UVB were used to generate an innovative cellular photoaging model, and hUC-MSC-CM demonstrates potential as an anti-photoaging treatment for skin.


Asunto(s)
Células Madre Mesenquimatosas , Envejecimiento de la Piel , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical
12.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36077521

RESUMEN

We aimed to identify miRNAs and pathways specifically deregulated in adolescent and young adult (AYA) T-ALL patients. Small RNA-seq showed no major differences between AYA and pediatric T-ALL, but it revealed downregulation of miR-143-3p in T-ALL patients. Prediction algorithms identified several known and putative oncogenes targeted by this miRNA, including KRAS, FGF1, and FGF9. Pathway analysis indicated signaling pathways related to cell growth and proliferation, including FGFR signaling and PI3K-AKT signaling, with the majority of genes overrepresented in these pathways being predicted targets of hsa-miR-143-3p. By luciferase reporter assays, we validated direct interactions of this miRNA with KRAS, FGF1 and FGF9. In cell proliferation assays, we showed reduction of cell growth upon miR-143-3p overexpression in two T-ALL cell lines. Our study is the first description of the miRNA transcriptome in AYA T-ALL patients and the first report on tumor suppressor potential of miR-143-3p in T-ALL. Downregulation of this miRNA in T-ALL patients might contribute to enhanced growth and viability of leukemic cells. We also discuss the potential role of miR-143-3p in FGFR signaling. Although this requires more extensive validation, it might be an interesting direction, since FGFR inhibition proved promising in preclinical studies in various cancers.


Asunto(s)
MicroARNs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Niño , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , RNA-Seq , Transcriptoma , Adulto Joven
13.
J Vis Exp ; (185)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35938798

RESUMEN

Fuchs Endothelial Corneal Dystrophy (FECD) results from dysfunctional corneal endothelial cells (CECs) and is currently treated by transplantation of the whole cornea or Descemet's membrane. Recent developments in ocular surgery have established Descemet's Stripping Only (DSO), a surgical technique in which a central circle of guttae-dense Descemet's membrane is removed to allow for the migration of CECs onto the smooth stroma, restoring function and vision to the cornea. While this potential treatment option is of high interest in the field of ophthalmic research, no successful ex vivo models of DSO have been established and clinical data is limited. This work presents a novel wound-healing model simulating DSO in human donor corneas. Using this approach to evaluate the efficacy of the human engineered FGF1 (NM141), we found that treatment accelerated healing via stimulation of migration and proliferation of CECs. This finding was confirmed in 11 pairs of human corneas with signs of dystrophy reported by the eye banks in order to verify that these results can be replicated in patients with Fuchs' Dystrophy, as the target population of the DSO procedure.


Asunto(s)
Lámina Limitante Posterior , Queratoplastia Endotelial de la Lámina Limitante Posterior , Córnea/cirugía , Lámina Limitante Posterior/metabolismo , Queratoplastia Endotelial de la Lámina Limitante Posterior/métodos , Células Endoteliales , Endotelio Corneal/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Distrofia Endotelial de Fuchs , Humanos , Técnicas de Cultivo de Órganos
14.
Glia ; 70(12): 2260-2275, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35915989

RESUMEN

Astrocytes express surface channels involved in purinergic signaling. Among these channels, pannexin-1 (Px1) and connexin-43 (Cx43) hemichannels (HCs) release ATP that acts directly, or through its derivatives, on neurons and glia via purinergic receptors. Although HCs are functional, that is, open and close under physiological and pathological conditions, single channel properties of Px1 HCs in astrocytes have not been defined. Here, we developed a dual voltage clamp technique in HeLa cells expressing human Px1-YFP, and then applied this system to rodent spinal astrocytes to compare their single channel properties with other surface channels, that is, Cx43 HCs and P2X7 receptors (P2X7Rs). Channels were recorded in cell attached patches and evoked with ramp cycles applied through another pipette in whole cell voltage clamp. The mean unitary conductances of Px1 HCs were comparable in HeLa Px1-YFP cells and spinal astrocytes, ~42 and ~48 pS, respectively. Based on their unitary conductance, voltage-dependence, and unitary activity after pharmacological and gene silencing, Px1 HCs in astrocytes could be distinguished from Cx43 HCs and P2X7Rs. Channel activity of Px1 HCs and P2X7Rs was greater than that of Cx43 HCs in control astrocytes during ramps. Unitary activity of Px1 HCs was decreased and that of Cx43 HCs and P2X7Rs increased in astrocytes treated with fibroblast growth factor 1 (FGF-1). In summary, we resolved single channel properties of three different surface channels involved in purinergic signaling in spinal astrocytes, which were differentially modulated by FGF-1, a growth factor involved in neurodevelopment, inflammation and repair.


Asunto(s)
Astrocitos , Conexina 43 , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Astrocitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Células HeLa , Humanos , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Roedores/metabolismo , Médula Espinal/metabolismo
15.
Stem Cell Res Ther ; 13(1): 341, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883153

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) leads to cell and tissue impairment, as well as functional deficits. Stem cells promote structural and functional recovery and thus are considered as a promising therapy for various nerve injuries. Here, we aimed to investigate the role of ectoderm-derived frontal bone mesenchymal stem cells (FbMSCs) in promoting cerebral repair and functional recovery in a murine TBI model. METHODS: A murine TBI model was established by injuring C57BL/6 N mice with moderate-controlled cortical impact to evaluate the extent of brain damage and behavioral deficits. Ectoderm-derived FbMSCs were isolated from the frontal bone and their characteristics were assessed using multiple differentiation assays, flow cytometry and microarray analysis. Brain repairment and functional recovery were analyzed at different days post-injury with or without FbMSC application. Behavioral tests were performed to assess learning and memory improvements. RNA sequencing analysis, immunofluorescence staining, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to examine inflammation reaction and neural regeneration. In vitro co-culture analysis and quantification of glutamate transportation were carried out to explore the possible mechanism of neurogenesis and functional recovery promoted by FbMSCs. RESULTS: Ectoderm-derived FbMSCs showed fibroblast like morphology and osteogenic differentiation capacity. FbMSCs were CD105, CD29 positive and CD45, CD31 negative. Different from mesoderm-derived MSCs, FbMSCs expressed the ectoderm-specific transcription factor Tfap2ß. TBI mice showed impaired learning and memory deficits. Microglia and astrocyte activation, as well as neural damage, were significantly increased post-injury. FbMSC application ameliorated the behavioral deficits of TBI mice and promoted neural regeneration. RNA sequencing analysis showed that signal pathways related to inflammation decreased, whereas those related to neural activation increased. Immunofluorescence staining and qRT-PCR data revealed that microglial activation and astrocyte polarization to the A1 phenotype were suppressed by FbMSC application. In addition, FGF1 secreted from FbMSCs enhanced glutamate transportation by astrocytes and alleviated the cytotoxic effect of excessive glutamate on neurons. CONCLUSIONS: Ectoderm-derived FbMSC application significantly alleviated neuroinflammation, brain injury, and excitatory toxicity to neurons, improved cognition and behavioral deficits in TBI mice. Therefore, ectoderm-derived FbMSCs could be ideal therapeutic candidates for TBI which mostly affect cells from the same embryonic origins as FbMSCs.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Células Madre Mesenquimatosas , Animales , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Ectodermo/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/farmacología , Factor 1 de Crecimiento de Fibroblastos/uso terapéutico , Hueso Frontal/metabolismo , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Ácido Glutámico/uso terapéutico , Inflamación/metabolismo , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Osteogénesis
16.
Br J Cancer ; 127(7): 1239-1253, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35864158

RESUMEN

BACKGROUND: Distant metastasis and recurrence remain the main obstacle to nasopharyngeal carcinoma (NPC) treatment. However, the molecular mechanisms underlying NPC growth and metastasis are poorly understood. METHODS: LHX2 expression was examined in NPC cell lines and NPC tissues using quantitative reverse transcription-polymerase chain reaction, western blotting and Immunohistochemistry assay. NPC cells overexpressing or silencing LHX2 were used to perform CCK-8 assay, colony-formation assay, EdU assay, wound-healing and invasion assays in vitro. Xenograft tumour models and lung metastasis models were involved for the in vivo assays. The Gene Set Enrichment Analysis (GSEA), ELISA assay, western blot, chromatin immunoprecipitation (ChIP) assay and Luciferase reporter assay were applied for the downstream target mechanism investigation. RESULTS: LIM-homeodomain transcription factor 2 (LHX2) was upregulated in NPC tissues and cell lines. Elevated LHX2 was closely associated with poor survival in NPC patients. Ectopic LHX2 overexpression dramatically promoted the growth, migration and invasion of NPC cells both in vitro and in vivo. Mechanistically, LHX2 transcriptionally increased the fibroblast growth factor 1 (FGF1) expression, which in turn activated the phosphorylation of STAT3 (signal transducer and activator of transcription 3), ERK1/2 (extracellular regulated protein kinases 1/2) and AKT signalling pathways in an autocrine and paracrine manner, thereby promoting the growth and metastasis of NPC. Inhibition of FGF1 with siRNA or FGFR inhibitor blocked LHX2-induced nasopharyngeal carcinoma cell growth, migration and invasion. CONCLUSIONS: Our study identifies the LHX2-FGF1-FGFR axis plays a key role in NPC progression and provides a potential target for NPC therapy.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , MicroARNs/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Br J Cancer ; 127(7): 1340-1351, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35778553

RESUMEN

BACKGROUND: Ovarian cancer patients frequently develop chemotherapy resistance, limiting treatment options. We have previously shown that individuality in fibroblast growth factor 1 (FGF1) expression influences survival and chemotherapy response. METHODS: We used MTT assays to assess chemosensitivity to cisplatin and carboplatin following shRNA-mediated knockdown or heterologous over-expression of FGF1 (quantified by qRT-PCR and immunoblot analysis), and in combination with the FGFR inhibitors AZD4547 and SU5402, the ATM inhibitor KU55933 and DNA-PK inhibitor NU7026. Immunofluorescence microscopy was used to quantify the FGF1-dependent timecourse of replication protein A (RPA) and γH2AX foci formation. RESULTS: Pharmacological inhibition of FGF signalling reversed drug resistance in immortalised cell lines and in primary cell lines from drug-resistant ovarian cancer patients, while FGF1 over-expression induced resistance. Ataxia telangiectasia mutated (ATM) phosphorylation, but not DNA adduct formation was FGF1 dependent, following cisplatin or carboplatin challenge. Combining platinum drugs with the ATM inhibitor KU55933, but not with the DNA-PK inhibitor NU7026 re-sensitised resistant cells. FGF1 expression influenced the timecourse of damage-induced RPA and γH2AX nuclear foci formation. CONCLUSION: Drug resistance arises from FGF1-mediated differential activation of high-fidelity homologous recombination DNA damage repair. FGFR and ATM inhibitors reverse platinum drug resistance, highlighting novel combination chemotherapy approaches for future clinical trial evaluation.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Proteínas de la Ataxia Telangiectasia Mutada , Carboplatino/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/uso terapéutico , Daño del ADN , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Resistencia a Medicamentos , Femenino , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Factor 1 de Crecimiento de Fibroblastos/uso terapéutico , Factores de Crecimiento de Fibroblastos , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Platino (Metal)/uso terapéutico , ARN Interferente Pequeño , Reparación del ADN por Recombinación , Proteína de Replicación A/genética
18.
Cell Death Dis ; 13(7): 611, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840561

RESUMEN

Non-small cell lung cancer (NSCLC) patients harboring activating mutations in epidermal growth factor receptor (EGFR) are sensitive to therapy with EGFR tyrosine kinase inhibitors (TKI). Despite remarkable clinical responses using EGFR TKI, surviving drug tolerant cells serve as a reservoir from which drug resistant tumors may emerge. This study addresses the need for improved efficacy of EGFR TKI by identifying targets involved in functional drug tolerance against them. To this aim, a high-throughput siRNA kinome screen was performed using two EGFR TKI-sensitive EGFR-mutant NSCLC cell lines in the presence/absence of the second-generation EGFR TKI afatinib. From the screen, Serine/Threonine/Tyrosine Kinase 1 (STYK1) was identified as a target that when downregulated potentiates the effects of EGFR inhibition in vitro. We found that chemical inhibition of EGFR combined with the siRNA-mediated knockdown of STYK1 led to a significant decrease in cancer cell viability and anchorage-independent cell growth. Further, we show that STYK1 selectively interacts with mutant EGFR and that the interaction is disrupted upon EGFR inhibition. Finally, we identified fibroblast growth factor 1 (FGF1) as a downstream effector of STYK1 in NSCLC cells. Accordingly, downregulation of STYK1 counteracted the afatinib-induced upregulation of FGF1. Altogether, we unveil STYK1 as a valuable target to repress the pool of surviving drug tolerant cells arising upon EGFR inhibition. Co-targeting of EGFR and STYK1 could lead to a better overall outcome for NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Tolerancia a Medicamentos , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Afatinib/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Tolerancia a Medicamentos/genética , Tolerancia a Medicamentos/fisiología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo
19.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 256-262, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35818245

RESUMEN

Breast cancer is a common malignant tumor in women. At present, the main treatment for breast cancer is radiotherapy. Due to the difference in radiosensitivity between individuals or tumor cells, the effect of radiotherapy is not good. Therefore, in radiotherapy, how to use various auxiliary means to reduce the radiation resistance of tumor, Therefore, it has become an important research topic to improve the radiosensitivity of the tumor. Fibroblast growth factor-1 (FGF1) plays an important role in tumor migration. Therefore, the study of miR-143-3p increasing the radiosensitivity of breast cancer cells through FGF1 is proposed in this paper. In this study, a control group experiment was set up to study. During the experiment, the relative expression of miR-143-3p was detected by fluorescent quantitative PCR of miRNA, and the cell irradiation experiment was created to analyze the radiosensitivity of breast cancer cells by comparing their survival fraction. The results of this study showed that when the radiation dose was 0, the survival scores of the three groups were all 1. The survival fraction of the experimental group decreased from 0.26 ± 0.045 to 0.068 ± 0.008 when the dose was added to 4Gy. The survival fraction of the experimental group was always greater than that of the two control groups. The results of this study show that miR-143-3p can increase the radiosensitivity of breast cancer cells through FGF1.


Asunto(s)
Neoplasias de la Mama , Factor 1 de Crecimiento de Fibroblastos , MicroARNs , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Proliferación Celular , Femenino , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Tolerancia a Radiación/genética
20.
Eur J Histochem ; 66(2)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477223

RESUMEN

Identified as a member of the secretin/glucagon/VIP superfamily, pituitary adenylate cyclase-activating polypeptide (PACAP1-38) has been recognized as a hormone, neurohormone, transmitter, trophic factor, and known to be involved in diverse and multiple developmental processes. PACAP1-38 was reported to regulate the production of important morphogens (Fgf1, Bmp4, Gdf3) through PAC1-receptor in the newborn rat retina. To follow up, we aimed to reveal the identity of retinal cells responsible for the production and secretion of Fgf1, Bmp4, and Gdf3 in response to PACAP1-38 treatment. Newborn (P1) rats were treated with 100 pmol PACAP1-38 intravitreally. After 24 h, retinas were dissected and processed for immunohistochemistry performed either on flat-mounted retinas or cryosections. Brn3a and PAC1-R double labeling revealed that 90% of retinal ganglion cells (RGCs) expressed PAC1-receptor. We showed that RGCs were Fgf1, Bmp4, and Gdf3-immunopositive and PAC1-R was co-expressed with each protein. To elucidate if RGCs release these secreted regulators, the key components for vesicle release were examined. No labeling was detected for synaptophysin, Exo70, or NESP55 in RGCs but an intense Rab3a-immunoreactivity was detected in their cell bodies. We found that the vast majority of RGCs are responsive to PACAP, which in turn could have a significant impact on their development or/and physiology. Although Fgf1, Bmp4, and Gdf3 were abundantly expressed in PAC1-positive RGCs, the cells lack synaptophysin and Exo70 in the newborn retina, thus unable to release these proteins. These proteins could regulate postnatal RGC development acting through intracrine pathways.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos , Células Ganglionares de la Retina , Animales , Proteína Morfogenética Ósea 4/metabolismo , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ratas , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Sinaptofisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA