Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Integr Cancer Ther ; 13(5): 425-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24363282

RESUMEN

AIM OF STUDY: To investigate the inhibitory effect of Coptidis rhizome aqueous extract (CRAE) on vascular endothelial growth factor (VEGF) expression and tumor angiogenesis in hepatocellular carcinoma (HCC). METHODS: Quality control of CRAE was determined. Secretion of VEGF protein and expression of its mRNA in MHCC97L and Hep G2 cells were measured with enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction. Synthesis of nascent protein was determined by AHA-protein-labeling technologies. The in vivo antiangiogenic effect of CRAE was evaluated with a xenograft model. RESULTS: Absence of organochlorine pesticides in CRAE was found, and phytochemical analysis showed that its components were in proportion of magnoflorine 2.2%, jatrorrhizine 1.68%, palmatine 4.4%, and berberine 13.8%. CRAE exhibited significant inhibition on VEGF secretion from MHCC97L and HepG2 cells at nontoxic doses. The mRNA transcripts of VEGF could not be inhibited by CRAE; however, synthesis of VEGF nascent protein was potently blocked by CRAE. CRAE intervention increased the phosphorylation of eukaryotic elongation factor 2 (eEF2) in HCC cells, which blocked eEF2 activity for proceeding nascent protein synthesis. The activity of eEF2 was restored in CRAE-treated HCC cells in the presence of A484594, leading to the recovery of VEGF expression. Berberine was found to be the major active component in CRAE; however, CRAE is more effective in inhibiting eEF2 activity compared to berberine treatment alone, suggesting the additive effect of other components present. Reduction of tumor size and neovascularization were observed in mice xenograft model. CONCLUSION: Our study postulates the antiangiogenic effect of CRAE on hepatocellular carcinoma via an eEF2-driven pathway.


Asunto(s)
Alcaloides/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Neoplasias Hepáticas/tratamiento farmacológico , Alcaloides/aislamiento & purificación , Inhibidores de la Angiogénesis/aislamiento & purificación , Inhibidores de la Angiogénesis/farmacología , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Coptis chinensis , Ensayo de Inmunoadsorción Enzimática , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Factor 2 de Elongación Peptídica/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Signal ; 15(9): 871-81, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12834812

RESUMEN

The purpose of the present study was to understand the mechanism by which activated protein kinase A (PKA) leads to down-regulation of cyclin D3 in lymphocytes. By using Jurkat cells as a model system, we have been able to demonstrate that cyclin D3 is reduced at the level of translation by inhibition of elongation. One of the important factors involved in translational elongation is the eukaryotic elongation factor 2 (eEF2). eEF2 promotes translation in its unphosphorylated form, and we observed a rapid phosphorylation of the eEF2-protein upon forskolin treatment. When using specific inhibitors of the eEF2-kinase prior to forskolin treatment, we were able to inhibit the increased phosphorylation of eEF2. Furthermore, inhibition of eEF2-kinase prevented the forskolin-mediated down-regulation of cyclin D3. Taken together, it appears that activation of PKA in Jurkat cells reduces the expression of cyclin D3 at the level of translational elongation by increasing the phosphorylation of eEF2 and thereby inhibiting its activity.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , AMP Cíclico/fisiología , Ciclinas/genética , Factor 2 de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas , Linfocitos T/metabolismo , Northern Blotting , Western Blotting , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/efectos de los fármacos , Cromonas/farmacología , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclina D3 , Ciclinas/efectos de los fármacos , Ciclinas/metabolismo , Cicloheximida/farmacología , Replicación del ADN/efectos de los fármacos , Regulación hacia Abajo , Quinasa del Factor 2 de Elongación , Citometría de Flujo/métodos , Fase G1/efectos de los fármacos , Fase G1/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Células Jurkat , Morfolinas/farmacología , Compuestos de Organoselenio/farmacología , Extensión de la Cadena Peptídica de Translación/fisiología , Factor 2 de Elongación Peptídica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Polirribosomas/genética , Polirribosomas/metabolismo , Proteínas Proto-Oncogénicas/efectos de los fármacos , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-akt , Proteína de Retinoblastoma/efectos de los fármacos , Proteína de Retinoblastoma/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Linfocitos T/efectos de los fármacos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA