Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Biochem Mol Toxicol ; 38(9): e23846, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39243204

RESUMEN

As a subclass of noncoding RNAs, circular RNA play an important role in tumour development. The aim of this study was to investigate the role of circ_0004674 in osteosarcoma glycolysis and the molecular mechanism of its regulation. We examined the expression of circ_0004674, miR-140-3p, TCF4 and glycolysis-related proteins (including HK2, PKM2, GLUT1 and LDHA) in osteosarcoma cells and tissues by quantitative reverse transcription-polymerase chain reaction and immunoblotting (Western blot analysis). The role of circ_0004674, miR-140-3p and TCF4 in the proliferation, apoptosis, migration and invasion of OS cells was examined using CCK8 assay, Apoptosis assay, Wound healing assay, Transwell migration and Matrigel invasion assay. The interaction of circ_0004674/miR-140-3p and miR-1543/TCF4 was also analysed using a dual luciferase reporter assay. Finally, the glycolytic process was assessed by glucose uptake assays and lactate production measurements. The results showed that the expression of circ_0004674 and TCF4 was significantly higher in MG63 and U2OS cells compared to hFOB1.19 cells, while the expression of miR-140-3p was downregulated. Silencing of circ_0004674 gene significantly inhibited the proliferation, migration and invasion of cancer cells and promoted apoptosis of cancer cells. Experiments such as dual luciferase reporter analysis showed that circ_0004674 regulates the expression of glycolysis-related proteins through the miR-140-3p/TCF4 pathway, and inhibition of this gene attenuated the depletion of glucose content and the production of lactate in cancer cells. Furthermore, inhibition of miR-140-3p or overexpression of TCF could reverse the phenotypic changes in cancer cells induced by circ_0004674 silencing. In summary, this study elucidated the specific function and potential mechanisms of circ_0004674 in osteosarcoma glycolysis. The findings demonstrate that miR-140-3p and TCF4 function respectively as a tumor suppressor gene and an oncogene in osteosarcoma. Notably, they influence glycolysis and associated pathways, regulating osteosarcoma proliferation. Therefore, circ_0004674 promotes osteosarcoma glycolysis and proliferation through the miR-140-3p/TCF4 pathway, enhancing the malignant behaviour of tumours, and it is expected to be a potential molecular target for osteosarcoma treatment.


Asunto(s)
Proliferación Celular , Glucólisis , MicroARNs , Osteosarcoma , ARN Circular , Factor de Transcripción 4 , Humanos , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , ARN Circular/genética , ARN Circular/metabolismo , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis/genética , Transducción de Señal
2.
Nat Commun ; 15(1): 6790, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117654

RESUMEN

Immunochemotherapy has been the mainstay of treatment for newly diagnosed diffuse large B-cell lymphoma (ndDLBCL) yet is inadequate for many patients. In this work, we perform unsupervised clustering on transcriptomic features from a large cohort of ndDLBCL patients and identify seven clusters, one called A7 with poor prognosis, and develop a classifier to identify these clusters in independent ndDLBCL cohorts. This high-risk cluster is enriched for activated B-cell cell-of-origin, low immune infiltration, high MYC expression, and copy number aberrations. We compare and contrast our methodology with recent DLBCL classifiers to contextualize our clusters and show improved prognostic utility. Finally, using pre-clinical models, we demonstrate a mechanistic rationale for IKZF1/3 degraders such as lenalidomide to overcome the low immune infiltration phenotype of A7 by inducing T-cell trafficking into tumors and upregulating MHC I and II on tumor cells, and demonstrate that TCF4 is an important regulator of MYC-related biology in A7.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Factor de Transcripción Ikaros , Lenalidomida , Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-myc , Factor de Transcripción 4 , Transcriptoma , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Lenalidomida/uso terapéutico , Lenalidomida/farmacología , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Linfocitos B/metabolismo , Linfocitos B/inmunología , Pronóstico , Animales , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Variaciones en el Número de Copia de ADN
3.
Skelet Muscle ; 14(1): 15, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026379

RESUMEN

BACKGROUND: TCF4 acts as a transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5 motif. Dominant variants in TCF4 are associated with the manifestation of Pitt-Hopkins syndrome, a rare disease characterized by severe mental retardation, certain features of facial dysmorphism and, in many cases, with abnormalities in respiratory rhythm (episodes of paroxysmal tachypnea and hyperventilation, followed by apnea and cyanosis). Frequently, patients also develop epilepsy, microcephaly, and postnatal short stature. Although TCF4 is expressed in skeletal muscle and TCF4 seems to play a role in myogenesis as demonstrated in mice, potential myopathological findings taking place upon the presence of dominant TCF4 variants are thus far not described in human skeletal muscle. METHOD: To address the pathological effect of a novel deletion affecting exons 15 and 16 of TCF4 on skeletal muscle, histological and immunofluorescence studies were carried out on a quadriceps biopsy in addition to targeted transcript studies and global proteomic profiling. RESULTS: We report on muscle biopsy findings from a Pitt-Hopkins patient with a novel heterozygous deletion spanning exon 15 and 16 presenting with neuromuscular symptoms. Microscopic characterization of the muscle biopsy revealed moderate fiber type I predominance, imbalance in the proportion of fibroblasts co-expressing Vimentin and CD90, and indicate activation of the complement cascade in TCF4-mutant muscle. Protein dysregulations were unraveled by proteomic profiling. Transcript studies confirmed a mitochondrial vulnerability in muscle and confirmed reduced TCF4 expression. CONCLUSION: Our combined findings, for the first time, unveil myopathological changes as phenotypical association of Pitt-Hopkins syndrome and thus expand the current clinical knowledge of the disease as well as support data obtained on skeletal muscle of a mouse model.


Asunto(s)
Hiperventilación , Discapacidad Intelectual , Factor de Transcripción 4 , Hiperventilación/genética , Hiperventilación/metabolismo , Hiperventilación/fisiopatología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Facies , Niño , Exones , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología
4.
Cell Transplant ; 33: 9636897241259552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38847385

RESUMEN

Thin endometrium (TE) is a significant factor contributing to fertility challenges, and addressing this condition remains a central challenge in reproductive medicine. Menstrual blood-derived mesenchymal stem cells (MenSCs) play a crucial role in tissue repair and regeneration, including that of TE. The Wnt signaling pathway, which is highly conserved and prevalent in eukaryotes, is essential for cell proliferation, tissue development, and reproductive functions. MALAT1 is implicated in various transcriptional and molecular functions, including cell proliferation and metastasis. However, the combined effects of the Wnt signaling pathway and the long non-coding RNA (lncRNA) MALAT1 on the regulation of MenSCs' regenerative capabilities in tissue engineering have not yet been explored. To elucidate the regulatory mechanism of MALAT1 in TE, we analyzed its expression levels in normal endometrium and TE tissues, finding that low expression of MALAT1 was associated with poor clinical prognosis. In addition, we conducted both in vitro and in vivo functional assays to examine the role of the MALAT1/miR-7-5p/TCF4 axis in cell proliferation and migration. Techniques such as dual-luciferase reporter assay, fluorescent in situ hybridization, and immunoblot experiments were utilized to clarify the molecular mechanism. To corroborate these findings, we established a TE model and conducted pregnancy experiments, demonstrating a strong association between MALAT1 expression and endometrial fertility. In conclusion, our comprehensive study provides strong evidence supporting that lncRNA MALAT1 modulates TCF4 expression in the Wnt signaling pathway through interaction with miR-7-5p, thus enhancing MenSCs-mediated improvement of TE and improving fertility.


Asunto(s)
Endometrio , Células Madre Mesenquimatosas , MicroARNs , ARN Largo no Codificante , Vía de Señalización Wnt , Femenino , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Endometrio/metabolismo , Endometrio/citología , MicroARNs/metabolismo , MicroARNs/genética , Animales , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Proliferación Celular/genética , Adulto , Ratones , Fertilidad/genética
5.
Mol Cancer Res ; 22(10): 943-956, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-38842601

RESUMEN

Ovarian cancer is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in ovarian cancer. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in ovarian cancer. TRIM22 protein and mRNA levels were analyzed in samples from clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, coimmunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in ovarian cancer tissues. Furthermore, upregulation of TRIM22 significantly inhibited ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in ovarian cancer cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in ovarian cancer is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of ovarian cancer.


Asunto(s)
Movimiento Celular , Proliferación Celular , Neoplasias Ováricas , Factor de Transcripción 4 , Proteínas de Motivos Tripartitos , Ubiquitinación , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Línea Celular Tumoral , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteolisis , Regulación Neoplásica de la Expresión Génica , Antígenos de Histocompatibilidad Menor
6.
Neurotherapeutics ; 21(5): e00376, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876822

RESUMEN

The neurodevelopmental disorder Pitt Hopkins syndrome (PTHS) causes clinical symptoms similar to Rett syndrome (RTT) patients. However, RTT is caused by MECP2 mutations whereas mutations in the TCF4 gene lead to PTHS. The mechanistic commonalities underling these two disorders are unknown, but their shared symptomology suggest that convergent pathway-level disruption likely exists. We reprogrammed patient skin derived fibroblasts into induced neuronal progenitor cells. Interestingly, we discovered that MeCP2 levels were decreased in PTHS patient iNPCs relative to healthy controls and that both iNPCs and iAstrocytes displayed defects in function and differentiation in a mutation-specific manner. When Tcf4+/- mice were genetically crossed with mice overexpressing MeCP2, molecular and phenotypic defects were significantly ameliorated, underlining and important role of MeCP2 in PTHS pathology. Importantly, post-natal intracerebroventricular gene replacement therapy with adeno-associated viral vector serotype 9 (AAV9)-expressing MeCP2 (AAV9.P546.MeCP2) significantly improved iNPC and iAstrocyte function and effectively ameliorated histological and behavioral defects in Tcf4+/- mice. Combined, our data suggest a previously unknown role of MeCP2 in PTHS pathology and common pathways that might be affected in multiple neurodevelopmental disorders. Our work highlights potential novel therapeutic targets for PTHS, including upregulation of MeCP2 expression or its downstream targets or, potentially, MeCP2-based gene therapy.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Proteína 2 de Unión a Metil-CpG , Fenotipo , Factor de Transcripción 4 , Animales , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Terapia Genética/métodos , Ratones , Humanos , Factor de Transcripción 4/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/terapia , Masculino , Ratones Transgénicos , Femenino , Fibroblastos/metabolismo , Células-Madre Neurales/metabolismo , Ratones Endogámicos C57BL , Hiperventilación , Facies
7.
Commun Biol ; 7(1): 545, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714724

RESUMEN

CircRNAs are covalently closed, single-stranded RNA that form continuous loops and play a crucial role in the initiation and progression of tumors. Cancer stem cells (CSCs) are indispensable for cancer development; however, the regulation of cancer stem cell-like properties in gastric cancer (GC) and its specific mechanism remain poorly understood. We elucidate the specific role of Circ-0075305 in GC stem cell properties. Circ-0075305 associated with chemotherapy resistance was identified by sequencing GC cells. Subsequent confirmation in both GC tissues and cell lines revealed that patients with high expression of Circ-0075305 had significantly better overall survival (OS) rates than those with low expression, particularly when treated with postoperative adjuvant chemotherapy for GC. In vitro and in vivo experiments confirmed that overexpression of Circ-0075305 can effectively reduce stem cell-like properties and enhance the sensitivity of GC cells to Oxaliplatin compared with the control group. Circ-0075305 promotes RPRD1A expression by acting as a sponge for corresponding miRNAs. The addition of LF3 (a ß-catenin/TCF4 interaction antagonist) confirmed that RPRD1A inhibited the formation of the TCF4-ß-catenin transcription complex through competitive to ß-catenin and suppressed the transcriptional activity of stem cell markers such as SOX9 via the Wnt/ß-catenin signaling pathway. This leads to the downregulation of stem cell-like property-related markers in GC. This study revealed the underlying mechanisms that regulate Circ-0075305 in GCSCs and suggests that its role in reducing ß-catenin signaling may serve as a potential therapeutic candidate.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas , ARN Circular , Factor de Transcripción SOX9 , Neoplasias Gástricas , Factor de Transcripción 4 , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Humanos , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , beta Catenina/metabolismo , beta Catenina/genética , ARN Circular/genética , ARN Circular/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Masculino , Femenino , Resistencia a Antineoplásicos/genética , Ratones Endogámicos BALB C , Persona de Mediana Edad
8.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654332

RESUMEN

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Factor 5A Eucariótico de Iniciación de Traducción , Regulación Neoplásica de la Expresión Génica , Lisina/análogos & derivados , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Espermidina , Factor de Transcripción 4 , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Ratones , Animales , Espermidina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Línea Celular Tumoral , Regiones Promotoras Genéticas , Adenosilmetionina Descarboxilasa/metabolismo , Adenosilmetionina Descarboxilasa/genética , Movimiento Celular/genética , Metilación de ADN , Pronóstico , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética
9.
Free Radic Biol Med ; 220: 125-138, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657754

RESUMEN

Fusobacterium (F.) nucleatum is a carcinogenesis microbiota in colorectal cancer (CRC). Growing evidence shows that F. nucleatum contributes to chemoresistance. Ferroptosis is reported to restore the susceptibility of resistant cells to chemotherapy. However, the role of gut microbiota affecting ferroptosis in chemoresistance remains unclear. Here, we examined the CRC tissues of patients using 16S rRNA sequencing to investigate the possible connection between gut microbiota dysbiosis and the relapse of CRC. We found that a high abundance of F. nucleatum in CRC tissue is associated with relapse. We further demonstrated that F. nucleatum induced oxaliplatin resistance in vitro and in vivo. The transcriptome of an F. nucleatum-infected cell revealed ferroptosis was associated with F. nucleatum infection. We perform malondialdehyde, ferrous iron, and glutathione assays to verify the effect of F. nucleatum on ferroptosis under oxaliplatin treatment in vivo and in vitro. Mechanistically, F. nucleatum promoted oxaliplatin resistance by overexpressing GPX4 and then inhibiting ferroptosis. E-cadherin/ß-catenin/TCF4 pathway conducted the GPX4 overexpression effect of F. nucleatum. The chromatin immuno-precipitation quantitative PCR (CHIP-qPCR) and dual-luciferase reporter assay showed that F. nucleatum promoted TCF4 binding with GPX4. We also determined the E-cadherin/ß-catenin/TCF4/GPX4 axis related to tumor tissue F. nucleatum status and CRC relapse clinically. Here, we revealed the contribution of F. nucleatum to oxaliplatin resistance by inhibiting ferroptosis in CRC. Targeting F. nucleatum and ferroptosis will provide valuable insight into chemoresistance management and may improve outcomes for patients with CRC.


Asunto(s)
Cadherinas , Neoplasias Colorrectales , Resistencia a Antineoplásicos , Ferroptosis , Fusobacterium nucleatum , Microbioma Gastrointestinal , Oxaliplatino , Fosfolípido Hidroperóxido Glutatión Peroxidasa , beta Catenina , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Cadherinas/metabolismo , Cadherinas/genética , Oxaliplatino/farmacología , beta Catenina/metabolismo , beta Catenina/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Animales , Fusobacterium nucleatum/patogenicidad , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Femenino , Línea Celular Tumoral , Infecciones por Fusobacterium/microbiología , Infecciones por Fusobacterium/tratamiento farmacológico , Infecciones por Fusobacterium/metabolismo , Infecciones por Fusobacterium/genética , Infecciones por Fusobacterium/patología , Disbiosis/microbiología , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Ratones Desnudos
10.
Adv Biol (Weinh) ; 8(5): e2300117, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38379270

RESUMEN

The incidence of Hepatocellular carcinoma (HCC) and HCC-related deaths have remarkably increased over the recent decades. It has been reported that ß-catenin activation can be frequently observed in HCC cases. This study identified the integrin-linked kinase-associated phosphatase (ILKAP) as a novel ß-catenin-interacting protein. ILKAP is localized both in the nucleus and cytoplasm and regulates the WNT pathway in different ways. First, it is demonstrated that ILKAP activates the WNT pathway in HCC cells by increasing the protein level of ß-catenin and other proteins associated with the WNT signaling, such as c-Myc and CyclinD1. Next, it is shown that ILKAP promotes the metastasis of HCC both in vitro and in vivo in a zebrafish xenograft model. It is also found that ILKAP dephosphorylates the GSK3ß and CK1, contributing to the reduced ubiquitination of ß-catenin. Furthermore, it is identified that ILKAP functions by mediating binding between TCF4 and ß-catenin to enhance expression of WNT target genes. Taken together, the study demonstrates a critical function of ILKAP in metastasis of HCC, since ILKAP is crucial for the activation of the WNT pathway via stabilization of ß-catenin and increased binding between TCF4 and ß-catenin.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfoproteínas Fosfatasas , Vía de Señalización Wnt , beta Catenina , Animales , Humanos , beta Catenina/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Metástasis de la Neoplasia , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Vía de Señalización Wnt/fisiología , Pez Cebra , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo
11.
Poult Sci ; 103(3): 103377, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301496

RESUMEN

Ovarian follicle development depends on the proliferation and differentiation of granulosa cells and is a complex biological process. The Wnt/ß-catenin signaling pathway can regulate ovarian follicle development, and ß-catenin, encoded by catenin beta 1 (CTNNB1), is the core component of this pathway. Although several studies of the mechanisms by which the Wnt/ß-catenin pathway regulates cell proliferation in humans and mammals have reported, it remains unclear how ß-catenin functions in poultry. To investigate the function of ß-catenin in laying hens' follicle development, we evaluated the effect of CTNNB1 on cell cycle, proliferation, and apoptosis in ovarian granulosa cells (GCs) isolated from laying hens. We demonstrated that CTNNB1 significantly affected the expression of cyclin D1 (CCND1) and v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) (P < 0.01 and P < 0.05), key genes related to cell cycle and proliferation, to promote cell cycle progression from G1 to S phase, and thus accelerate granulosa cell proliferation. CTNNB1 did not however affect apoptosis or the expression of related genes baculoviral IAP repeat containing 5 (BIRC5) and BCL2 apoptosis regulator (Bcl-2). Overexpression of transcription factor 7-like 2 (TCF4) resulted in increased expression of CCND1, accelerated cell cycle progression, and granulosa cell proliferation. Direct physical interaction between ß-catenin and TCF4 was demonstrated by immunofluorescence and coimmunoprecipitation. The proliferation of granulosa cells was inhibited by silencing CCND1; overexpression of TCF4 in CCND1-silenced cells restored their proliferation rate to normal levels. These results indicate that the interaction of TCF4 and ß-catenin promotes CCND1 expression which in turn accelerates the cell cycle process of laying hen hierarchical follicular granulosa cells.


Asunto(s)
Pollos , beta Catenina , Humanos , Animales , Femenino , beta Catenina/genética , Pollos/genética , Apoptosis , Proliferación Celular , Células de la Granulosa , Mamíferos , Factor de Transcripción 4/genética
12.
Pediatr Neurosurg ; 59(2-3): 109-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246161

RESUMEN

INTRODUCTION: Pitt-Hopkins syndrome (PTHS) is a rare genetic syndrome associated with neurodevelopmental disorders and craniofacial dysmorphisms caused by variations in the TCF4 transition factor. The aim of this article was to report the case of two twin infants diagnosed with PTHS, confirmed by the identification of a heterozygous pathogenic variant in the TCF4 gene through DNA extracted from a buccal swab. CASE PRESENTATION: Both infants presented with craniofacial asymmetry with a metopic crest and cranial deformity. During the diagnostic investigation, computed tomography with three-dimensional reconstruction of the skull showed premature fusion of the left coronal and metopic sutures in both twins. They underwent craniofacial reconstruction at the 9th month of age using a combination of techniques. The postoperative outcomes were satisfactory in both cases. CONCLUSION: To the best of our knowledge, this is the first case report to describe the occurrence of complex craniosynostosis (CCS) in children with PTHS. Further studies are needed to determine whether the co-occurrence of PTHS and CCS described here indicates an association or is explained by chance.


Asunto(s)
Craneosinostosis , Hiperventilación , Discapacidad Intelectual , Humanos , Craneosinostosis/cirugía , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/genética , Craneosinostosis/complicaciones , Discapacidad Intelectual/genética , Hiperventilación/genética , Lactante , Femenino , Masculino , Factor de Transcripción 4/genética , Facies , Enfermedades en Gemelos/cirugía , Enfermedades en Gemelos/diagnóstico por imagen , Tomografía Computarizada por Rayos X
13.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181739

RESUMEN

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Asunto(s)
Melanoma , Humanos , Redes Reguladoras de Genes , Inmunoterapia , Melanocitos , Melanoma/tratamiento farmacológico , Melanoma/genética , Factor de Transcripción 4/genética , Microambiente Tumoral
14.
Mol Cell Endocrinol ; 582: 112127, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109990

RESUMEN

The precise involvement and mechanistic role of the signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) in ovarian cancer (OV) remain poorly understood. Here, leveraging comprehensive data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we unveil the selective overexpression of SCUBE3 in ovarian cancer tissues and cells. Intriguingly, elevated SCUBE3 expression levels correlate with an unfavorable prognosis in patients. Through meticulous manipulation of SCUBE3 expression, we elucidate its consequential impact on in vitro proliferation and invasion of ovarian cancer cells, as well as in vivo tumor growth in mice. Our multifaceted investigations, encompassing luciferase reporter assays, chromatin immunoprecipitation (ChIP) experiments, and mining of public databases, successfully identify SCUBE3 as a direct downstream target gene of TCF4-a pivotal positive regulator within the ß-catenin/TCF4 complex. Furthermore, utilizing a recessive mutant mouse line (kta41) harboring a functionally impaired point mutation at position 882 in the SCUBE3 gene, we uncover SCUBE3's involvement in the intricate regulation of angiogenesis and epithelial-mesenchymal transition (EMT). Strikingly, Spearman correlation coefficient analysis unveils a close association between SCUBE3 and HIF1A in OV, with SCUBE3 exerting tight control over HIF1A mRNA expression. Moreover, functional inhibition of HIF1A significantly impedes the pro-proliferative and invasive capabilities of SCUBE3-overexpressing ovarian cancer cells. Collectively, our findings underscore the pivotal role of SCUBE3 in driving ovarian cancer progression, shedding light on its intricate molecular mechanisms and establishing it as a potential therapeutic target for this devastating disease.


Asunto(s)
Neoplasias Ováricas , beta Catenina , Humanos , Femenino , Ratones , Animales , beta Catenina/metabolismo , Regulación hacia Arriba/genética , Neoplasias Ováricas/genética , Transducción de Señal , Transición Epitelial-Mesenquimal/genética , Vía de Señalización Wnt , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
15.
PLoS One ; 18(12): e0295542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38096202

RESUMEN

BACKGROUND: Late-onset Fuchs' endothelial corneal dystrophy (FECD) is a degenerative disease of cornea and the leading indication for corneal transplantation. Genetically, FECD patients can be categorized as with (RE+) or without (RE-) the CTG trinucleotide repeat expansion in the transcription factor 4 gene. The molecular mechanisms underlying FECD remain unclear, though there are plausible pathogenic models proposed for RE+ FECD. METHOD: In this study, we performed a meta-analysis on RNA sequencing datasets of FECD corneal endothelium including 3 RE+ datasets and 2 RE- datasets, aiming to compare the transcriptomic profiles of RE+ and RE- FECD. Gene differential expression analysis, co-expression networks analysis, and pathway analysis were conducted. RESULTS: There was a striking similarity between RE+ and RE- transcriptomes. There were 1,184 genes significantly upregulated and 1,018 genes significantly downregulated in both RE+ and RE- cases. Pathway analysis identified multiple biological processes significantly enriched in both-mitochondrial functions, energy-related processes, ER-nucleus signaling pathway, demethylation, and RNA splicing were negatively enriched, whereas small GTPase mediated signaling, actin-filament processes, extracellular matrix organization, stem cell differentiation, and neutrophil mediated immunity were positively enriched. The translational initiation process was downregulated in the RE+ transcriptomes. Gene co-expression analysis identified modules with relatively distinct biological processes enriched including downregulation of mitochondrial respiratory chain complex assembly. The majority of oxidative phosphorylation (OXPHOS) subunit genes, as well as their upstream regulator gene estrogen-related receptor alpha (ESRRA), encoding ERRα, were downregulated in both RE+ and RE- cases, and the expression level of ESRRA was correlated with that of OXPHOS subunit genes. CONCLUSION: Meta-analysis increased the power of detecting differentially expressed genes. Integrating differential expression analysis with co-expression analysis helped understand the underlying molecular mechanisms. FECD RE+ and RE- transcriptomic profiles are much alike with the hallmark of downregulation of genes in pathways related to ERRα-mediated OXPHOS.


Asunto(s)
Endotelio Corneal , Distrofia Endotelial de Fuchs , Humanos , Endotelio Corneal/metabolismo , Fosforilación Oxidativa , Factor de Transcripción 4/genética , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/patología , Perfilación de la Expresión Génica
16.
Biochem Pharmacol ; 218: 115864, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37863330

RESUMEN

Investigating the role of ubiquitin-specific peptidase 10 (USP10) in triple-negative breast cancer (TNBC). Analyzed USP10 expression levels in tumors using public databases. Detected USP10 mRNA and protein levels in cell lines. Examined USP10 expression in tumor tissues from breast cancer patients. Conducted USP10 knockdown experiments and analyzed changes in cell proliferation and metastasis. Confirmed protein-protein interactions with USP10 through mass spectrometry, Co-IP, and fluorescence experiments. Assessed impact of USP10 on transcription factor 4 (TCF4) ubiquitination and validated TCF4's influence on TNBC cells. We initially identified a pronounced overexpression of USP10 across multiple tumor types, including TNBC. Subsequently, we observed a conspicuous upregulation of USP10 expression levels in breast cancer cell lines compared to normal breast epithelial cells. However, upon subsequent depletion of USP10 within cellular contexts, we noted a substantial attenuation of malignant proliferation and metastatic potential in TNBC cells. In subsequent experimental analyses, we elucidated the physical interaction between USP10 and the transcription factor TCF4, whereby USP10 facilitated the deubiquitination modification of TCF4, consequently promoting its protein stability and contributing to the initiation and progression of TNBC. Collectively, this study demonstrates that USP10 facilitated the deubiquitination modification of TCF4, consequently promoting its protein stability and contributing to the initiation and progression of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Ubiquitinación , Células Epiteliales/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ubiquitina Tiolesterasa/genética
17.
Funct Integr Genomics ; 23(4): 304, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726580

RESUMEN

This study was designed to explore the influence of myelin protein zero-like protein 1 (MPZL1) on the stem-like properties of cancer cells and the underlying mechanism in lung adenocarcinoma. Real-time quantitative polymerase chain reaction (RT-qPCR) was utilized to evaluate mRNA expression level. CCK8, wound healing, and transwell assays were applied to assess cell proliferation, migration, and invasion. Tumorsphere-formation assay was utilized to assess cancer stem cell-like properties. LF3 was used to block the ß-catenin/Transcription factor 4 (TCF-4) signaling. Xenograft nude mouse model was conducted; tumor weight and volume were recorded. Western blot assay was utilized to detect the expression levels of CD44, CD133, ß-catenin, TCF-4, and MPZL1. Following MPZL1 knockdown, the mRNA expression levels of MPZL1, ß-catenin, and TCF-4 were inhibited, while the mRNA expression levels of the above genes were increased after the MPZL1 overexpression. MPZL1 knockdown suppressed cell proliferation, migration, and invasion, reduced the tumorsphere-formation capacity, and restrained the expression levels of CD44 and CD133. However, MPZL1 overexpression promoted the cell proliferation, migration, and invasion, enhanced the tumorsphere-formation capacity, and increased the expression levels of CD44 and CD133. Interestingly, LF3 treatment partially revised the effect of MPZL1 overexpression. These findings were further corroborated by in vivo experiments. We concluded that MPZL1 could suppress the lung adenocarcinoma cells' proliferation, migration, invasion, and lung cancer stem cells characteristics. The underlying mechanism is involved in the activation of ß-catenin/TCF-4 signaling.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Animales , Ratones , beta Catenina/genética , Factor de Transcripción 4/genética , Neoplasias Pulmonares/genética , Adenocarcinoma del Pulmón/genética , Transducción de Señal , Modelos Animales de Enfermedad , Fosfoproteínas , Péptidos y Proteínas de Señalización Intracelular
18.
J Exp Clin Cancer Res ; 42(1): 150, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337284

RESUMEN

BACKGROUND: The incidence of colorectal cancer and cancer death rate are increasing every year, and the affected population is becoming younger. Traditional Chinese medicine therapy has a unique effect in prolonging survival time and improving the prognosis of patients with colorectal cancer. Oridonin has been reported to have anti-cancer effects in a variety of tumors, but the exact mechanism remains to be investigated. METHODS: Cell Counting Kit-8 assay (CCK8) and 5-Ethynyl-2'-deoxyuridine (EdU) staining assay, Tranwell, and Wound healing assays were performed to measure cell proliferation, invasion, and migration capacities, respectively. The protein and mRNA expression levels of various molecules were reflected by Western blot and Reverse Transcription quantitative Polymerase Chain Reaction (qRT-PCR). Transcription Factor 4 (TCF4) and its target genes were analyzed by Position Weight Matrices (PWMs) software and the Gene Expression Omnibus (GEO) database. Immunofluorescence (IF) was performed to visualize the expression and position of Endoplasmic Reticulum (ER) stress biomarkers. The morphology of the ER was demonstrated by the ER tracker-red. Reactive Oxygen Species (ROS) levels were measured using a flow cytometer (FCM) or fluorescent staining. Calcium ion (Ca2+) concentration was quantified by Fluo-3 AM staining. Athymic nude mice were modeled with subcutaneous xenografts. RESULTS: Oridonin inhibited the proliferation, invasion, and migration of colorectal cancer, and this effect was weakened in a concentration-dependent manner by ER stress inhibitors. In addition, oridonin-induced colorectal tumor cells showed increased expression of ER stress biomarkers, loose morphology of ER, increased vesicles, and irregular shape. TCF4 was identified as a regulator of ER stress by PWMs software and GEO survival analysis. In vitro and in vivo experiments confirmed that TCF4 inhibited ER stress, reduced ROS production, and maintained Ca2+ homeostasis. In addition, oridonin also activated TP53 and inhibited TCF4 transactivation, further exacerbating the elevated ROS levels and calcium ion release in tumor cells and inhibiting tumorigenesis in colorectal cancer cells in vivo. CONCLUSIONS: Oridonin upregulated TP53, inhibited TCF4 transactivation, and induced ER stress dysregulation in tumor cells, promoting colorectal cancer cell death. Therefore, TCF4 may be one of the important nodes for tumor cells to regulate ER stress and maintain protein synthesis homeostasis. And the inhibition of the TP53/TCF4 axis plays a key role in the anti-cancer effects of oridonin.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Animales , Ratones , Humanos , Factor de Transcripción 4/genética , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Ratones Desnudos , Activación Transcripcional , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Estrés del Retículo Endoplásmico , Proliferación Celular , Proteína p53 Supresora de Tumor/metabolismo
19.
Am J Pathol ; 193(2): 233-245, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697118

RESUMEN

As a common type of head and neck squamous cell carcinoma, oral squamous cell carcinoma (OSCC) is a lethal and deforming disease. Long noncoding RNAs have emerged as critical modulators in different malignancies. However, the role of fucosyltransferase 8 antisense RNA 1 (FUT8-AS1) in OSCC still remains elusive. In this study, quantitative RT-PCR and Western blot were used for the measurement of RNAs and proteins. Mechanism assays explored the putative correlation among genes. In vitro assays evaluated the changes in OSCC cell malignant phenotype, whereas in vivo assays highlighted the influence of FUT8-AS1 on tumor growth. FUT8-AS1, aberrantly up-regulated in OSCC tissues and cells, could exacerbate OSCC cell malignant behaviors. The cancerogenic property of FUT8-AS1 in OSCC was further confirmed via animal experiments. Furthermore, FUT8-AS1 enhanced the expression of transcription factor 4 (TCF4) via sponging miR-944 and recruiting fused in sarcoma (FUS), thus affecting OSCC cell biological behaviors via modulation on Wnt/ß-catenin signaling activity. In addition, TCF4 was validated as the transcriptional activator of FUT8-AS1. To conclude, TCF4-mediated FUT8-AS1 could exacerbate OSCC cell malignant behaviors and facilitate tumor growth via modulation on miR-944/FUS/TCF4.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , ARN Largo no Codificante , Sarcoma , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/patología , ARN sin Sentido , Vía de Señalización Wnt/genética , Retroalimentación , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Neoplasias de la Boca/patología , Progresión de la Enfermedad , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Sarcoma/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
20.
Pathol Int ; 73(3): 109-119, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36285444

RESUMEN

Laryngeal cancer (LC) is a rare and challenging clinical problem. Our aim was to investigate the mechanism of salt-like transcription factor 4 (SALL4) in LC. LC tissue and paracancerous tissue were collected. Relative mRNA or protein levels were measured by quantitative real-time polymerase chain reaction or Western blot. MTT, wound healing, and transwell assay were performed to evaluate cell proliferation, migration and invasion. The binding relationship between SALL4 and USP21 promoter was verified by dual-luciferase assay and ChIP. Co-IP and glutathione-S-transferase (GST)-pull down were performed to measure the protein interaction between USP21 and YY1. Additionally, YY1 ubiquitination level was analyzed. It was found that SALL4 mRNA and SALL4 protein levels were elevated in LC clinical tissues and various LC cells. Knockdown of SALL4 inhibited epithelial-mesenchymal transition (EMT) of LC cells. USP21 was transcriptionally activated by SALL4. Co-IP and GST-pull down confirmed USP21 interacted with YY1. USP21 protected YY1 from degradation through deubiquitination. Furthermore, overexpression of USP21 reversed the effect of knockdown of SALL4 on YY1 and EMT in LC cells. In general, SALL4 facilitated EMT of LC cells through modulating USP21/YY1 axis.


Asunto(s)
Neoplasias Laríngeas , Factores de Transcripción , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas/genética , ARN Mensajero , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Ubiquitina Tiolesterasa/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Yin-Yang
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA