Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Int J Biol Macromol ; 269(Pt 2): 131976, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697427

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal lung disease characterized by progressive lung scarring. This study aims to elucidate the role of the E3 ubiquitin ligase NEDD4 in the ubiquitination of YY1 and its subsequent impact on TAB1 transcription, revealing a possible molecular mechanism in the development of IPF. Through bioinformatics analysis and both in vitro and in vivo experiments, we observed differential expression levels of NEDD4 and YY1 between normal and IPF samples, identifying NEDD4 as an upstream E3 ubiquitin ligase of YY1. Furthermore, binding sites for the transcription factor YY1 on the promoter region of TAB1 were discovered, indicating a direct interaction. In vitro experiments using HEPF cells showed that NEDD4 mediates the ubiquitination and degradation of YY1, leading to suppressed TAB1 transcription, thereby inhibiting cell proliferation and fibrogenesis. These findings were corroborated by in vivo experiments in an IPF mouse model, where the ubiquitination pathway facilitated by NEDD4 attenuated IPF progression through the downregulation of YY1 and TAB1 transcription. These results suggest that NEDD4 plays a crucial role in the development of IPF by modulating YY1 ubiquitination and TAB1 transcription, providing new insights into potential therapeutic targets for treating IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Ubiquitina-Proteína Ligasas Nedd4 , Ubiquitinación , Factor de Transcripción YY1 , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Humanos , Animales , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Ratones , Proliferación Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Modelos Animales de Enfermedad , Masculino
2.
Cell Death Dis ; 15(5): 347, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769122

RESUMEN

Colorectal cancer (CRC) remains a significant global health issue with high incidence and mortality. Yin Yang 1 (YY1) is a powerful transcription factor that acts dual roles in gene activation and repression. High expression level of YY1 has been reported in CRC, indicating the existence of stable factors of YY1 in CRC cells. We aimed to identify the key molecules and underlying mechanisms responsible for stabilizing YY1 expression in CRC. Mass spectrometry analysis was utilized to identify USP7 as a potential molecule that interacted with YY1. Mechanically, USP7 stabilizes YY1 expression at the protein level by interfering its K63 linkage ubiquitination. YY1 exerts its oncogenic function through transcriptionally activating TRIAP1 but suppressing LC3B. In addition, at the pathological level, there is a positive correlation between the expression of YY1 and the budding of CRC. This study has revealed the intricate interplay between YY1 and USP7 in CRC, suggesting that they could serve as novel therapeutic targets or predictive biomarkers for CRC patients.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Peptidasa Específica de Ubiquitina 7 , Factor de Transcripción YY1 , Humanos , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Animales , Metástasis de la Neoplasia , Ratones Desnudos , Ubiquitinación , Ratones , Movimiento Celular , Masculino , Unión Proteica
3.
Antiviral Res ; 226: 105889, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631661

RESUMEN

Hepatitis B virus (HBV) infections pose a major threat to human health. HBV can upregulate the expression of the transcription factor Yin Yang 1 (YY1) in in vitro cytological experiments, suggesting an association between YY1 and HBV infection. However, data on YY1 expression in chronic hepatitis B (CHB) patients are lacking. In this study, we aimed to assess the correlation between YY1 expression and HBV infection. We detected serum YY1 levels in 420 patients with chronic HBV infection, 30 patients with chronic hepatitis C virus infection, and 32 healthy controls using an enzyme-linked immunosorbent assay. The correlation between YY1 levels and clinical parameters was analyzed. Meanwhile, the changes of YY1 before and after interferon or entecavir treatment were analyzed. YY1 levels in the liver tissues were detected using immunofluorescence staining. The expression of YY1 in HBV-expressing cells was detected through western blotting. Meanwhile, we explored the effects of YY1 on HBV replication and gene expression. We found that YY1 was highly expressed in the serum and liver tissues of CHB patients. Serum YY1 levels positively correlated with HBV DNA and hepatitis B surface antigen (HBsAg). Additionally, HBV DNA levels increased but HBsAg levels decreased after HBV-expressing cells overexpress YY1. In conclusion, our study demonstrates that YY1 plays an important role in HBV replication and gene expression, providing a potential target for the treatment of CHB.


Asunto(s)
ADN Viral , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Hepatitis B Crónica , Hígado , Replicación Viral , Factor de Transcripción YY1 , Humanos , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Hepatitis B Crónica/virología , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Masculino , Femenino , Adulto , Persona de Mediana Edad , ADN Viral/genética , ADN Viral/sangre , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/metabolismo , Hígado/virología , Hígado/metabolismo , Guanina/análogos & derivados , Antivirales/uso terapéutico , Antivirales/farmacología , Interferones/metabolismo , Células Hep G2
4.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38575184

RESUMEN

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Mama , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Estrógenos , Homeostasis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucuronosiltransferasa/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
5.
FASEB J ; 38(7): e23581, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38551642

RESUMEN

Human DEAD/H box RNA helicase DDX6 acts as an oncogene in several different types of cancer, where it participates in RNA processing. Nevertheless, the role of DDX6 in pancreatic cancer (PC), together with the underlying mechanism, has yet to be fully elucidated. In the present study, compared with adjacent tissues, the level of DDX6 was abnormally increased in human PC tissues, and this increased level of expression was associated with poor prognosis. Furthermore, the role of DDX6 in PC was investigated by overexpressing or silencing the DDX6 in the PC cell lines, SW1990 and PaTu-8988t. A xenograft model was established by injecting nude mice with either DDX6-overexpressing or DDX6-silenced SW1990 cells. DDX6 overexpression promoted the proliferation and cell cycle transition, inhibited the cell apoptosis of PC cells, and accelerated tumor formation, whereas DDX6 knockdown elicited the opposite effects. DDX6 exerted positive effects on PC. RNA immunoprecipitation assay showed that DDX6 bound to kinesin family member C1 (KIFC1) mRNA, which was further confirmed by RNA pull-down assay. These results suggested that DDX6 positively regulated the expression of KIFC1. KIFC1 overexpression enhanced the proliferative capability of PC cells with DDX6 knockdown and inhibited their apoptosis. By contrast, DDX6 overexpression reversed the inhibitory effect of KIFC1 silencing on tumor proliferation. Subsequently, the transcription factor Yin Yang 1 (YY1) was shown to negatively regulate DDX6 at both the mRNA and protein levels. Dual-luciferase reporter assay verified that YY1 targeted the promoter of DDX6 and inhibited its transcription. High expression levels of YY1 decreased the proliferation of PC cells and promoted cell apoptosis, although these effects were reversed by DDX6 overexpression. Taken together, YY1 may target the DDX6/KIFC1 axis, thereby negatively regulating its expression, leading to an inhibitory effect on pancreatic tumor.


Asunto(s)
ARN Helicasas DEAD-box , MicroARNs , Neoplasias Pancreáticas , Factor de Transcripción YY1 , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , MicroARNs/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
6.
J Cell Mol Med ; 28(6): e18115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436544

RESUMEN

Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.


Asunto(s)
Neoplasias de los Genitales Femeninos , Neoplasias Ováricas , Proteínas Ribosómicas , Femenino , Humanos , Apoptosis/genética , Proliferación Celular/genética , Neoplasias Ováricas/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Factor de Unión a CCCTC/genética
7.
J Ethnopharmacol ; 325: 117857, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38350506

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Zhichan decoction (BSZCF) is derived from Liuwei Dihuang Pill, a famous Chinese herbal formula recorded in the book Key to Therapeutics of Children's Diseases. It has been widely used as a basic prescription for nourishing and tonifying the liver and kidneys to treat Parkinson's disease (PD), but its mechanism remains to be explored. AIM OF THE STUDY: BSZCF, a Chinese herbal formula comprising five herbs: Rehmannia glutinosa (Gaertn.) DC., Dioscorea oppositifolia L., Cornus officinalis Siebold & Zucc., Fallopia multiflora (Thunb.) Haraldson and Cistanche tubulosa (Schenk) Wight, is used clinically to treat PD. In vivo and in vitro experiments were designed to elucidate the mechanism of BSZCF in the protection of dopamine (DA) neurons and the treatment of PD. The toxicity of excitatory amino acids (EAA) may be attenuated by inhibiting the transcription factor Yin Yang 1 (YY1) and up-regulating the expression of excitatory amino acid transporter 1 (EAAT1). MATERIALS AND METHODS: IN VIVO: After 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was intraperitoneally injected into specific pathogen free (SPF) C57BL/6J mice, model mice were intragastrically given adamantane hydrochloride tablets (AHT) or different doses of BSZCF for 14 days. Both open field and pole-climbing tests were conducted to assess behavioral changes. In vitro: 1-Methyl-4-phe-nylpyridiniumiodide (MPP+)-injured human neuroblastoma cells (SH-SY5Y) were utilized to construct PD cell models. Primary astrocytes were transfected with EAAT1 and YY1 lentiviruses for EAAT1 gene knockout and YY1 gene knockout astrocytes, respectively. The high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of BSZCF was performed to control the quality of blood drugs. The optimal concentration and time of PD cell models treated by BSZCF were determined by the use of Cell Counting Kit-8 (CCK8). Enzyme-linked immunosorbent assay (ELISA) was used for measuring glutamate (Glu) in the peripheral blood and cells of each group. Western blotting (WB) and real-time quantitative polymerase chain reaction (qPCR) were used to detect tyrosine hydroxylase (TH), dopamine transporters (DAT), EAAT1 and YY1 protein and mRNA. After the blockade of EAAT1, immunofluorescence (IF) assay was used to detect the TH protein in each group. RESULTS: In vivo research showed that BSZCF improved the behavioral symptoms of PD mice, and reduced the death of DA neurons and the level of Glu. The mechanism may be related to the decrease of YY1 expression and the increase of EAAT1 levels. In vitro experiments showed that the anti-excitatory amino acid toxicity of BSZCF was achieved by inhibiting YY1 expression and regulating EAAT1. CONCLUSIONS: By inhibiting YY1 to increase the expression of EAAT1 and attenuating the toxicity of Glu, BSZCF exerts the effect of protecting DA neurons and treating PD-like symptoms in mice.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Niño , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Dopamina , Ratones Endogámicos C57BL , Aminoácidos Excitadores/uso terapéutico , Modelos Animales de Enfermedad , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/uso terapéutico
8.
Proc Natl Acad Sci U S A ; 121(2): e2219352120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165927

RESUMEN

High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.


Asunto(s)
Neoplasias Pulmonares , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Transformación Celular Neoplásica , Neoplasias Pulmonares/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
9.
J Exp Clin Cancer Res ; 43(1): 1, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163890

RESUMEN

BACKGROUND: Ceramide metabolism is crucial in the progress of brain metastasis (BM). However, it remains unexplored whether targeting ceramide metabolism may arrest BM. METHODS: RNA sequencing was applied to screen different genes in primary and metastatic foci and whole-exome sequencing (WES) to seek crucial abnormal pathway in BM + and BM-patients. Cellular arrays were applied to analyze the permeability of blood-brain barrier (BBB) and the activation or inhibition of pathway. Database and Co-Immunoprecipitation (Co-IP) assay were adopted to verify the protein-protein interaction. Xenograft and zebrafish model were further employed to verify the cellular results. RESULTS: RNA sequencing and WES reported the involvement of RPTOR and ceramide metabolism in BM progress. RPTOR was significantly upregulated in BM foci and increased the permeability of BBB, while RPTOR deficiency attenuated the cell invasiveness and protected extracellular matrix. Exogenous RPTOR boosted the SPHK2/S1P/STAT3 cascades by binding YY1, in which YY1 bound to the regions of SPHK2 promoter (at -353 ~ -365 nt), further promoting the expression of SPHK2. The latter was rescued by YY1 RNAi. Xenograft and zebrafish model showed that RPTOR blockade suppressed BM of non-small cell lung cancer (NSCLC) and impaired the SPHK2/S1P/STAT3 pathway. CONCLUSION: RPTOR is a key driver gene in the brain metastasis of lung cancer, which signifies that RPTOR blockade may serve as a promising therapeutic candidate for clinical application.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pez Cebra , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ceramidas/uso terapéutico , Proteína Reguladora Asociada a mTOR , Factor de Transcripción YY1/genética
10.
Mol Genet Genomic Med ; 12(1): e2281, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658636

RESUMEN

BACKGROUND: Gabriele-de Vries syndrome is a rare autosomal dominant genetic disease characterized by global development delay/intellectual disability, delayed language development, feeding difficulties, and distinctive facial dysmorphism. It is caused by pathogenic variants in YY1. METHODS: The current report describes a female patient with motor delay and a facial dysmorphism phenotype. We identified pathogenic mutations in the patient by whole-exome sequencing and confirmed them by Sanger sequencing. RESULTS: A novel heterozygous frameshift mutation NM_003403.5:c.458_476del (p. V153fs*97) in the YY1 gene was detected in the proband. Finally, we provide a case-based review of the clinical features associated with Gabriele-de Vries syndrome. A total of 28 patients with genetic abnormalities and clinical phenotypes have been reported in the literature thus far. CONCLUSIONS: The mutation site is reported for the first time, and its discovery would expand the mutation spectrum of the YY1 gene. The main clinical manifestations of Gabriele-de Vries syndrome are developmental delay/intellectual disability, craniofacial dysplasia, intrauterine growth delay, low birth weight, feeding difficulties, and rare congenital malformations. Genetic tests are crucial techniques for its diagnosis because of its nonspecific clinical manifestations.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Humanos , Femenino , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Mutación , Fenotipo , Síndrome , Factor de Transcripción YY1/genética
11.
Cell Death Dis ; 14(12): 806, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065955

RESUMEN

Radiotherapy is an important strategy in the comprehensive treatment of esophageal squamous cell carcinoma (ESCC). However, effectiveness of radiotherapy is still restricted by radioresistance. Herein, we aimed to understand the mechanisms underlying ESCC radioresistance, for which we looked into the potential role of YY1. YY1 was upregulated in radioresistant tissues and correlated with poor prognosis of patients with ESCC. YY1 depletion enhanced the radiosensitivity of ESCC in vitro and in vivo. Multi-group sequencing showed that downregulation of YY1 inhibited the transcriptional activity of Kinesin Family Member 3B (KIF3B), which further activated the Hippo signaling pathway by interacting with Integrin-beta1 (ITGB1). Once the Hippo pathway was activated, its main effector, Yes-associated protein 1 (YAP1), was phosphorylated in the cytoplasm and its expression reduced in the nucleus, thus enhancing the radiosensitivity by regulating its targeted genes. Our study provides new insights into the mechanisms underlying ESCC radioresistance and highlights the potential role of YY1 as a therapeutic target for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Tolerancia a Radiación , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/radioterapia , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Cinesinas/genética , Cinesinas/metabolismo , Tolerancia a Radiación/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
12.
Int J Biol Sci ; 19(16): 5218-5232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928273

RESUMEN

The centromere proteins (CENPs), a critical mitosis-related protein complexes, are involved in the kinetochore assembly and chromosome segregation. In this study, we identified that CENPA was significantly up-regulated in HCC and highly expressed CENPA correlated with poor prognosis for HCC patients. Knockdown of CENPA inhibited HCC cell proliferation and tumor growth in vitro and in vivo. Mechanistically, CENPA transcriptionally activated and cooperated with YY1 to drive the expression of cyclin D1 (CCND1) and neuropilin 2 (NRP2). Moreover, we identified that CENPA can be lactylated at lysine 124 (K124). The lactylation of CENPA at K124 promotes CENPA activation, leading to enhanced expression of its target genes. In summary, CENPA function as a transcriptional regulator to promote HCC via cooperating with YY1. Targeting the CENPA-YY1-CCND1/NRP2 axis may provide candidate therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteína A Centromérica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Histonas , Neoplasias Hepáticas/metabolismo , Factor de Transcripción YY1/genética , Proteína A Centromérica/metabolismo
14.
Pathol Res Pract ; 251: 154885, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862922

RESUMEN

In accordance with the World Health Organization, cancer is the second leading cause of death in patients. In recent years, the number of cancer patients has been growing, and the occurrence of cancer in people is becoming more common, primarily due to lifestyle factors. Yin Yang 1 (YY1) is a transcription factor that is widespread throughout. It is a zinc finger protein, falling under the GLI-Kruppel class. YY1 is known to regulate transcriptional activation and repression of various genes associated with different cellular processes such as DNA repair, autophagy, cell survival and apoptosis, and cell division. Meanwhile, EZH2 is a histone-lysine N-methyltransferase enzyme encoded by gene 7 in humans. Its main function involves catalyzing the addition of methyl groups to histone H3 at lysine 27 (H3K27me3), and it is involved in regulating CD8 + T cell fate and function. It is a subunit of a Polycomb repressor complex 2 (PRC2). The EZH2 gene encodes for an enzyme that is involved in histone methylation and transcriptional repression. It adds methyl groups to lysine 27 on histone H3 (H3K27me3) with the help of the cofactor S-adenosyl-L-methionine. In addition to its role in epigenetic regulation, EZH2 also acts as a regulator of CD8+ T cell fate and function. EZH2 has been implicated in T Cell Receptor (TCR) signaling via the regulation of actin polymerization. In fact, EZH2 is involved in numerous signaling pathways that lead to tumorigenesis. EZH2 is mutated in cancer and shows overexpression. Due to its mutation and overexpression, the cells that help combat cancer are suppressed and carcinogenicity is promoted. The association of EZH2 and YY1 poses an intriguing mechanism in relation to cancer.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Neoplasias , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/genética , Complejo Represivo Polycomb 2/genética , Lisina , Epigénesis Genética , Yin-Yang , Neoplasias/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
15.
BMC Pharmacol Toxicol ; 24(1): 50, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828612

RESUMEN

Chemotherapy resistance hinders the successful treatment of osteosarcoma (OS) to some extent. Previous studies have confirmed that metformin (Met) enhances apoptosis induced by chemotherapeutic drugs, but the underlying mechanism remains unclear. To establish adriamycin (ADM)-resistant MG-63 (MG-63/ADM) cells, the dosage of ADM was progressively increased. The results of qRT-PCR and Western blotting demonstrated that the expression level of Yin Yang 1 (YY1) and multi-drug resistance-1 (MDR1) in MG-63/ADM cells were remarkably increased compared with those in MG-63 cells. Met dramatically enhanced ADM cytotoxicity and accelerated apoptosis of MG-63/ADM cells. Moreover, Met suppressed the expressions of YY1 and MDR1 in MG-63/ADM cells. YY1 promoted its transcriptional expression by directly binding to the MDR1 promoter. Furthermore, the effects of Met on ADM sensitivity in MG-63/ADM cells was reversed due to overexpression of YY1 or MDR1. Collectively, these findings suggested that Met inhibited YY1/MDR1 pathway to reverse ADM resistance in OS, providing a new insight into the mechanism of Met in ADM resistance of OS.


Asunto(s)
Doxorrubicina , Osteosarcoma , Humanos , Doxorrubicina/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Múltiples Medicamentos/genética , Apoptosis , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Línea Celular Tumoral , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
16.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37762277

RESUMEN

Aberrant expression of the tight junction protein claudin 6 (CLDN6) is a hallmark of gastric cancer progression. Its expression is regulated by the cAMP response element-binding protein (CREB). In gastric cancer induced by Helicobacter pylori (H. pylori) there is no information regarding what transcription factors induce/upregulate the expression of CLDN6. We aimed to identify whether CREB and Yin Yang1 (YY1) regulate the expression of CLDN6 and the site where they bind to the promoter sequence. Bioinformatics analysis, H. pylori lipopolysaccharide (LPS), YY1 and CREB silencing, Western blot, luciferase assays, and chromatin immunoprecipitation experiments were performed using the stomach gastric adenocarcinoma cell line AGS. A gen reporter assay suggested that the initial 2000 bp contains the regulatory sequence associated with CLDN6 transcription; the luciferase assay demonstrated three different regions with transcriptional activity, but the -901 to -1421 bp region displayed the maximal transcriptional activity in response to LPS. Fragment 1279-1421 showed CREB and, surprisingly, YY1 occupancy. Sequential Chromatin Immunoprecipitation (ChIP) experiments confirmed that YY1 and CREB interact in the 1279-1421 region. Our results suggest that CLDN6 expression is regulated by the binding of YY1 and CREB in the 901-1421 enhancer, in which a non-described interaction of YY1 with CREB was established in the 1279-1421 region.


Asunto(s)
Adenocarcinoma , Helicobacter pylori , Neoplasias Gástricas , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Lipopolisacáridos/farmacología , Factor de Transcripción YY1/genética
17.
Arch Toxicol ; 97(10): 2799-2812, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37587385

RESUMEN

Tens of thousands of long non-coding RNAs (lncRNAs) have been identified through RNA-seq analysis, but the biological and pathological significance remains unclear. By integrating the genome-wide lncRNA data with a cross-ancestry meta-analysis of PDAC GWASs, we depicted a comprehensive atlas of pancreatic ductal adenocarcinoma (PDAC)-associated lncRNAs, containing 1,204 lncRNA (445 novel lncRNAs and 759 GENCODE annotated lncRNAs) and 4,368 variants. Furthermore, we found that PDAC-associated lncRNAs could function by altering chromatin activity, transcription factors, and RNA-binding proteins binding affinity. Importantly, genetic variants linked to PDAC are preferentially found at PDAC-associated lncRNA regions, supporting the biological and clinical relevance of PDAC-associated lncRNAs. Finally, we prioritized a novel transcript (MICT00000110172.1) of RP11-638I2.4 as a potential tumor promoter. MICT00000110172.1 is able to reinforce the interaction with YY1, which could reverse the effect of YY1 on pancreatic cancer cell cycle arrest to promote the pancreatic cancer growth. G > A change at rs2757535 in the second exon of MICT00000110172.1 induces a spatial structural change and creates a target region for YY1 binding, which enforces the effect of MICT00000110172.1 in an allele-specific manner, and thus confers susceptibility to tumorigenesis. In summary, our results extend the repertoire of PDAC-associated lncRNAs that could act as a starting point for future functional explorations, and the identification of lncRNA-based target therapy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Alelos , Factor de Transcripción YY1/genética
18.
Funct Integr Genomics ; 23(3): 269, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552345

RESUMEN

It is well-established that breast cancer is a highly prevalent malignancy among women, emphasizing the need to investigate mechanisms underlying its pathogenesis and metastasis. In this study, the Gene Expression Omnibus (GEO) database was utilized to conduct differential expression analysis in breast cancer and adjacent tissues. Upregulated genes were selected for prognostic analysis of breast cancer. The expression of urokinase plasminogen activator receptor (uPAR), also known as PLAUR, was assessed using RT-qPCR and western blot. Immunofluorescence staining was employed to determine PLAUR localization. Various cellular processes were analyzed, including proliferation, migration, invasion, apoptosis, and cell cycle. Bioinformatics analysis was used to predict transcription factors of PLAUR, which were subsequently validated in a double luciferase reporter gene experiment. Rescue experiments confirmed the impact of PLAUR on the proliferation, apoptosis, and migration of MDA-MB-231 cells. Furthermore, the effects of PLAUR were evaluated in an orthotopic tumor transplantation and lung metastasis nude mouse model. Our findings substantiated the critical involvement of PLAUR in the progression of triple-negative breast cancer (TNBC) in vitro and among TNBC patients with a poor prognosis. Additionally, we demonstrated Yin Yang-1 (YY1) as a notable transcriptional regulator of PLAUR, whose activation could transcriptionally enhance the proliferation and invasion capabilities of TNBC cells. We also identified the downstream mechanism of PLAUR associated with PLAU, focal adhesion kinase (FAK), and AKT. Overall, these findings offer a novel perspective on PLAUR as a potential therapeutic target for TNBC.


Asunto(s)
Neoplasias Pulmonares , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Neoplasias de la Mama Triple Negativas , Factor de Transcripción YY1 , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166780, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286143

RESUMEN

Breast cancer has gradually become the predominant cause for cancer-associated death in women. The metastatic dissemination and underlying mechanisms of triple-negative breast cancer (TNBC) are not sufficiently understood. (Su(var)3-9, enhancer of zeste, Trithorax) domain-containing protein 7 (SETD7) is vital for promoting the metastasis of TNBC, as demonstrated in this study. Clinical outcomes were significantly worse in primary metastatic TNBC with upregulated SETD7. Overexpression of SETD7 in vitro and in vivo promotes migration of TNBC cells. Two highly conserved lysine (K) residues K173 and K411 of Yin Yang 1 (YY1) are methylated by SETD7. Further, we found that SETD7-mediated K173 residue methylation protects YY1 from the ubiquitin-proteasome degradation. Mechanistically, it was found that the SETD7/YY1 axis regulates epithelial-mesenchymal transition (EMT) and tumor cell migration via the ERK/MAPK pathway in TNBC. The findings indicated that TNBC metastasis is driven by a novel pathway, which may be a promising target for advanced TNBC treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Lisina/metabolismo , Metilación , Proliferación Celular , Procesamiento Proteico-Postraduccional , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/uso terapéutico
20.
Cell Oncol (Dordr) ; 46(5): 1457-1472, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37326803

RESUMEN

PURPOSE: Serine metabolism is frequently dysregulated in many types of cancers and the tumor suppressor p53 is recently emerging as a key regulator of serine metabolism. However, the detailed mechanism remains unknown. Here, we investigate the role and underlying mechanisms of how p53 regulates the serine synthesis pathway (SSP) in bladder cancer (BLCA). METHODS: Two BLCA cell lines RT-4 (WT p53) and RT-112 (p53 R248Q) were manipulated by applying CRISPR/Cas9 to examine metabolic differences under WT and mutant p53 status. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and non-targeted metabolomics analysis were adopted to identify metabolomes changes between WT and p53 mutant BLCA cells. Bioinformatics analysis using the cancer genome atlas and Gene Expression Omnibus datasets and immunohistochemistry (IHC) staining was used to investigate PHGDH expression. Loss-of-function of PHGDH and subcutaneous xenograft model was adopted to investigate the function of PHGDH in mice BLCA. Chromatin immunoprecipitation (Ch-IP) assay was performed to analyze the relationships between YY1, p53, SIRT1 and PHGDH expression. RESULTS: SSP is one of the most prominent dysregulated metabolic pathways by comparing the metabolomes changes between wild-type (WT) p53 and mutant p53 of BLCA cells. TP53 gene mutation shows a positive correlation with PHGDH expression in TCGA-BLCA database. PHGDH depletion disturbs the reactive oxygen species homeostasis and attenuates the xenograft growth in the mouse model. Further, we demonstrate WT p53 inhibits PHGDH expression by recruiting SIRT1 to the PHGDH promoter. Interestingly, the DNA binding motifs of YY1 and p53 in the PHGDH promoter are partially overlapped which causes competition between the two transcription factors. This competitive regulation of PHGDH is functionally linked to the xenograft growth in mice. CONCLUSION: YY1 drives PHGDH expression in the context of mutant p53 and promotes bladder tumorigenesis, which preliminarily explains the relationship between high-frequency mutations of p53 and dysfunctional serine metabolism in bladder cancer.


Asunto(s)
Proteína p53 Supresora de Tumor , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Genes p53 , Cromatografía Liquida , Espectrometría de Masas en Tándem , Neoplasias de la Vejiga Urinaria/genética , Serina/metabolismo , Línea Celular Tumoral , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA