Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
1.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34370012

RESUMEN

Drosophila female germline stem cells (GSCs) are found inside the cellular niche at the tip of the ovary. They undergo asymmetric divisions to renew the stem cell lineage and to produce sibling cystoblasts that will in turn enter differentiation. GSCs and cystoblasts contain spectrosomes, membranous structures essential for orientation of the mitotic spindle and that, particularly in GSCs, change shape depending on the cell cycle phase. Using live imaging and a fusion protein of GFP and the spectrosome component Par-1, we follow the complete spectrosome cycle throughout GSC division and quantify the relative duration of the different spectrosome shapes. We also determine that the Par-1 kinase shuttles between the spectrosome and the cytoplasm during mitosis and observe the continuous addition of new material to the GSC and cystoblast spectrosomes. Next, we use the Fly-FUCCI tool to define, in live and fixed tissues, that GSCs have a shorter G1 compared with the G2 phase. The observation of centrosomes in dividing GSCs allowed us to determine that centrosomes separate very early in G1, before centriole duplication. Furthermore, we show that the anterior centrosome associates with the spectrosome only during mitosis and that, upon mitotic spindle assembly, it translocates to the cell cortex, where it remains anchored until centrosome separation. Finally, we demonstrate that the asymmetric division of GSCs is not an intrinsic property of these cells, as the spectrosome of GSC-like cells located outside of the niche can divide symmetrically. Thus, GSCs display unique properties during division, a behaviour influenced by the surrounding niche.


Asunto(s)
División Celular Asimétrica/fisiología , Centrosoma/fisiología , Drosophila/fisiología , Células Germinativas/fisiología , Ovario/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/fisiología , Centrosoma/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Femenino , Fase G1/fisiología , Fase G2/fisiología , Células Germinativas/metabolismo , Mitosis/fisiología , Ovario/metabolismo , Huso Acromático/fisiología , Células Madre/metabolismo
2.
J Ethnopharmacol ; 269: 113686, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33309918

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Menispermaceae plant Tiliacora racemosa is immensely popular in Indian traditional Ayurvedic medicine as "Krishnavetra" for its remarkable anti-cancerous property, and is commonly used by tribal population for the treatment of skin infections, snake bites and filariasis. AIM OF THE STUDY: This present study intends to identify the modus operandi behind the cytotoxic activity of Tiliacora racemosa leaves in cervical cancer cells SiHa. Focus has been instilled in the ability of the plant extract to target multiple signaling pathways leading to cell cycle arrest and cell death in SiHa cells, followed by a pharmacological characterization to identify the bioactive principle. MATERIALS AND METHODS: T. racemosa leaves extracted in methanol, ethyl acetate, hexane and aqueous solvent were screened for cytotoxicity in HeLa, SiHa, C33A (cervical cancer cells) and HEK cells by MTT assay. SiHa cells were treated with the most potent extract (TRM). Cellular morphology, clonogenic and wound healing potential, presence of intracellular ROS and NO, lipid peroxidation, activity of cellular antioxidants (SOD, CAT, GSH), DNA damage detection by comet assay and localisation of γ-H2AX foci, intracellular expression of PARP-1, Bax/Bcl2 and caspase-3, loss in mitochondrial membrane potential by JC1 (flow cytometry) and Rh123 (microscopy), cell cycle analysis, Annexin-FITC assay, AO/EtBr microscopy and apoptotic proteome profiling were undertaken in the treated cells. All the related proteins were studied by immunoblots. Effect of NAC (ROS-scavenger) on cell viability, DNA damage and apoptosis were studied. Phytochemical characterization of all TR extracts was followed by LC-MS analysis of TRM and isolated alkaloid of TR was assessed for cytotoxicity. RESULTS: The methanol extract of T. racemosa (TRM) rich in bisbenzylisoquinoline and other alkaloids impeded the proliferation of cervical cancer cells SiHa in vitro through disruption of cellular redox homeostasis caused by increase in cellular ROS and NO with concomitant decrease in the cellular antioxidants. Double-stranded DNA damage was noted from γH2AX foci accumulation and Parp-1 activation leading to ATM-Chk2-p53 pathway arresting the cells at G2/M-phase through cyclin B1 inhibition. The mitochondrial membrane potential was also disturbed leading to caspase-3 dependent apoptotic induction by both extrinsic and intrinsic pathway. Immunoblots show TRM also inhibited PI3K/Akt and NFκB pathway. NAC pre-treatment rescued the cell viability proving DNA damage and apoptosis to be direct consequences of ROS overproduction. Lastly, the therapeutic potential of T. racemosa is was hypothesized to be possibly derived from its alkaloid content. CONCLUSION: This study proves the age old ethnnopharmacological anticancer role of T. racemosa. The leaf extracts inhibited the anomalous proliferation of SiHa cells by virtue of G2/M-phase cell cycle arrest and apoptotic cell death. Oxidative stress mediated double stranded DNA damage paved the way towards apoptotic cell death through multiple routes, including PI3K/Akt/NFκB pathway. The abundant alkaloid content of T. racemosa was denoted as the probable responsible cytotoxic principle.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , División Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Fase G2/efectos de los fármacos , Menispermaceae , Estrés Oxidativo/efectos de los fármacos , Neoplasias del Cuello Uterino/metabolismo , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , División Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Daño del ADN/fisiología , Relación Dosis-Respuesta a Droga , Femenino , Fase G2/fisiología , Células HEK293 , Células HeLa , Humanos , Estrés Oxidativo/fisiología , Hojas de la Planta , Neoplasias del Cuello Uterino/tratamiento farmacológico
3.
FEMS Yeast Res ; 20(4)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32401321

RESUMEN

Pinostrobin, a flavonoid compound known for its diverse pharmacological actions, including anti-leukemic and anti-inflammatory activities, has been repeatedly isolated by various screenings, but its action mechanism is still obscure. Previously, pinostrobin was rediscovered in our laboratory using a yeast-based assay procedure devised specifically for the inhibitory effect on the activated Ca2+ signaling that leads the cells to severe growth retardation in the G2 phase. Here, we attempted to identify target of pinostrobin employing the genetic techniques available in the yeast. Using various genetically engineered yeast strains in which the Ca2+-signaling cascade can be activated by the controlled expression of the various signaling molecules of the cascade, its target was narrowed down to Swe1, the cell-cycle regulatory protein kinase. The Swe1 kinase is situated at the downstream of the Ca2+-signaling cascade and downregulates the Cdc28/Clb complex by phosphorylating the Cdc28 moiety of the complex in the G2 phase. We further demonstrated that pinostrobin inhibits the protein kinase activity of Swe1 in vivo as estimated by the decreased level of Cdc28 phosphorylation at Tyr-19. Since the yeast SWE1 gene is an ortholog for the human WEE1 gene, our finding implied a potentiality of pinostrobin as the G2 checkpoint abrogator in cancer chemotherapy.


Asunto(s)
Calcio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Flavanonas/farmacología , Fase G2/genética , Regulación Fúngica de la Expresión Génica , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Fase G2/fisiología , Genes Fúngicos , Proteínas Tirosina Quinasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos
4.
Mol Biol Cell ; 31(8): 725-740, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31995441

RESUMEN

E2F8 is a transcriptional repressor that antagonizes E2F1 at the crossroads of the cell cycle, apoptosis, and cancer. Previously, we discovered that E2F8 is a direct target of the APC/C ubiquitin ligase. Nevertheless, it remains unknown how E2F8 is dynamically controlled throughout the entirety of the cell cycle. Here, using newly developed human cell-free systems that recapitulate distinct inter-mitotic and G1 phases and a continuous transition from prometaphase to G1, we reveal an interlocking dephosphorylation switch coordinating E2F8 degradation with mitotic exit and the activation of APC/CCdh1. Further, we uncover differential proteolysis rates for E2F8 at different points within G1 phase, accounting for its accumulation in late G1 while APC/CCdh1 is still active. Finally, we demonstrate that the F-box protein Cyclin F regulates E2F8 in G2-phase. Altogether, our data define E2F8 regulation throughout the cell cycle, illuminating an extensive coordination between phosphorylation, ubiquitination and transcription in mammalian cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Sistema Libre de Células , Ciclinas/metabolismo , Factor de Transcripción E2F1/metabolismo , Fase G1/fisiología , Fase G2/fisiología , Células HeLa , Humanos , Mitosis/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Recombinantes/metabolismo , Ubiquitinación
5.
Mol Cell Biol ; 40(8)2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-31964753

RESUMEN

Cdk2-dependent TopBP1-treslin interaction is critical for DNA replication initiation. However, it remains unclear how this association is terminated after replication initiation is finished. Here, we demonstrate that phosphorylation of TopBP1 by Akt coincides with cyclin A activation during S and G2 phases and switches the TopBP1-interacting partner from treslin to E2F1, which results in the termination of replication initiation. Premature activation of Akt in G1 phase causes an early switch and inhibits DNA replication. TopBP1 is often overexpressed in cancer and can bypass control by Cdk2 to interact with treslin, leading to enhanced DNA replication. Consistent with this notion, reducing the levels of TopBP1 in cancer cells restores sensitivity to a Cdk2 inhibitor. Together, our study links Cdk2 and Akt pathways to the control of DNA replication through the regulation of TopBP1-treslin interaction. These data also suggest an important role for TopBP1 in driving abnormal DNA replication in cancer.


Asunto(s)
Proteínas Portadoras/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Portadoras/genética , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Línea Celular , Quinasa 2 Dependiente de la Ciclina/genética , Ciclinas/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Fase G2/fisiología , Humanos , Proteínas Nucleares/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Fase S/fisiología
6.
Nanomedicine (Lond) ; 14(22): 2941-2955, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31755353

RESUMEN

Aim: We aimed to characterize the tumor-targeting and radiosensitization properties of the photo-responsive gold nanoparticles (AuNPs) decorated photolabile diazirine group and folic acid for improved radiotherapy and computed tomography imaging of tumors. Methods: Folic acid and photolabile diazirine group were covalently conjugated on the surface of AuNPs to afford the desired photo-responsive dAuNP-FA (AuNPs capped with poly(ethylene) glycol ligands bearing photolabile diazirine group and folic acid). The probes were intravenously injected into tumor-bearing mice followed by photocrosslinking upon 405 nm laser irradiation for radiotherapy and computed tomography imaging of tumors in vivo. Results: Light-triggered crosslinking of AuNPs in vivo remarkably enhanced the accumulation and retention of AuNPs within tumors. Conclusion: We have successfully developed a novel photo-responsive Au particle-based tumor theranostic probe showing remarkably improved tumor targeting ability and radiosensitization effect.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Fármacos Sensibilizantes a Radiaciones/química , Tomografía Computarizada por Rayos X/métodos , Animales , División Celular/genética , División Celular/fisiología , Línea Celular Tumoral , Femenino , Ácido Fólico/química , Fase G2/genética , Fase G2/fisiología , Humanos , Ratones , Polietilenglicoles/química
7.
EMBO J ; 38(20): e101430, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31475738

RESUMEN

E2F7 and E2F8 act as tumor suppressors via transcriptional repression of genes involved in S-phase entry and progression. Previously, we demonstrated that these atypical E2Fs are degraded by APC/CCdh1 during G1 phase of the cell cycle. However, the mechanism driving the downregulation of atypical E2Fs during G2 phase is unknown. Here, we show that E2F7 is targeted for degradation by the E3 ubiquitin ligase SCFcyclin F during G2. Cyclin F binds via its cyclin domain to a conserved C-terminal CY motif on E2F7. An E2F7 mutant unable to interact with SCFcyclin F remains stable during G2. Furthermore, SCFcyclin F can also interact and induce degradation of E2F8. However, this does not require the cyclin domain of SCFcyclin F nor the CY motifs in the C-terminus of E2F8, implying a different regulatory mechanism than for E2F7. Importantly, depletion of cyclin F causes an atypical-E2F-dependent delay of the G2/M transition, accompanied by reduced expression of E2F target genes involved in DNA repair. Live cell imaging of DNA damage revealed that cyclin F-dependent regulation of atypical E2Fs is critical for efficient DNA repair and cell cycle progression.


Asunto(s)
Ciclinas/metabolismo , Reparación del ADN , Factor de Transcripción E2F7/metabolismo , Fase G2/fisiología , Proteolisis , Proteínas Represoras/metabolismo , Puntos de Control del Ciclo Celular , Ciclinas/genética , Daño del ADN , Replicación del ADN , Factor de Transcripción E2F7/genética , Células HeLa , Humanos , Unión Proteica , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Dev Growth Differ ; 61(6): 357-364, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31199000

RESUMEN

Primordial germ cells (PGCs) are reprogrammed into pluripotent embryonic germ cells (EGCs) under specific culture conditions, but the detailed mechanisms of PGC reprogramming have not yet been fully clarified. Previous studies have demonstrated that AKT, an important intracellular signaling molecule, promotes reprogramming of PGCs into EGCs. Because AKT likely inhibits p53 functions to enhance PGC reprogramming, and p53 negatively regulates cell cycle progression, we analyzed cell cycle changes in PGCs following AKT activation and found that the ratio of PGCs in the G1/G0 phase was decreased while that of PGCs in the G2/M phase was increased after AKT activation. We also showed that the expression of the CDK inhibitor p27kip1, which prevents the G1­S transition and is transcriptionally activated by p53, was significantly downregulated by AKT activation. The results suggested that the characteristic cell cycle changes of PGCs by AKT activation are, at least in part, due to decreased expression of p27kip1 . We also investigated changes in histone H3K27 tri-methylation (H3K27me3) by AKT activation in PGCs, because we previously found that decreased H3K27me3 was involved in PGC reprogramming via upregulation of cyclin D1. We observed that AKT activation in PGCs resulted in H3K27 hypomethylation. In addition, DZNeP, an inhibitor of the H3K27 trimethyl transferase Ezh2, stimulated EGC formation. These results together suggested that AKT activation promotes G1-S transition and downregulates H3K27me3 to enhance PGC reprogramming.


Asunto(s)
Reprogramación Celular/fisiología , Ciclina D1/metabolismo , Células Germinales Embrionarias/citología , Células Germinales Embrionarias/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Fase G1 , Fase G2 , Histonas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Activación Enzimática , Fase G1/fisiología , Fase G2/fisiología , Masculino , Metilación , Ratones , Ratones Transgénicos , Transducción de Señal
9.
J Cell Biol ; 218(3): 871-894, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30674580

RESUMEN

Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.


Asunto(s)
Citocinesis/fisiología , Fase G2/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Centrómero/genética , Centrómero/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Membrana Nuclear/genética , Huso Acromático/genética , Huso Acromático/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30487274

RESUMEN

Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of these viruses using an array of cell lines with different levels of impairment of antiviral signaling and a panel of chemical compounds arresting the cell cycle at different phases. We observed that all compounds inducing cell cycle arrest in G2/M phase strongly enhanced the replication of VSV-ΔM51 in cells with functional antiviral signaling. G2/M arrest strongly inhibited type I and type III interferon (IFN) production as well as expression of IFN-stimulated genes in response to exogenously added IFN. Moreover, G2/M arrest enhanced the replication of Sendai virus (a paramyxovirus), which is also highly sensitive to the type I IFN response but did not stimulate the replication of a wild-type VSV that is more effective at evading antiviral responses. In contrast, the positive effect of G2/M arrest on virus replication was not observed in cells defective in IFN signaling. Altogether, our data show that replication of IFN-sensitive cytoplasmic viruses can be strongly stimulated during G2/M phase as a result of inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. The G2/M phase thus could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest.IMPORTANCE Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of VSV and VSV-ΔM51. We show that G2/M cell cycle arrest strongly enhances the replication of VSV-ΔM51 (but not of wild-type VSV) and Sendai virus (a paramyxovirus) via inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. Our data suggest that the G2/M phase could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest, and it has important implications for oncolytic virotherapy, suggesting that frequent cell cycle progression in cancer cells could make them more permissive to viruses.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Vesiculovirus/genética , Replicación Viral/genética , Animales , Antivirales/farmacología , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Citoplasma , Fase G2/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Expresión Génica/genética , Humanos , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Interferones , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus ARN/inmunología , Virus ARN/metabolismo , Virus Sendai/genética , Virus Sendai/metabolismo , Transducción de Señal , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus/metabolismo , Proteínas de la Matriz Viral/genética , Replicación Viral/inmunología , Interferón lambda
11.
Mol Cancer Res ; 16(11): 1785-1797, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30018032

RESUMEN

Aurora A kinase (AURKA) is a master cell-cycle regulator that is often dysregulated in human cancers. Its overexpression has been associated with genome instability and oncogenic transformation. The protein kinase D (PKD) family is an emerging therapeutic target of cancer. Aberrant PKD activation has been implicated in tumor growth and survival, yet the underlying mechanisms remain to be elucidated. This study identified, for the first time, a functional crosstalk between PKD2 and Aurora A kinase in cancer cells. The data demonstrate that PKD2 is catalytically active during the G2-M phases of the cell cycle, and inactivation or depletion of PKD2 causes delay in mitotic entry due to downregulation of Aurora A, an effect that can be rescued by overexpression of Aurora A. Moreover, PKD2 localizes in the centrosome with Aurora A by binding to γ-tubulin. Knockdown of PKD2 caused defects in centrosome separation, elongated G2 phase, mitotic catastrophe, and eventually cell death via apoptosis. Mechanistically, PKD2 interferes with Fbxw7 function to protect Aurora A from ubiquitin- and proteasome-dependent degradation. Taken together, these results identify PKD as a cell-cycle checkpoint kinase that positively modulates G2-M transition through Aurora A kinase in mammalian cells.Implications: PKD2 is a novel cell-cycle regulator that promotes G2-M transition by modulating Aurora A kinase stability in cancer cells and suggests the PKD2/Aurora A kinase regulatory axis as new therapeutic targets for cancer treatment. Mol Cancer Res; 16(11); 1785-97. ©2018 AACR.


Asunto(s)
Aurora Quinasa A/metabolismo , Centrosoma/enzimología , Proteínas Quinasas/metabolismo , Ciclo Celular/fisiología , División Celular/fisiología , Centrosoma/metabolismo , Regulación hacia Abajo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Fase G2/fisiología , Células HeLa , Humanos , Células PC-3 , Proteína Quinasa D2 , Ubiquitinación
12.
J Cell Biol ; 217(9): 3019-3029, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29930206

RESUMEN

Cytoplasmic dynein is involved in diverse cell cycle-dependent functions regulated by several accessory factors, including Nde1 and Ndel1. Little is known about the role of these proteins in dynein cargo binding, and less is known about their cell cycle--dependent dynein regulation. Using Nde1 RNAi, mutant cDNAs, and a phosphorylation site-specific antibody, we found a specific association of phospho-Nde1 with the late G2-M nuclear envelope and prophase to anaphase kinetochores, comparable to the pattern for the Nde1 interactor CENP-F. Phosphomutant-Nde1 associated only with prometaphase kinetochores and showed weaker CENP-F binding in in vitro assays. Nde1 RNAi caused severe delays in mitotic progression, which were substantially rescued by both phosphomimetic and phosphomutant Nde1. Expression of a dynein-binding-deficient Nde1 mutant reduced kinetochore dynein by half, indicating a major role for Nde1 in kinetochore dynein recruitment. These results establish CENP-F as the first well-characterized Nde1 cargo protein, and reveal phosphorylation control of Nde1 cargo binding throughout a substantial fraction of the cell cycle.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Dineínas Citoplasmáticas/metabolismo , Cinetocoros/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Anafase/fisiología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Fase G2/fisiología , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Fosforilación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/genética
13.
Sci Rep ; 8(1): 3932, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500418

RESUMEN

Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Proliferación Celular/fisiología , Regulación hacia Abajo , Fase G2/fisiología , Proteínas Represoras/fisiología , Animales , Antineoplásicos/uso terapéutico , Femenino , Células HeLa , Humanos , Lampreas , Fosforilación , Prohibitinas , Proteínas Represoras/genética , Proteínas Represoras/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología
14.
J Biol Chem ; 293(14): 5185-5199, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29467227

RESUMEN

From unicellular to multicellular organisms, cell-cycle progression is tightly coupled to biosynthetic and bioenergetic demands. Accumulating evidence has demonstrated the G1/S-phase transition as a key checkpoint where cells respond to their metabolic status and commit to replicating the genome. However, the mechanism underlying the coordination of metabolism and the G2/M-phase transition in mammalian cells remains unclear. Here, we show that the activation of AMP-activated protein kinase (AMPK), a highly conserved cellular energy sensor, significantly delays mitosis entry. The cell-cycle G2/M-phase transition is controlled by mitotic cyclin-dependent kinase complex (CDC2-cyclin B), which is inactivated by WEE1 family protein kinases and activated by the opposing phosphatase CDC25C. AMPK directly phosphorylates CDC25C on serine 216, a well-conserved inhibitory phosphorylation event, which has been shown to mediate DNA damage-induced G2-phase arrest. The acute induction of CDC25C or suppression of WEE1 partially restores mitosis entry in the context of AMPK activation. These findings suggest that AMPK-dependent phosphorylation of CDC25C orchestrates a metabolic checkpoint for the cell-cycle G2/M-phase transition.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Fosfatasas cdc25/metabolismo , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fase G2/fisiología , Células HeLa , Humanos , Mitosis/fisiología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatasas cdc25/genética
15.
Mol Cell Proteomics ; 17(12): 2297-2308, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29438997

RESUMEN

Protein posttranslational modifications (PTMs) play a central role in the DNA damage response. In particular, protein phosphorylation and ubiquitination have been shown to be essential in the signaling cascade that coordinates break repair with cell cycle progression. Here, we performed whole-cell quantitative proteomics to identify global changes in protein ubiquitination that are induced by DNA double-strand breaks. In total, we quantified more than 9,400 ubiquitin sites and found that the relative abundance of ∼10% of these sites was altered in response to DNA double-strand breaks. Interestingly, a large proportion of ribosomal proteins, including those from the 40S as well as the 60S subunit, were ubiquitinated in response to DNA damage. In parallel, we discovered that DNA damage leads to the inhibition of ribosome function. Taken together, these data uncover the ribosome as a major target of the DNA damage response.


Asunto(s)
Roturas del ADN de Doble Cadena , Doxorrubicina/farmacología , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Ribosómicas/metabolismo , Ubiquitinación/fisiología , Línea Celular Tumoral , Inhibidores de Cisteína Proteinasa/metabolismo , Fase G2/fisiología , Humanos , Leupeptinas/metabolismo , Espectrometría de Masas , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosfoproteínas/metabolismo , Fosforilación , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Nucleolina
16.
Zygote ; 26(1): 62-75, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29229010

RESUMEN

Participation and relative importance of phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling, either alone or in combination, have been investigated during 17α,20ß-dihydroxy-4-pregnen-3-one (DHP)-induced meiotic G2-M1 transition in denuded zebrafish oocyte. Results demonstrate that concomitant with rapid phosphorylation (activation) of Akt (Ser473) and MAPK (ERK1/2) at as early as 15 min of incubation, DHP stimulation promotes enhanced an GVBD response and histone H1 kinase activation between 1 and 5 h in full-grown oocytes in vitro. While p-Akt reaches its peak at 60 to 90 min and undergoes downregulation to the basal level by 240 min, ERK1/2 phosphorylation (activation) increases gradually until 120 min and remains high thereafter. Although, priming with MEK1/2 inhibitor U0126 is without effect, PI3K inhibitors, wortmannin or LY294002, delay the GVBD response significantly (P < 0.001) until 3 h but not at 5 h of incubation. Interestingly, blocking PI3K and MEK function together could abrogate steroid-induced oocyte maturation at all time points tested. While DHP stimulation promotes phospho-PKA catalytic (p-PKAc) dephosphorylation (inactivation) between 30-120 min of incubation, simultaneous inhibition of PI3K and MEK1/2 kinases abrogates DHP action. Conversely, elevated intra-oocyte cAMP, through priming with either adenylyl cyclase (AC) activator forskolin (FK) or dibutyryl cAMP (db-cAMP), abrogates steroid-induced Akt and ERK1/2 phosphorylation. Taken together, these results suggest that DHP-induced Akt and ERK activation precedes the onset of meiosis (GVBD response) in a cAMP-sensitive manner and PI3K/Akt and MEK/MAPK pathways together have a pivotal influence in the downregulation of PKA and resumption of meiotic maturation in zebrafish oocytes in vitro.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oocitos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Fase G2/fisiología , Técnicas de Maduración In Vitro de los Oocitos , MAP Quinasa Quinasa 1/metabolismo , Meiosis/fisiología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Pregnenos/farmacología , Transducción de Señal/efectos de los fármacos , Pez Cebra , Proteínas de Pez Cebra/metabolismo
17.
Dev Biol ; 434(1): 84-95, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29198563

RESUMEN

Transcriptional silencing is a conserved process used by embryonic germ cells to repress somatic fate and maintain totipotency and immortality. In Drosophila, this transcriptional silencing is mediated by polar granule component (pgc). Here, we show that in the adult ovary, pgc is required for timely germline stem cell (GSC) differentiation. Pgc is expressed transiently in the immediate GSC daughter (pre-cystoblast), where it mediates a pulse of transcriptional silencing. This transcriptional silencing mediated by pgc indirectly promotes the accumulation of Cyclin B (CycB) and cell cycle progression into late-G2 phase, when the differentiation factor bag of marbles (bam) is expressed. Pgc mediated accumulation of CycB is also required for heterochromatin deposition, which protects the germ line genome against selfish DNA elements. Our results suggest that transient transcriptional silencing in the pre-cystoblast "re-programs" it away from self-renewal and toward the gamete differentiation program.


Asunto(s)
Diferenciación Celular/fisiología , Fase G2/fisiología , Silenciador del Gen/fisiología , Células Germinativas/metabolismo , Células Madre/metabolismo , Animales , Ciclina B/biosíntesis , Ciclina B/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Germinativas/citología , Heterocromatina/genética , Heterocromatina/metabolismo , Células Madre/citología
18.
Cell Rep ; 19(10): 2060-2073, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591578

RESUMEN

Commitment to mitosis must be tightly coordinated with DNA replication to preserve genome integrity. While we have previously established that the timely activation of CyclinB1-Cdk1 in late G2 triggers mitotic entry, the upstream regulatory mechanisms remain unclear. Here, we report that Polo-like kinase 1 (Plk1) is required for entry into mitosis during an unperturbed cell cycle and is rapidly activated shortly before CyclinB1-Cdk1. We determine that Plk1 associates with the Cdc25C1 phosphatase and induces its phosphorylation before mitotic entry. Plk1-dependent Cdc25C1 phosphosites are sufficient to promote mitotic entry, even when Plk1 activity is inhibited. Furthermore, we find that activation of Plk1 during G2 relies on CyclinA2-Cdk activity levels. Our findings thus elucidate a critical role for Plk1 in CyclinB1-Cdk1 activation and mitotic entry and outline how CyclinA2-Cdk, an S-promoting factor, poises cells for commitment to mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Fase G2/fisiología , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína Quinasa CDC2/metabolismo , Ciclina A2/metabolismo , Ciclina B1/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinasa Tipo Polo 1
19.
Tissue Cell ; 49(3): 376-382, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28499755

RESUMEN

OBJECTIVE: A new method was presented to prepare clinical-grade human adipose-derived stromal stem cells (ASCs) and its safety in vitro, such as biological characteristics and genetic features alteration were investigated. METHODS: The morphology of the ASCs which were cultured in vitro using serum-free medium was observed. Cell cycle and CD markers profile were tested by flow cytometry, while karyotype was analyzed by the chromosome G-banding technology. Growth factors expression was tested by ELISA and tumor-related genes were analyzed by the real-time PCR, respectively. RESULTS: ASCs were adult stem cells with spindle shape. The proliferation ratio of ASCs began to slow down after 10 passages, and was significant after 15 passages. Cell cycle analysis revealed that the percentage of G2 phase and S phase cells was stable. There was no obvious missing, translocation or dislocation in terms of karyotype. Expression level of tumor relevant genes and cytokines at different passages had no significant difference. CONCLUSIONS: The clinical-grade ASCs prepared with this new method, less than ten passages, was safe for clinical trials.


Asunto(s)
Tejido Adiposo , Separación Celular/métodos , Bandeo Cromosómico , Cariotipificación , Células Madre Mesenquimatosas , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Adulto , Femenino , Fase G2/fisiología , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Fase S/fisiología
20.
Anticancer Res ; 37(4): 1603-1608, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28373420

RESUMEN

BACKGROUND/AIM: The transcription factor Y-box-binding protein 1 (YB1) is overexpressed in many types of human cancers. YB1 regulates the G1 phase of the cell cycle by controlling transcription of G1 regulators. Here, we report that YB1 is also involved in regulating G2/M phase. MATERIALS AND METHODS: YB1-depleted TKO cells were subjected to quantitative reverse transcription-polymerase chain reaction and cell-cycle analysis. RNA immunoprecipitation (RIP)-chip assay was performed using anti-YB1 antibodies. Precipitated RNAs were subjected to microarray analysis. RESULTS: Silencing YB1 inhibited the proliferation of TKO cells, which lost the machinery required for G1 phase arrest. Cell-cycle analysis showed that silencing YB1 caused G2/M phase cell-cycle arrest. RIP-chip assay showed that YB1 associated with mRNA of multiple cell-cycle-related genes, including G2/M phase regulators. CONCLUSION: YB1 positively regulates not only the G1 phase but also G2/M phase by regulating multiple cell-cycle-related genes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Neoplasias del Colon/patología , Fase G2/fisiología , Mitosis/fisiología , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Neoplasias del Colon/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Inmunoprecipitación , Ratones , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 1 de Unión a la Caja Y/antagonistas & inhibidores , Proteína 1 de Unión a la Caja Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA