Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.640
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 6519-6546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957181

RESUMEN

Background: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized. Methods and Results: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/ß-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane's vascularization and osteogenic capacities involved transplantation onto a rat's subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane's outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery. Conclusion: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.


Asunto(s)
Gelatina , Glucósidos , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Nanofibras , Neovascularización Fisiológica , Osteogénesis , Fenantrenos , Fenoles , Poliésteres , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Animales , Nanofibras/química , Gelatina/química , Poliésteres/química , Glucósidos/química , Glucósidos/farmacología , Fenoles/química , Fenoles/farmacología , Fenantrenos/química , Fenantrenos/farmacología , Fenantrenos/farmacocinética , Fenantrenos/administración & dosificación , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratas , Masculino , Regeneración Ósea/efectos de los fármacos , Membranas Artificiales , Técnicas de Cocultivo , Liberación de Fármacos , Diferenciación Celular/efectos de los fármacos
2.
Molecules ; 29(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999025

RESUMEN

Enzymatic fructosylation has emerged as a strategy to enhance the hydrophilicity of polyphenols by introducing sugar moieties, leading to the development of phenolic glycosides, which exhibit improved solubility, stability, and biological activities compared to their non-glycosylated forms. This study provides a detailed analysis of the interactions between five phenolic fructosides (4MFPh, MFF, DFPh, MFPh, and MFPu) and twelve proteins (11ß-HS1, CRP, DPPIV, IRS, PPAR-γ, GK, AMPK, IR, GFAT, IL-1ß, IL-6, and TNF-α) associated with the pathogenesis of T2DM. The strongest interactions were observed for phlorizin fructosides (DFPh) with IR (-16.8 kcal/mol) and GFAT (-16.9 kcal/mol). MFPh with 11ß-HS1 (-13.99 kcal/mol) and GFAT (-12.55 kcal/mol). 4MFPh with GFAT (-11.79 kcal/mol) and IR (-12.11 kcal/mol). MFF with AMPK (-9.10 kcal/mol) and PPAR- γ (-9.71 kcal/mol), followed by puerarin and ferulic acid monofructosides. The fructoside group showed lower free energy binding values than the controls, metformin and sitagliptin. Hydrogen bonding (HB) was identified as the primary interaction mechanism, with specific polar amino acids such as serin, glutamine, glutamic acid, threonine, aspartic acid, and lysine identified as key contributors. ADMET results indicated favorable absorption and distribution characteristics of the fructosides. These findings provide valuable information for further exploration of phenolic fructosides as potential therapeutic agents for T2DM.


Asunto(s)
Hipoglucemiantes , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fenoles/química , Fenoles/farmacología , Humanos , Simulación del Acoplamiento Molecular , Isoflavonas/química , Isoflavonas/metabolismo , Isoflavonas/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Florizina/química , Florizina/farmacología , Fructosa/química , Fructosa/metabolismo , Glicosilación , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo
3.
Molecules ; 29(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999132

RESUMEN

Phyllanthus emblica L. fruits (PEFs) were processed by ultra-pressure (UHP) treatment and then extracted by the ultrasonic-assisted extraction method. The influence of UHP on the phenolic composition, enzyme inhibitory activity and antioxidant activity of the free, esterified, and bound phenolic fractions from PEFs were compared. UHP pretreatment of PEFs significantly increased the total phenolic and flavonoid contents (p < 0.05). A total of 24 chemical compositions were characterized in normal and UHP-treated PEFs by UHPLC-ESI-HRMS/MS. Compared with normal PEFs, these three different phenolic fractions had stronger antioxidant activities and inhibitory effects on the intracellular reactive oxygen species (ROS) production in H2O2-induced HepG2 cells (p < 0.05). The ROS inhibition might be due to an up-regulation of the expressions of superoxide dismutase (SOD) and glutathione (GSH) activities. In addition, these three different phenolic fractions also significantly inhibited the activities of metabolic enzymes, including α-glucosidase, α-amylase and pancreatic lipase. This work may provide some insights into the potential economics and applications of PEFs in food and nutraceutical industries.


Asunto(s)
Antioxidantes , Frutas , Fenoles , Phyllanthus emblica , Extractos Vegetales , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Phyllanthus emblica/química , Humanos , Frutas/química , Antioxidantes/química , Antioxidantes/farmacología , Células Hep G2 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Cromatografía Líquida de Alta Presión , Superóxido Dismutasa/metabolismo , Flavonoides/química , Flavonoides/farmacología , Presión , Peróxido de Hidrógeno
4.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998943

RESUMEN

The leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean are considered rich sources of plant protein with high levels of branched-chain amino acids. Furthermore, they contain beneficial phytochemicals such as antioxidants and anti-inflammatory agents. Additionally, there are reports suggesting that an adequate consumption of amino acids can reduce nerve cell damage, delay the onset of memory impairment, and improve sleep quality. In this study, protein isolates were prepared from the leaves of mulberry, Azolla spp., sunflower sprouts, cashew nut, and mung bean. The amino acid profile, dietary fiber content, phenolic content, and flavonoid content were evaluated. Pharmacological properties, such as antioxidant, anticholinesterase, monoamine oxidase, and γ-aminobutyric acid transaminase (GABA-T) activities, were also assessed. This study found that concentrated protein from mung beans has a higher quantity of essential amino acids (52,161 mg/100 g protein) compared to concentrated protein from sunflower sprouts (47,386 mg/100 g protein), Azolla spp. (42,097 mg/100 g protein), cashew nut (26,710 mg/100 g protein), and mulberry leaves (8931 mg/100 g protein). The dietary fiber content ranged from 0.90% to 3.24%, while the phenolic content and flavonoid content ranged from 0.25 to 2.29 mg/g and 0.01 to 2.01 mg/g of sample, respectively. Sunflower sprout protein isolates exhibited the highest levels of dietary fiber (3.24%), phenolic content (2.292 ± 0.082 mg of GAE/g), and flavonoids (2.014 mg quercetin/g of sample). The biological efficacy evaluation found that concentrated protein extract from sunflower sprouts has the highest antioxidant activity; the percentages of inhibition of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical were 20.503 ± 0.288% and 18.496 ± 0.105%, respectively. Five plant-based proteins exhibited a potent inhibition of acetylcholinesterase (AChE) enzyme activity, monoamine oxidase (MAO) inhibition, and GABA-T ranging from 3.42% to 24.62%, 6.14% to 20.16%, and 2.03% to 21.99%, respectively. These findings suggest that these plant protein extracts can be used as natural resources for developing food supplements with neuroprotective activity.


Asunto(s)
Aminoácidos , Antioxidantes , Flavonoides , Fármacos Neuroprotectores , Fenoles , Extractos Vegetales , Proteínas de Plantas , 4-Aminobutirato Transaminasa/antagonistas & inhibidores , Aminoácidos/química , Anacardium/química , Antioxidantes/farmacología , Antioxidantes/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Fibras de la Dieta , Flavonoides/química , Flavonoides/farmacología , Morus/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Tailandia , Vigna/química , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología
5.
PLoS One ; 19(7): e0305343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968273

RESUMEN

BACKGROUND: Salidroside (SAL), the main component of Rhodiola rosea extract, is a flavonoid with biological activities, such as antioxidative stress, anti-inflammatory, and hypolipidemic. In this study, the potential therapeutic targets and mechanisms of SAL against oxidative stress in retinal ganglion cells (RGCs) were investigated on the basis of in-vitro experiments, network pharmacology, and molecular docking techniques. METHODS: RGC oxidative stress models were constructed, and cell activity, reactive oxygen species (ROS), and apoptosis levels were examined for differences. The genes corresponding to rhodopsin, RGCs, and oxidative stress were screened from GeneCards, TCMSP database, and an analysis platform. The intersection of the three was taken, and a Venn diagram was drawn. Protein interactions, GO functional enrichment, and KEGG pathway enrichment data were analyzed by STRING database, Cytohubba plugin, and Metascape database. The key factors in the screening pathway were validated using qRT-PCR. Finally, molecular docking prediction was performed using MOE 2019 software, molecular dynamic simulations was performed using Gromacs 2018 software. RESULTS: In the RGC oxidative stress model in vitro, the cell activity was enhanced, ROS was reduced, and apoptosis was decreased after SAL treatment. A total of 16 potential targets of oxidative stress in SAL RGCs were obtained, and the top 10 core targets were screened by network topology analysis. GO analysis showed that SAL retinal oxidative stress treatment mainly involved cellular response to stress, transcriptional regulatory complexes, and DNA-binding transcription factor binding. KEGG analysis showed that most genes were mainly enriched in multiple cancer pathways and signaling pathways in diabetic complications, nonalcoholic fatty liver, and lipid and atherosclerosis. Validation by PCR, molecular docking and molecular dynamic simulations revealed that SAL may attenuate oxidative stress and reduce apoptosis in RGCs by regulating SIRT1, NRF2, and NOS3. CONCLUSION: This study initially revealed the antioxidant therapeutic effects and molecular mechanisms of SAL on RGCs, providing a theoretical basis for subsequent studies.


Asunto(s)
Apoptosis , Glucósidos , Simulación del Acoplamiento Molecular , Farmacología en Red , Estrés Oxidativo , Fenoles , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Glucósidos/farmacología , Glucósidos/química , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratas , Simulación de Dinámica Molecular , Antioxidantes/farmacología
6.
Cell Biochem Funct ; 42(5): e4093, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978319

RESUMEN

The main objective of the study is to evaluate the antioxidant, anticancer, and antimicrobial activities of Anchusa officinalis L. in vitro and in silico. The dried aerial parts of A. officinalis L. were extracted with methanol. Total phenolic and flavonoid content was analyzed. Antioxidant and antimicrobial effects were tested against both gram-positive and gram-negative bacteria. Gas chromatography-mass spectrometry analysis revealed the presence of 10 phytochemical compounds, and cyclobutane (26.07%) was identified as the major photochemical compound. The methanol extract exhibited the maximum amount of total phenolic content (118.24 ± 4.42 mg QE/g dry weight of the dry extract) (R2 = 0.994) and the total flavonoid content was 94 ± 2.34 mg QE/g dry weight of the dry extract (R2 = 0.999). The IC50 value for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid was 107.12 ± 3.42 µg/mL, and it was high for 1,1-diphenyl-2-picryl hydrazyl (123.94 ± 2.31 µg/mL). The IC50 value was 72.49 ± 3.14 against HepG2 cell lines, and a decreased value was obtained (102.54 ± 4.17 g/mL) against MCF-7 cell lines. The methanol extract increased the expression of caspase mRNA and Bax mRNA levels when compared to the control experiment (p < .05). The conclusions, A. officinalis L. aerial parts extract exhibited antibacterial, antifungal, and antioxidant activities.


Asunto(s)
Antioxidantes , Metanol , Componentes Aéreos de las Plantas , Extractos Vegetales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Componentes Aéreos de las Plantas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Metanol/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinfecciosos/química , Células MCF-7 , Simulación por Computador , Flavonoides/farmacología , Flavonoides/química , Fenoles/farmacología , Fenoles/química , Apoptosis/efectos de los fármacos
7.
Fish Shellfish Immunol ; 151: 109750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969153

RESUMEN

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.


Asunto(s)
Alimentación Animal , Lubina , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Glucósidos , Fenoles , Animales , Lubina/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Glucósidos/administración & dosificación , Glucósidos/farmacología , Fenoles/administración & dosificación , Fenoles/farmacología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Inmunidad Innata/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Distribución Aleatoria
8.
J Mass Spectrom ; 59(7): e5045, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837562

RESUMEN

Soybean is scientifically known as Glycine max. It belongs to the Fabaceae family. It consists of a lot of bioactive phytochemicals like saponin, phenolic acid, flavonoid, sphingolipids and phytosterols. It also owns excellent immune-active effects in the physiological system. Soy and its phytochemicals have been found to have pharmacological properties that include anticancer, antioxidant, anti-hypercholesterolaemic, anti-diabetic, oestrogenic, anti-hyperlipidaemic, anti-inflammatory, anti-obesity, anti-hypertensive, anti-mutagenic, immunomodulatory, anti-osteoporotic, antiviral, hepatoprotective, antimicrobial, goitrogenic anti-skin ageing, wound healing, neuroprotective and anti-photoageing activities. Present study has been designed to set standard pharmacognostical extraction method, complexation of compounds, qualitative evaluation through phytochemical screening, identification by TLC, physicochemical properties, solubility profile, total phenolic, flavonoid content as well as analytical evaluation or characterisation like UV and FT-IR of methanolic extract of G. max. The final observations like physicochemical properties such as total ash value, LOD and pH were recorded. Phytochemical screenings show the presence of flavonoid, alkaloid, saponin, carbohydrate, tannins, protein, gums and mucilage, fixed oils and fats. The results were found significant. Further in silico studies proved creatinine and euparin to be potent wound healing agents.


Asunto(s)
Flavonoides , Glycine max , Fitoquímicos , Extractos Vegetales , Semillas , Espectrometría de Masas en Tándem , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem/métodos , Semillas/química , Glycine max/química , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Metanol/química , Simulación por Computador , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , Animales
9.
PeerJ ; 12: e17424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827279

RESUMEN

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Asunto(s)
Biodegradación Ambiental , Fenoles , Microbiología del Suelo , Contaminantes del Suelo , Fenoles/farmacología , Microbiota/efectos de los fármacos , Suelo/química , Ecosistema , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación
10.
Environ Sci Technol ; 58(24): 10494-10503, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833413

RESUMEN

Fluorene-9-bisphenol (BHPF) is an emerging contaminant. Presently, there is no report on its interaction with G protein-coupled estrogen receptor 1 (GPER). By using an integrated toxicity research scenario that combined theoretical study with experimental methods, BHPF was found to inhibit the GPER-mediated effect via direct receptor binding. Molecular dynamics simulations found that Trp2726.48 and Glu2756.51 be the key amino acids of BHPF binding with GPER. Moreover, the calculation indicated that BHPF was a suspected GPER inhibitor, which neither can activate GPER nor is able to form water channels of GPER. The role of two residues was successfully verified by following gene knockout and site-directed mutagenesis assays. Further in vitro assays showed that BHPF could attenuate the increase in intracellular concentration of free Ca2+ induced by G1-activated GPER. Besides, BHPF showed an enhanced cytotoxicity compared with G15, indicating that BHPF might be a more potent GPER inhibitor than G15. In addition, a statistically significant effect on the mRNA level of GPER was observed for BHPF. In brief, the present study proposes that BHPF be a GPER inhibitor, and its GPER molecular recognition mechanism has been revealed, which is of great significance for the health risk and assessment of BHPF.


Asunto(s)
Apoptosis , Humanos , Apoptosis/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Línea Celular Tumoral , Fluorenos , Fenoles/farmacología , Fenoles/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Estrógenos/metabolismo
11.
Biomolecules ; 14(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38927041

RESUMEN

The genus Brassica is an important source of food in the Mediterranean diet with documented nutritional and medicinal properties. However, few studies have investigated the phytochemical composition and the biological activity of wild Sicilian taxa. Thus, we aimed to study the chemical profile and the antioxidant potential, in vitro and in LPS-stimulated RAW 264.7 cells, of a methanolic extract of leaves of wild Brassica macrocarpa Guss (B. macrocarpa) (Egadi Islands; Sicily-Italy). B. macrocarpa methanolic extract showed a large amount of glucosinolates and different phenolic compounds. It exhibited antioxidant activity in the DPPH assay and in LPS-stimulated RAW 264.7 cells, being able to reduce NO and ROS levels and NOS2 mRNA expression. Our study demonstrated that Sicilian B. macrocarpa methanolic extract, in LPS-stimulated macrophages, efficiently counteracts oxidative stress and displays radical scavenging activity. Future studies are required to identify the contribution of the single phytocomponents, to characterize the action mechanism, and to reveal possible applications in human health.


Asunto(s)
Antioxidantes , Brassica , Depuradores de Radicales Libres , Extractos Vegetales , Hojas de la Planta , Células RAW 264.7 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratones , Hojas de la Planta/química , Animales , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Brassica/química , Antioxidantes/farmacología , Antioxidantes/química , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Lipopolisacáridos/farmacología , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Sicilia , Glucosinolatos/farmacología , Glucosinolatos/química
12.
Medicina (Kaunas) ; 60(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38929564

RESUMEN

The prevalence of skin aging and the request for effective treatments have driven dermatological research towards natural solutions. This study investigates the anti-aging efficacy of two bioactive natural polyphenols, Oleocanthal and Oleacein, in a skincare formulation. A single-blind, randomized clinical trial involved 70 participants, using a comprehensive exclusion criterion to ensure participant safety and study integrity. Participants applied the Oleocanthal and Oleacein 1% serum formulation twice daily for 30 days. The efficacy was objectively assessed using the VISIA® Skin Analysis System at baseline, after 15 days, and after 30 days. Results indicated significant wrinkle reduction in most groups. For women aged 45-79 years, the mean change was -33.91% (95% CI: -46.75% to -21.07%). For men aged 20-44 years, it was -51.93% (95% CI: -76.54% to -27.33%), and for men aged 45-79 years, it was -46.56% (95% CI: -58.32% to -34.81%). For women aged 20-44 years, the change was -25.68% (95% CI: -63.91% to 12.54%), not statistically significant. These findings highlight the potential of EVOO-derived polyphenols in anti-aging skincare, particularly for older adults. This research paves the way for further exploration into natural compounds in dermatology, particularly for aging skin management.


Asunto(s)
Aldehídos , Monoterpenos Ciclopentánicos , Fenoles , Envejecimiento de la Piel , Humanos , Persona de Mediana Edad , Femenino , Masculino , Anciano , Adulto , Envejecimiento de la Piel/efectos de los fármacos , Método Simple Ciego , Fenoles/uso terapéutico , Fenoles/farmacología
13.
Pestic Biochem Physiol ; 202: 105947, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879334

RESUMEN

Until recently, chemical pesticides were one of the most effective means of controlling agricultural pests; therefore, the search for insecticide targets for agricultural pests has been an ongoing problem. Estrogen-related receptors (ERRs) are transcription factors that regulate cellular metabolism and energy homeostasis in animals. Silkworms are highly sensitive to chemical pesticides, making them ideal models for pesticide screening and evaluation. In this study, we detected ERR expression in key organs involved in pesticide metabolism in silkworms (Bombyx mori), including the fat body and midgut. Using ChIP-seq technology, many estrogen- related response elements were identified in the 2000-bp promoter region upstream of metabolism-related genes, almost all of which were potential ERR target genes. The ERR inhibitor, XCT-790, and the endocrine disruptor, bisphenol A, significantly inhibited expression of the ERR target genes, BmTreh-1, BmTret-1, BmPK, BmPFK, and BmHK, in the fat bodies of silkworms, resulting in pupation difficulties in silkworm larvae that ultimately lead to death. In addition, based on the clarification that the ERR can bind to XCT-790, as observed through biofilm interferometry, its three-dimensional spatial structure was predicted, and using molecular docking techniques, small-molecule compounds with a stronger affinity for the ERR were identified. In summary, utilizing the powerful metabolic regulatory function of ERR in Lepidoptera pests, the developed small molecule inhibitors of ERR can be used for future control of Lepidoptera pests.


Asunto(s)
Bombyx , Simulación del Acoplamiento Molecular , Fenoles , Receptores de Estrógenos , Animales , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Bombyx/metabolismo , Bombyx/genética , Bombyx/efectos de los fármacos , Fenoles/farmacología , Compuestos de Bencidrilo/farmacología , Larva/metabolismo , Larva/efectos de los fármacos , Larva/genética , Insecticidas/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Disruptores Endocrinos/farmacología , Disruptores Endocrinos/metabolismo , Nitrilos , Tiazoles
14.
Food Funct ; 15(14): 7430-7440, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38904163

RESUMEN

Eight polyprenylphenol derivatives were isolated from the wild edible mushroom Suillus granulatus, including seven novel compounds, named suillin F-L (2-8), and one previously identified compound (1). The structures of the new compounds were elucidated using HR-ESI-MS and 1D and 2D NMR data. The absolute configuration of compound 8 was assigned based on the comparison of the experimental and calculated ECD data. All isolated compounds were evaluated for their cytotoxicity against HepG2 cancer cell lines. Compounds 1 and 3-6 demonstrated significant antitumor activity compared to the positive control (cisplatin), with IC50 values ranging from 8.19 to 13.97 µM. Furthermore, DARTS assay and LC-MS/MS analysis were used to identify HSP90AA1 as the direct target of compound 5, and the interaction between compound 5 and HSP90AA1 was verified by molecular docking.


Asunto(s)
Antineoplásicos , Simulación del Acoplamiento Molecular , Fenoles , Humanos , Fenoles/farmacología , Fenoles/química , Fenoles/aislamiento & purificación , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Agaricales/química , Estructura Molecular , Espectrometría de Masas en Tándem
15.
Mol Nutr Food Res ; 68(12): e2400038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38824669

RESUMEN

SCOPE: Xanthophylls, vital for ocular defense against blue light and reactive oxygen species, are prone to oxidative degradation; however, they may be regenerated antioxidant-rich plant phenols. Despite certain in vitro evidence, clinical studies show inconsistent findings and this may be due to varying phenolic reduction potentials. Therefore, the current study aims to investigate the ocular protective effect of various plant phenols combined with xanthophyll. METHODS AND RESULTS: Human retinal pigment epithelial cells (ARPE-19) are subjected to oxidative stress induced by hydrogen peroxide (H2O2) after xanthophyll and phenol pretreatment. Assessments include xanthophyll uptake, total antioxidant capacity, cell viability, intracellular reactive oxygen species levels, apoptosis, phagocytosis, and vascular endothelial growth factor formation. The study finds that while the combination of lutein with phenols does not show significant protective effects compared to lutein-only, zeaxanthin combined with phenols exhibits enhanced protection compared to both the zeaxanthin-only and control groups. CONCLUSION: The research reveals the complex relationship between xanthophylls and phenols, suggesting that the advantageous effects of their combination might vary among different xanthophylls. Caution is necessary when applying molecular theories to ocular health, and this necessitates further research, serving as a basis for proposing clinical trials to evaluate the efficacy of specific xanthophyll and phenol combinations.


Asunto(s)
Antioxidantes , Apoptosis , Supervivencia Celular , Peróxido de Hidrógeno , Luteína , Estrés Oxidativo , Epitelio Pigmentado de la Retina , Xantófilas , Humanos , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Xantófilas/farmacología , Luteína/farmacología , Antioxidantes/farmacología , Fenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Zeaxantinas/farmacología , Fagocitosis/efectos de los fármacos
16.
J Food Sci ; 89(7): 4250-4275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38829746

RESUMEN

Garlic, belonging to the genus Allium, is renowned for its rich antioxidant potential. Snow Mountain garlic (SMG) (Allium ampeloprasum) has been traditionally used for medicinal purposes because of its higher antioxidant potential. Considering its potential in medical therapies, we compared the antioxidant activity of SMG with a novel variety of Allium sativum, Hisar garlic 17 (HG17). Comparative antioxidant activity data (2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) revealed the higher antioxidant activity of HG17 than SMG, which prompted us to conduct a comprehensive phytochemical investigation to elucidate the factors contributing to antioxidant potential of HG17. To get a detailed antioxidant and phytoconstituents profiling, we differentially extracted HG17 by processing it in different forms (fresh, dry, heated, and aged) with two solvents (50% methanol and n-butanol). Our data (antioxidant activities, total phenolics, and flavonoids) showed that dry garlic methanolic extract (DgM) had maximum potential than other HG17 forms/solvents, which concludes that different extraction techniques had direct impact on the phenolics/flavonoids and antioxidant potential of the extracts. Further, phytochemical analysis of HG17 extracts by high resolution liquid chromatograph mass spectrometer quadrupole time of flight validated the maximum potential of DgM. LCMS revealed the presence of garcimangosone C, osmanthuside A, and protoaphin aglucone polyphenols exclusively in DgM compared to other HG17 extracts, which possibly contributing in its high antioxidant potential. The overall differential extraction and LCMS data of HG17 strongly depict that it may be used as an alternative of SMG under diverse medical applications. HG17 higher antioxidant potential and rich array of unique phytochemicals make it valuable for food and pharmaceutical industries to integrate into functional foods/therapeutics. PRACTICAL APPLICATION: Garlic unique phytochemical composition and its remarkable ability to scavenge different radicals make it valuable therapeutic asset to mitigate diseases associated with oxidative stress. SMG is well known for its anti-arthritic and anti-inflammatory properties. HG17 showed higher antioxidant potential than SMG and can be used as an alternative of SMG for anti-arthritic properties.


Asunto(s)
Allium , Antioxidantes , Flavonoides , Ajo , Fenoles , Fitoquímicos , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/análisis , Ajo/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fenoles/análisis , Fenoles/farmacología , Flavonoides/análisis , Flavonoides/farmacología , Allium/química , Cromatografía Líquida de Alta Presión/métodos
17.
Funct Integr Genomics ; 24(3): 112, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849609

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC), a globally common cancer, often presents late and shows high resistance to chemotherapy, resulting in suboptimal treatment efficacy. Components from traditional Chinese medicines have been recognized for their anti-cancer properties. OBJECTIVE: Exploring the mechanism of Schisandra chinensis lignans and acteoside in suppressing Epithelial-Mesenchymal Transition (EMT) in hepatoma cells through the Extracellular signal-Regulated Kinases (ERK)1/2 pathway and identifying biomarkers, molecular subtypes, and targets via multi-omics for precision oncology. METHODS: Proliferation was assessed using cell counting kit-8 (CCK-8) assays, with scratch and transwell assays for evaluating invasion and migration. Flow cytometry quantified apoptosis rates. Expression levels of CCL20, p-ERK1/2, c-Myc, Vimentin, and E-cadherin/N-cadherin were analyzed by real-time PCR and Western blot. Tumor volume was calculated with a specific formula, and growth. RESULTS: The Schisandra chinensis lignans and acteoside combination decreased CCL20 expression, inhibited hepatoma proliferation and migration, and enhanced apoptosis in a dose- and time-dependent manner. Molecular analysis revealed increased E-cadherin and decreased N-cadherin, p-ERK1/2, c-Myc, and Vimentin expression, indicating ERK1/2 pathway modulation. In vivo, treated nude mice showed significantly reduced tumor growth and volume. CONCLUSION: Schisandra chinensis lignans and acteoside potentially counteract CCL20-induced EMT, invasion, and migration in hepatocellular carcinoma cells via the ERK1/2 pathway, enhancing apoptosis. Multi-omics analysis further aids in pinpointing novel biomarkers for precision cancer therapy.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Proliferación Celular , Transición Epitelial-Mesenquimal , Glucósidos , Lignanos , Neoplasias Hepáticas , Sistema de Señalización de MAP Quinasas , Fenoles , Schisandra , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Lignanos/farmacología , Schisandra/química , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fenoles/farmacología , Glucósidos/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Ratones Endogámicos BALB C , Células Hep G2 , Multiómica , Polifenoles
18.
Food Chem ; 455: 139921, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843718

RESUMEN

The pharmaceutical and nutraceutical potentials of whole fruit, pulp and seeds of Rosa pimpinellifolia L. were evaluated. Forty-two phenolic compounds and two triterpenoids were identified in extracts by LC-MS/MS and GC-MS, respectively. The most prominent compounds were ellagic acid, catechin, epicatechin, tannic acid, quercetin, oleanolic acid, and ursolic acid. The highest enzyme inhibitory activities of the extracts (94.83%) were obtained against angiotensin-converting enzyme and were almost equal to those of the commercial standard (lisinopril, 98.99%). Whole fruit and pulp extracts (IC50:2.47 and 1.52 µg DW/mL) exhibited higher antioxidant capacity than the standards (α-tocopherol, IC50:9.89 µg DW/mL). The highest antibacterial activity was obtained against Bacillus cereus (MIC: 256 µg/mL) for the whole fruit extract. Correlation analyses were conducted to find the correlation between individual phenolics and enzyme inhibitory activities. The results showed the remarkable future of not only the edible part but also the seeds of black rose hips in phytochemical and functional aspects.


Asunto(s)
Antibacterianos , Antioxidantes , Frutas , Fitoquímicos , Extractos Vegetales , Rosa , Semillas , Antioxidantes/farmacología , Antioxidantes/química , Frutas/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Semillas/química , Fitoquímicos/química , Fitoquímicos/farmacología , Rosa/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Fenoles/farmacología , Fenoles/química
19.
Biomater Sci ; 12(14): 3649-3658, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38857014

RESUMEN

Despite cisplatin's pivotal role in clinically proven anticancer drugs, its application has been hampered by severe side effects and a grim prognosis. Herein, we devised a glutathione (GSH)-responsive nanoparticle (PFS-NP) that integrates a disulfide bond-based amphiphilic polyphenol (PP-SS-DA), a dopamine-modified cisplatin prodrug (Pt-OH) and iron ions (Fe3+) through coordination reactions between Fe3+ and phenols. After entering cells, the responsively released Pt-OH and disulfide bonds eliminate the intracellular GSH, in turn disrupting the redox homeostasis. Meanwhile, the activated cisplatin elevates the intracellular H2O2 level through cascade reactions. This is further utilized to produce highly toxic hydroxyl radicals (˙OH) catalyzed by the Fe3+-based Fenton reaction. Thus, the amplified oxidative stress leads to immunogenic cell death (ICD), promoting the maturation of dendritic cells (DCs) and ultimately activating the anti-tumor immune system. This innovative cisplatin prodrug nanoparticle approach offers a promising reference for minimizing side effects and optimizing the therapeutic effects of cisplatin-based drugs.


Asunto(s)
Antineoplásicos , Cisplatino , Profármacos , Cisplatino/farmacología , Cisplatino/química , Cisplatino/administración & dosificación , Profármacos/química , Profármacos/farmacología , Profármacos/administración & dosificación , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Animales , Ratones , Inmunoterapia/métodos , Nanopartículas/química , Nanopartículas/administración & dosificación , Células Dendríticas/efectos de los fármacos , Glutatión/química , Glutatión/metabolismo , Línea Celular Tumoral , Hierro/química , Portadores de Fármacos/química , Fenoles/química , Fenoles/farmacología , Fenoles/administración & dosificación
20.
Molecules ; 29(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930937

RESUMEN

Polyphenols from agro-food waste represent a valuable source of bioactive molecules that can be recovered to be used for their functional properties. Another option is to use them as starting material to generate molecules with new and better properties through semi-synthesis. A proanthocyanidin-rich (PACs) extract from avocado peels was used to prepare several semi-synthetic derivatives of epicatechin by acid cleavage in the presence of phenol and thiol nucleophiles. The adducts formed by this reaction were successfully purified using one-step centrifugal partition chromatography (CPC) and identified by chromatographic and spectroscopic methods. The nine derivatives showed a concentration-dependent free radical scavenging activity in the DPPH assay. All compounds were also tested against a panel of pathogenic bacterial strains formed by Listeria monocytogenes (ATCC 7644 and 19115), Staphylococcus aureus (ATCC 9144), Escherichia coli (ATCC 11775 and 25922), and Salmonella enterica (ATCC 13076). In addition, adducts were tested against two no-pathogenic strains, Limosilactobacillus fermentum UCO-979C and Lacticaseibacillus rhamnosus UCO-25A. Overall, thiol-derived adducts displayed antimicrobial properties and, in some specific cases, inhibited biofilm formation, particularly in Listeria monocytogenes (ATCC 7644). Interestingly, phenolic adducts were inactive against all the strains and could not inhibit its biofilm formation. Moreover, depending on the structure, in specific cases, biofilm formation was strongly promoted. These findings contribute to demonstrating that CPC is a powerful tool to isolate new semi-synthetic molecules using avocado peels as starting material for PACc extraction. These compounds represent new lead molecules with antioxidant and antimicrobial activity.


Asunto(s)
Antioxidantes , Catequina , Persea , Proantocianidinas , Persea/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Proantocianidinas/química , Proantocianidinas/farmacología , Proantocianidinas/síntesis química , Proantocianidinas/aislamiento & purificación , Catequina/química , Catequina/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Compuestos de Sulfhidrilo/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antibacterianos/aislamiento & purificación , Fenoles/química , Fenoles/farmacología , Fenoles/aislamiento & purificación , Fenoles/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA