Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.948
Filtrar
1.
Cell Rep Med ; 5(5): 101544, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697102

RESUMEN

Prime editing is a recent, CRISPR-derived genome editing technology capable of introducing precise nucleotide substitutions, insertions, and deletions. Here, we present prime editing approaches to correct L227R- and N1303K-CFTR, two mutations that cause cystic fibrosis and are not eligible for current market-approved modulator therapies. We show that, upon DNA correction of the CFTR gene, the complex glycosylation, localization, and, most importantly, function of the CFTR protein are restored in HEK293T and 16HBE cell lines. These findings were subsequently validated in patient-derived rectal organoids and human nasal epithelial cells. Through analysis of predicted and experimentally identified candidate off-target sites in primary stem cells, we confirm previous reports on the high prime editor (PE) specificity and its potential for a curative CF gene editing therapy. To facilitate future screening of genetic strategies in a translational CF model, a machine learning algorithm was developed for dynamic quantification of CFTR function in organoids (DETECTOR: "detection of targeted editing of CFTR in organoids").


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Células Epiteliales , Edición Génica , Mutación , Organoides , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Fibrosis Quística/metabolismo , Organoides/metabolismo , Edición Génica/métodos , Células Epiteliales/metabolismo , Mutación/genética , Células HEK293 , Sistemas CRISPR-Cas/genética
2.
Sci Adv ; 10(22): eadl5576, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820163

RESUMEN

Despite great progress in the field, chronic Pseudomonas aeruginosa (Pa) infections remain a major cause of mortality in patients with cystic fibrosis (pwCF), necessitating treatment with antibiotics. Pf is a filamentous bacteriophage produced by Pa and acts as a structural element in Pa biofilms. Pf presence has been associated with antibiotic resistance and poor outcomes in pwCF, although the underlying mechanisms are unclear. We have investigated how Pf and sputum biopolymers impede antibiotic diffusion using pwCF sputum and fluorescent recovery after photobleaching. We demonstrate that tobramycin interacts with Pf and sputum polymers through electrostatic interactions. We also developed a set of mathematical models to analyze the complex observations. Our analysis suggests that Pf in sputum reduces the diffusion of charged antibiotics due to a greater binding constant associated with organized liquid crystalline structures formed between Pf and sputum polymers. This study provides insights into antibiotic tolerance mechanisms in chronic Pa infections and may offer potential strategies for novel therapeutic approaches.


Asunto(s)
Antibacterianos , Pseudomonas aeruginosa , Esputo , Electricidad Estática , Esputo/microbiología , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/virología , Humanos , Fibrosis Quística/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacología , Difusión , Biopelículas/efectos de los fármacos , Bacteriófagos
3.
PLoS Biol ; 22(4): e3002566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652717

RESUMEN

Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.


Asunto(s)
Fibrosis Quística , Citocinas , Células Epiteliales , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/virología , Células Epiteliales/virología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Citocinas/metabolismo , Fibrosis Quística/terapia , Fibrosis Quística/inmunología , Fibrosis Quística/metabolismo , Terapia de Fagos , Bacteriófagos/fisiología , Bacteriófagos/genética , Mucosa Respiratoria/virología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/inmunología , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/inmunología , Fagos Pseudomonas/metabolismo , Biopelículas
4.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673851

RESUMEN

Neutrophil elastase (NE) is taken up by macrophages, retains intracellular protease activity, and induces a pro-inflammatory phenotype. However, the mechanism of NE-induced pro-inflammatory polarization of macrophages is not well understood. We hypothesized that intracellular NE degrades histone deacetylases (HDAC) and Sirtuins, disrupting the balance of lysine acetylation and deacetylation and resulting in nuclear to cytoplasmic translocation of a major alarmin, High Mobility Group Box 1 (HMGB1), a pro-inflammatory response in macrophages. Human blood monocytes were obtained from healthy donors or from subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Monocytes were differentiated into blood monocyte derived macrophages (BMDMs) in vitro. Human BMDMs were exposed to NE or control vehicle, and the abundance of HDACs and Sirtuins was determined by Western blotting of total cell lysates or nuclear extracts or determined by ELISA. HDAC, Sirtuin, and Histone acetyltransferase (HAT) activities were measured. NE degraded most HDACs and Sirtuin (Sirt)1, resulting in decreased HDAC and sirtuin activities, with minimal change in HAT activity. We then evaluated whether the NE-induced loss of Sirt activity or loss of HDAC activities would alter the cellular localization of HMGB1. NE treatment or treatment with Trichostatin A (TSA), a global HDAC inhibitor, both increased HMGB1 translocation from the nucleus to the cytoplasm, consistent with HMGB1 activation. NE significantly degraded Class I and II HDAC family members and Sirt 1, which shifted BMDMs to a pro-inflammatory phenotype.


Asunto(s)
Proteína HMGB1 , Histona Desacetilasas , Elastasa de Leucocito , Macrófagos , Sirtuina 1 , Humanos , Acetilación , Células Cultivadas , Fibrosis Quística/metabolismo , Histona Acetiltransferasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Proteína HMGB1/metabolismo , Ácidos Hidroxámicos , Elastasa de Leucocito/metabolismo , Macrófagos/metabolismo , Monocitos/metabolismo , Proteolisis , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Sirtuina 1/metabolismo
5.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195031, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679287

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an anion-selective channel found in epithelial cell membranes. Mutations in CFTR cause cystic fibrosis (CF), an inherited disorder that impairs epithelial function in multiple organs. Most men with CF are infertile due to loss of intact genital ducts. Here we investigated a novel epididymis-selective cis-regulatory element (CRE), located within a peak of open chromatin at -9.5 kb 5' to the CFTR gene promoter. Activation of the -9.5 kb CRE alone by CRISPRa had no impact on CFTR gene expression. However, CRISPRa co-activation of the -9.5 kb CRE and the CFTR gene promoter in epididymis cells significantly augmented CFTR mRNA and protein expression when compared to promoter activation alone. This increase was accompanied by enhanced chromatin accessibility at both sites. Furthermore, the combined CRISPRa strategy activated CFTR expression in other epithelial cells that lack open chromatin at the -9.5 kb site and in which the locus is normally inactive. However, the -9.5 kb CRE does not function as a classical enhancer of the CFTR promoter in transient reporter gene assays. These data provide a novel mechanism for activating/augmenting CFTR expression, which may have therapeutic utility for mutations that perturb CFTR transcription.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Células Epiteliales , Regiones Promotoras Genéticas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , Masculino , Animales , Regulación de la Expresión Génica , Epidídimo/metabolismo , Cromatina/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Ratones
7.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542363

RESUMEN

Cystic fibrosis (CF) is a fatal autosomal recessive disorder caused by the loss of function mutations within a single gene for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). CFTR is a chloride channel that regulates ion and fluid transport across various epithelia. The discovery of CFTR as the CF gene and its cloning in 1989, coupled with extensive research that went into the understanding of the underlying biological mechanisms of CF, have led to the development of revolutionary therapies in CF that we see today. The highly effective modulator therapies have increased the survival rates of CF patients and shifted the epidemiological landscape and disease prognosis. However, the differential effect of modulators among CF patients and the presence of non-responders and ineligible patients underscore the need to develop specialized and customized therapies for a significant number of patients. Recent advances in the understanding of the CFTR structure, its expression, and defined cellular compositions will aid in developing more precise therapies. As the lifespan of CF patients continues to increase, it is becoming critical to clinically address the extra-pulmonary manifestations of CF disease to improve the quality of life of the patients. In-depth analysis of the molecular signature of different CF organs at the transcriptional and post-transcriptional levels is rapidly advancing and will help address the etiological causes and variability of CF among patients and develop precision medicine in CF. In this review, we will provide an overview of CF disease, leading to the discovery and characterization of CFTR and the development of CFTR modulators. The later sections of the review will delve into the key findings derived from single-molecule and single-cell-level analyses of CFTR, followed by an exploration of disease-relevant protein complexes of CFTR that may ultimately define the etiological course of CF disease.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Calidad de Vida , Medicina de Precisión , Transducción de Señal , Mutación
8.
Respir Investig ; 62(3): 455-461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547757

RESUMEN

BACKGROUND: Many disease-causing variants in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene remain uncharacterized and untreated. Restoring the function of the impaired CFTR protein is the goal of personalized medicine, particularly in patients carrying rare CFTR variants. In this study, functional defects related to the rare R334W variant were evaluated after treatment with CFTR modulators or Roflumilast, a phosphodiesterase-4 inhibitor (PDE4i). METHODS: Rectal organoids from subjects with R334W/2184insA and R334W/2183AA > G genotypes were used to perform the Forskolin-induced swelling (FIS) assay. Organoids were left drug-untreated or treated with modulators VX-770 (I), VX-445 (E), and VX-661 (T) mixed, and their combination (ETI). Roflumilast (R) was used alone or as a combination of I + R. RESULTS: Our data show a significant increase in FIS rate following treatment with I alone. The combined use of modulators, such as ETI, did not increase further swelling than I alone, nor in protein maturation. Treatment with R shows an increase in FIS response similar to those of I, and the combination R + I significantly increases the rescue of CFTR activity. CONCLUSIONS: Equivalent I and ETI treatment efficacy was observed for both genotypes. Furthermore, significant organoid swelling was observed with combined I + R used that supports the recently published data describing a potentiating effect of only I in patients carrying the variant R334W and, at the same time, corroborating the role of strategies that include PDE4 inhibitors further to potentiate the effect of I for this variant.


Asunto(s)
Aminopiridinas , Benzamidas , Fibrosis Quística , Inhibidores de Fosfodiesterasa 4 , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/farmacología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/metabolismo , Colforsina/metabolismo , Colforsina/farmacología , Organoides/metabolismo , Mutación , Ciclopropanos
9.
Eur Respir J ; 63(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485151

RESUMEN

BACKGROUND AND AIM: In cystic fibrosis, gastrointestinal dysfunction and lower airway infection occur early and are independently associated with poorer outcomes in childhood. This study aimed to define the relationship between the microbiota at each niche during the first 2 years of life, its association with growth and airway inflammation, and explanatory features in the metabolome. MATERIALS AND METHODS: 67 bronchoalveolar lavage fluid (BALF), 62 plasma and 105 stool samples were collected from 39 infants with cystic fibrosis between 0 and 24 months who were treated with prophylactic antibiotics. 16S rRNA amplicon and shotgun metagenomic sequencing were performed on BALF and stool samples, respectively; metabolomic analyses were performed on all sample types. Sequencing data from healthy age-matched infants were used as controls. RESULTS: Bacterial diversity increased over the first 2 years in both BALF and stool, and microbial maturation was delayed in comparison to healthy controls from the RESONANCE cohort. Correlations between their respective abundance in both sites suggest stool may serve as a noninvasive alternative for detecting BALF Pseudomonas and Veillonella. Multisite metabolomic analyses revealed age- and growth-related changes, associations with neutrophilic airway inflammation, and a set of core systemic metabolites. BALF Pseudomonas abundance was correlated with altered stool microbiome composition and systemic metabolite alterations, highlighting a complex gut-plasma-lung interplay and new targets with therapeutic potential. CONCLUSION: Exploration of the gut-lung microbiome and metabolome reveals diverse multisite interactions in cystic fibrosis that emerge in early life. Gut-lung metabolomic links with airway inflammation and Pseudomonas abundance warrant further investigation for clinical utility, particularly in non-expectorating patients.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Fibrosis Quística , Heces , Microbioma Gastrointestinal , Pulmón , ARN Ribosómico 16S , Humanos , Fibrosis Quística/microbiología , Fibrosis Quística/metabolismo , Lactante , Líquido del Lavado Bronquioalveolar/microbiología , Heces/microbiología , Masculino , Femenino , ARN Ribosómico 16S/genética , Pulmón/microbiología , Pulmón/metabolismo , Recién Nacido , Estudios Longitudinales , Estudios de Casos y Controles , Metaboloma , Metabolómica , Antibacterianos/uso terapéutico , Preescolar
10.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38440830

RESUMEN

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrosis Quística/microbiología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/tratamiento farmacológico , Animales , Tobramicina/farmacología , Humanos , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patología , Ratones , Ratones Endogámicos C57BL , Interleucina-8/metabolismo , Neumonía/metabolismo , Neumonía/patología , Neumonía/microbiología , Pulmón/patología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/efectos de los fármacos , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Líquido del Lavado Bronquioalveolar
11.
Physiology (Bethesda) ; 39(4): 0, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501963

RESUMEN

Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Pulmón , Humanos , Fibrosis Quística/fisiopatología , Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Animales , Pulmón/metabolismo , Pulmón/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Mutación , Circulación Pulmonar/fisiología
12.
Biomaterials ; 308: 122546, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552367

RESUMEN

Patients with cystic fibrosis (CF) experience severe lung disease, including persistent infections, inflammation, and irreversible fibrotic remodeling of the airways. Although therapy with transmembrane conductance regulator (CFTR) protein modulators reached optimal results in terms of CFTR rescue, lung transplant remains the best line of care for patients in an advanced stage of CF. Indeed, chronic inflammation and tissue remodeling still represent stumbling blocks during treatment, and underlying mechanisms are still unclear. Nowadays, animal models are not able to fully replicate clinical features of the human disease and the conventional in vitro models lack a stromal compartment undergoing fibrotic remodeling. To address this gap, we show the development of a 3D full-thickness model of CF with a human bronchial epithelium differentiated on a connective airway tissue. We demonstrated that the epithelial cells not only underwent mucociliary differentiation but also migrated in the connective tissue and formed gland-like structures. The presence of the connective tissue stimulated the pro-inflammatory behaviour of the epithelium, which activated the fibroblasts embedded into their own extracellular matrix (ECM). By varying the composition of the model with CF epithelial cells and a CF or healthy connective tissue, it was possible to replicate different moments of CF disease, as demonstrated by the differences in the transcriptome of the CF epithelium in the different conditions. The possibility to faithfully represent the crosstalk between epithelial and connective in CF through the full thickness model, along with inflammation and stromal activation, makes the model suitable to better understand mechanisms of disease genesis, progression, and response to therapy.


Asunto(s)
Tejido Conectivo , Fibrosis Quística , Células Epiteliales , Humanos , Fibrosis Quística/patología , Fibrosis Quística/metabolismo , Tejido Conectivo/patología , Tejido Conectivo/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Matriz Extracelular/metabolismo , Diferenciación Celular , Modelos Biológicos , Fibroblastos/metabolismo
13.
Sci Adv ; 10(9): eadk1814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427726

RESUMEN

Three distinct pharmacological corrector types (I, II, III) with different binding sites and additive behavior only partially rescue the F508del-cystic fibrosis transmembrane conductance regulator (CFTR) folding and trafficking defect observed in cystic fibrosis. We describe uniquely effective, macrocyclic CFTR correctors that were additive to the known corrector types, exerting a complementary "type IV" corrector mechanism. Macrocycles achieved wild-type-like folding efficiency of F508del-CFTR at the endoplasmic reticulum and normalized CFTR currents in reconstituted patient-derived bronchial epithelium. Using photo-activatable macrocycles, docking studies and site-directed mutagenesis a highly probable binding site and pose for type IV correctors was identified in a cavity between lasso helix-1 (Lh1) and transmembrane helix-1 of membrane spanning domain (MSD)-1, distinct from the known corrector binding sites. Since only F508del-CFTR fragments spanning from Lh1 until MSD2 responded to type IV correctors, these likely promote cotranslational assembly of Lh1, MSD1, and MSD2. Previously corrector-resistant CFTR folding mutants were also robustly rescued, suggesting substantial therapeutic potential for type IV correctors.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Mutación , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Sitios de Unión
14.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G555-G566, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349781

RESUMEN

Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Ratones , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Membrana Celular/metabolismo , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , Modelos Teóricos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiportadores/genética , Antiportadores/metabolismo
15.
Molecules ; 29(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38398574

RESUMEN

The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.


Asunto(s)
Aminopiridinas , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Indoles , Pirazoles , Piridinas , Pirrolidinas , Quinolonas , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Calidad de Vida , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Aminofenoles/farmacología , Aminofenoles/uso terapéutico , Mutación , Técnicas de Química Sintética
16.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396982

RESUMEN

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Sumoilación , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Citomegalovirus , Mutación , Sumoilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos
17.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336456

RESUMEN

Defective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration. Conditional silencing of YAP1 in rehydrated CF HAECs indicated that YAP1 expression was necessary for the maintenance of junctional complexes. A higher plasma membrane tension in CF HAECs reduced endocytosis, concurrent with the maintenance of active ß1-integrin ectopically located at the apical membrane. Pharmacological inhibition of ß1-integrin accumulation restored YAP1 expression in CF HAECs. These results indicate that dehydration of the CF ASL affects epithelial plasma membrane tension, resulting in ectopic activation of a ß1-integrin/YAP1 signaling pathway associated with degradation of junctional proteins.


Asunto(s)
Fibrosis Quística , Epitelio , Transducción de Señal , Humanos , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Deshidratación/metabolismo , Epitelio/metabolismo , Epitelio/patología , Integrina beta1/metabolismo , Mucosa Respiratoria/metabolismo
18.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339210

RESUMEN

The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.


Asunto(s)
Asma , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Trastornos Respiratorios , Humanos , Moco/metabolismo , Trastornos Respiratorios/metabolismo , Sistema Respiratorio/metabolismo , Fibrosis Quística/metabolismo , Asma/metabolismo , Esputo/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucinas/metabolismo
19.
Respir Res ; 25(1): 3, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172839

RESUMEN

Chronic lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis are incurable. Epithelial senescence, a state of dysfunctional cell cycle arrest, contributes to the progression of such diseases. Therefore, lung epithelial cells are a valuable target for therapeutic intervention. Here, we present a 3D airway lung organoid platform for the preclinical testing of active substances with regard to senescence, toxicity, and inflammation under standardized conditions in a 96 well format. Senescence was induced with doxorubicin and measured by activity of senescence associated galactosidase. Pharmaceutical compounds such as quercetin antagonized doxorubicin-induced senescence without compromising organoid integrity. Using single cell sequencing, we identified a subset of cells expressing senescence markers which was decreased by quercetin. Doxorubicin induced the expression of detoxification factors specifically in goblet cells independent of quercetin. In conclusion, our platform enables for the analysis of senescence-related processes and will allow the pre-selection of a wide range of compounds (e.g. natural products) in preclinical studies, thus reducing the need for animal testing.


Asunto(s)
Fibrosis Quística , Quercetina , Animales , Quercetina/metabolismo , Quercetina/farmacología , Senescencia Celular , Pulmón/metabolismo , Fibrosis Quística/metabolismo , Perfilación de la Expresión Génica , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Organoides/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L164-L174, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084406

RESUMEN

Cystic fibrosis (CF) results in a reduction in the volume of airway surface liquid, increased accumulation of viscous mucus, persistent antibiotic-resistant lung infections that cause chronic inflammation, and a decline in lung function. More than 50% of adults with CF are chronically colonized by Pseudomonas aeruginosa (P. aeruginosa), the primary reason for morbidity and mortality in people with CF (pwCF). Although highly effective modulator therapy (HEMT) is an important part of disease management in CF, HEMT does not eliminate P. aeruginosa or lung inflammation. Thus, new treatments are required to reduce lung infection and inflammation in CF. In a previous in vitro study, we demonstrated that primary human bronchial epithelial cells (HBECs) secrete extracellular vesicles (EVs) that block the ability of P. aeruginosa to form biofilms by reducing the abundance of several proteins necessary for biofilm formation as well as enhancing the sensitivity of P. aeruginosa to ß-lactam antibiotics. In this study, using a CF mouse model of P. aeruginosa infection, we demonstrate that intratracheal administration of EVs secreted by HBEC reduced P. aeruginosa lung burden and several proinflammatory cytokines including IFN-γ, TNF-α, and MIP-1ß in bronchoalveolar lavage fluid (BALF), even in the absence of antibiotics. Moreover, EVs decreased neutrophils in BALF. Thus, EVs secreted by HBEC reduce the lung burden of P. aeruginosa, decrease inflammation, and reduce neutrophils in a CF mouse model. These results suggest that HBEC via the secretion of EVs may play an important role in the immune response to P. aeruginosa lung infection.NEW & NOTEWORTHY Our findings show that extracellular vesicles secreted by primary human bronchial epithelial cells significantly reduce Pseudomonas aeruginosa burden, inflammation, and weight loss in a cystic fibrosis mouse model of infection.


Asunto(s)
Fibrosis Quística , Vesículas Extracelulares , Infecciones por Pseudomonas , Adulto , Humanos , Ratones , Animales , Fibrosis Quística/metabolismo , Pseudomonas aeruginosa/fisiología , Pulmón , Inflamación/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales , Vesículas Extracelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA