Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.287
Filtrar
1.
Phytomedicine ; 131: 155772, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852474

RESUMEN

BACKGROUND: Rheum palmatum, R. tanguticum, and R. officinale, integral species of the genus Rheum, are widely used across global temperate and subtropical regions. These species are incorporated in functional foods, medicines, and cosmetics, recognized for their substantial bioactive components. PURPOSE: This review aims to synthesize developments from 2014 to 2023 concerning the botanical characteristics, ethnopharmacology, nutritional values, chemical compositions, pharmacological activities, mechanisms of action, and toxicity of these species. METHODS: Data on the three Rheum species were gathered from a comprehensive review of peer-reviewed articles, patents, and clinical trials accessed through PubMed, Google Scholar, Web of Science, and CNKI. RESULTS: The aerial parts are nutritionally rich, providing essential amino acids, fatty acids, and minerals, suitable for use as health foods or supplements. Studies have identified 143 chemical compounds, including anthraquinones, anthrones, flavonoids, and chromones, which contribute to their broad pharmacological properties such as laxative, anti-diarrheal, neuroprotective, hepatoprotective, cardiovascular, antidiabetic, antitumor, anti-inflammatory, antiviral, and antibacterial effects. Notably, the materials science approach has enhanced understanding of their medicinal capabilities through the evaluation of bioactive compounds in different therapeutic contexts. CONCLUSION: As medicinal and economically significant herb species, Rheum species provide both edible aerial parts and medicinal underground components that offer substantial health benefits. These characteristics present new opportunities for developing nutritional ingredients and therapeutic products, bolstering the food and pharmaceutical industries.


Asunto(s)
Fitoquímicos , Rheum , Rheum/química , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Etnofarmacología
2.
Arch Microbiol ; 206(7): 294, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850339

RESUMEN

Antimicrobial resistance is a prevalent problem witnessed globally and creating an alarming situation for the treatment of infections caused by resistant pathogens. Available armaments such as antibiotics often fail to exhibit the intended action against resistant pathogens, leading to failure in the treatments that are causing mortality. New antibiotics or a new treatment approach is necessary to combat this situation. P. aeruginosa is an opportunistic drug resistant pathogen and is the sixth most common cause of nosocomial infections. P. aeruginosa due to its genome organization and other factors are exhibiting resistance against drugs. Bacterial biofilm formation, low permeability of outer membrane, the production of the beta-lactamase, and the production of several efflux systems limits the antibacterial potential of several classes of antibiotics. Combination of phytoconstituents with antibiotics is a promising strategy to combat multidrug resistant P. aeruginosa. Phytoconstituents such as flavonoids, terpenoids, alkaloids, polypeptides, phenolics, and essential oils are well known antibacterial agents. In this review, the activity of combination of the phytoconstituents and antibiotics, and their corresponding mechanism of action was discussed elaborately. The combination of antibiotics and plant-derived compounds exhibited better efficacy compared to antibiotics alone against the antibiotic resistance P. aeruginosa infections.


Asunto(s)
Antibacterianos , Biopelículas , Fitoquímicos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Fitoquímicos/farmacología , Fitoquímicos/química , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pruebas de Sensibilidad Microbiana
3.
Fitoterapia ; 176: 106051, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838826

RESUMEN

Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.


Asunto(s)
Terpenos , Terpenos/farmacología , Terpenos/química , Antiinflamatorios/farmacología , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Humanos , Antioxidantes/farmacología , Fitoquímicos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Animales , Estructura Molecular
4.
Drug Des Devel Ther ; 18: 1947-1968, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38831870

RESUMEN

In an era where synthetic supplements have raised concerns regarding their effects on human health, Ficus carica has emerged as a natural alternative rich in polyphenolic compounds with potent therapeutic properties. Various studies on F. carica focusing on the analysis and validation of its pharmacological and nutritional properties are emerging. This paper summarizes present data and information on the phytochemical, nutritional values, therapeutic potential, as well as the toxicity profile of F. carica. An extensive search was conducted from various databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. A total of 126 studies and articles related to F. carica that were published between 1999 and 2023 were included in this review. Remarkably, F. carica exhibits a diverse array of advantageous effects, including, but not limited to, antioxidant, anti-neurodegenerative, antimicrobial, antiviral, anti-inflammatory, anti-arthritic, antiepileptic, anticonvulsant, anti-hyperlipidemic, anti-angiogenic, antidiabetic, anti-cancer, and antimutagenic properties. Among the highlights include that antioxidants from F. carica were demonstrated to inhibit cholinesterase, potentially protecting neurons in Alzheimer's disease and other neurodegenerative conditions. The antimicrobial activities of F. carica were attributed to its high flavonoids and terpenoids content, while its virucidal action through the inhibition of DNA and RNA replication was postulated due to its triterpenes content. Inflammatory and arthritic conditions may also benefit from its anti-inflammatory and anti-arthritic properties through the modulation of various signalling proteins. Studies have also shown that F. carica extracts were generally safe and exhibit low toxicity profile, although more research in this aspect is required, specifically its effects on the skin. In conclusion, this study highlights the potential of F. carica as a valuable natural therapeutic agent and dietary supplement. However, continued exploration on F. carica's safety and efficacy is still required prior to embarking on clinical trials, as its role in personalized nutrition and medication will open a new paradigm to improve health outcomes.


Asunto(s)
Suplementos Dietéticos , Ficus , Ficus/química , Humanos , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación
5.
J Mass Spectrom ; 59(7): e5045, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38837562

RESUMEN

Soybean is scientifically known as Glycine max. It belongs to the Fabaceae family. It consists of a lot of bioactive phytochemicals like saponin, phenolic acid, flavonoid, sphingolipids and phytosterols. It also owns excellent immune-active effects in the physiological system. Soy and its phytochemicals have been found to have pharmacological properties that include anticancer, antioxidant, anti-hypercholesterolaemic, anti-diabetic, oestrogenic, anti-hyperlipidaemic, anti-inflammatory, anti-obesity, anti-hypertensive, anti-mutagenic, immunomodulatory, anti-osteoporotic, antiviral, hepatoprotective, antimicrobial, goitrogenic anti-skin ageing, wound healing, neuroprotective and anti-photoageing activities. Present study has been designed to set standard pharmacognostical extraction method, complexation of compounds, qualitative evaluation through phytochemical screening, identification by TLC, physicochemical properties, solubility profile, total phenolic, flavonoid content as well as analytical evaluation or characterisation like UV and FT-IR of methanolic extract of G. max. The final observations like physicochemical properties such as total ash value, LOD and pH were recorded. Phytochemical screenings show the presence of flavonoid, alkaloid, saponin, carbohydrate, tannins, protein, gums and mucilage, fixed oils and fats. The results were found significant. Further in silico studies proved creatinine and euparin to be potent wound healing agents.


Asunto(s)
Flavonoides , Glycine max , Fitoquímicos , Extractos Vegetales , Semillas , Espectrometría de Masas en Tándem , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem/métodos , Semillas/química , Glycine max/química , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Metanol/química , Simulación por Computador , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , Animales
6.
Mol Biol Rep ; 51(1): 759, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874818

RESUMEN

BACKGROUND: The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS: In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS: The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.


Asunto(s)
Colesterol 7-alfa-Hidroxilasa , Colesterol , Fagopyrum , Hidroximetilglutaril-CoA Reductasas , Metabolismo de los Lípidos , Fitoquímicos , Quercetina , Humanos , Fagopyrum/química , Fagopyrum/metabolismo , Células Hep G2 , Colesterol/metabolismo , Quercetina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Fitoquímicos/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Anticolesterolemiantes/farmacología , Simvastatina/farmacología , Extractos Vegetales/farmacología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos
7.
Molecules ; 29(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893452

RESUMEN

This study investigates the chemical composition, nutritional, and biological properties of extracts obtained from A. melanocarpa berries using different extraction methods and solvents. Hydrodistillation and supercritical fluid extraction with CO2 allowed us to isolate fruit essential oil (HDEX) and fixed oil (SFEEX), respectively. A phenol-enriched extract was obtained using a mild ultrasound-assisted maceration with methanol (UAMM). The HDEX most abundant component, using gas chromatography-mass spectrometry (GC/MS), was italicene epoxide (17.2%), followed by hexadecanoic acid (12.4%), khusinol (10.5%), limonene (9.7%), dodecanoic acid (9.7%), and (E)-anethole (6.1%). Linoleic (348.9 mg/g of extract, 70.5%), oleic (88.9 mg/g, 17.9%), and palmitic (40.8 mg/g, 8.2%) acids, followed by α-linolenic and stearic acids, were the main fatty acids in SFEEX determined using high-performance liquid chromatography coupled with a photodiode array detector and an evaporative light scattering detector (HPLC-DAD/ELSD). HPLC-DAD analyses of SFEEX identified ß-carotene as the main carotenoid (1.7 mg/g), while HPLC with fluorescence detection (FLU) evidenced α-tocopherol (1.2 mg/g) as the most abundant tocopherol isoform in SFEEX. Liquid chromatography-electrospray ionization-MS (LC-ESI-MS) analysis of UAMM showed the presence of quercetin-sulfate (15.6%, major component), malvidin 3-O-(6-O-p-coumaroyl) glucoside-4-vinylphenol adduct (pigment B) (9.3%), di-caffeoyl coumaroyl spermidine (7.6%), methyl-epigallocatechin (5.68%), and phloretin (4.1%), while flavonoids (70.5%) and phenolic acids (23.9%) emerged as the most abundant polyphenol classes. UAMM exerted a complete inhibition of the cholesterol oxidative degradation at 140 °C from 75 µg of extract, showing 50% protection at 30.6 µg (IA50). Furthermore, UAMM significantly reduced viability (31-48%) in A375 melanoma cells in the range of 500-2000 µg/mL after 96 h of incubation (MTT assay), with a low toxic effect in normal HaCaT keratinocytes. The results of this research extend the knowledge of the nutritional and biological properties of A. melanocarpa berries, providing useful information on specific extracts for potential food, cosmetic, and pharmaceutical applications.


Asunto(s)
Frutas , Photinia , Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Frutas/química , Photinia/química , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Ácidos Grasos/análisis , Ácidos Grasos/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Cromatografía de Gases y Espectrometría de Masas , Cromatografía Líquida de Alta Presión/métodos , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/análisis
8.
Mar Drugs ; 22(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38921551

RESUMEN

In this research, the chemical compositions of various extracts obtained from Ulva lactuca, a type of green seaweed collected from the Nador lagoon in the northern region of Morocco, were compared. Their antioxidant and anti-diabetic properties were also studied. Using GC-MS technology, the fatty acid content of the samples was analyzed, revealing that palmitic acid, eicosenoic acid, and linoleic acid were the most abundant unsaturated fatty acids present in all samples. The HPLC analysis indicated that sinapic acid, naringin, rutin, quercetin, cinnamic acid, salicylic acid, apigenin, flavone, and flavanone were the most prevalent phenolic compounds. The aqueous extract obtained by maceration showed high levels of polyphenols and flavonoids, with values of 379.67 ± 0.09 mg GAE/g and 212.11 ± 0.11 mg QE/g, respectively. This extract also exhibited an impressive ability to scavenge DPPH radicals, as indicated by its IC50 value of 0.095 ± 0.12 mg/mL. Additionally, the methanolic extract obtained using the Soxhlet method demonstrated antioxidant properties by preventing ß-carotene discoloration, with an IC50 of 0.087 ± 0.14 mg/mL. Results from in-vitro studies showed that extracts from U. lactuca were able to significantly inhibit the enzymatic activity of α-amylase and α-glucosidase. Among the various extracts, methanolic extract (S) has been identified as the most potent inhibitor, exhibiting a statistically similar effect to that of acarbose. Furthermore, molecular docking models were used to evaluate the interaction between the primary phytochemicals found in these extracts and the human pancreatic α-amylase and α-glucosidase enzymes. These findings suggest that U. lactuca extracts contain bioactive substances that are capable of reducing enzyme activity more effectively than the commercially available drug, acarbose.


Asunto(s)
Antioxidantes , Hipoglucemiantes , Fitoquímicos , Extractos Vegetales , Ulva , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Antioxidantes/farmacología , Antioxidantes/química , Ulva/química , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Marruecos , Humanos , Cromatografía Líquida de Alta Presión , Polifenoles/farmacología , Polifenoles/química , Flavonoides/farmacología , Flavonoides/química , Algas Comestibles
9.
Front Immunol ; 15: 1277074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915405

RESUMEN

Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, ß-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and ß-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.


Asunto(s)
Ajo , Ajo/química , Humanos , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Ácidos Sulfínicos/uso terapéutico , Ácidos Sulfínicos/farmacología , Disulfuros
10.
Med Oncol ; 41(8): 186, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918260

RESUMEN

This comprehensive review delves into the multifaceted aspects of genipin, a bioactive compound derived from medicinal plants, focusing on its anti-cancer potential. The review begins by detailing the sources and phytochemical properties of genipin, underscoring its significance in traditional medicine and its transition into contemporary cancer research. It then explores the intricate relationship between genipin's chemical structure and its observed anti-cancer activity, highlighting the molecular underpinnings contributing to its therapeutic potential. This is complemented by a thorough analysis of preclinical studies, which investigates genipin's efficacy against various cancer cell lines and its mechanisms of action at the cellular level. A crucial component of the review is the examination of genipin's bioavailability and pharmacokinetics, providing insights into how the compound is absorbed, distributed, metabolized, and excreted in the body. Then, this review offers a general and updated overview of the anti-cancer studies of genipin and its derivatives based on its basic molecular mechanisms, induction of apoptosis, inhibition of cell proliferation, and disruption of cancer cell signaling pathways. We include information that complements the genipin study, such as toxicity data, and we differentiate this review by including commercial status, disposition, and regulation. Also, this review of genipin stands out for incorporating information on proposals for a technological approach through its load in nanotechnology to improve its bioavailability. The culmination of this information positions genipin as a promising candidate for developing novel anti-cancer drugs capable of supplementing or enhancing current cancer therapies.


Asunto(s)
Iridoides , Neoplasias , Humanos , Iridoides/farmacología , Iridoides/química , Iridoides/uso terapéutico , Neoplasias/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/química , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Apoptosis/efectos de los fármacos
11.
Asian Pac J Cancer Prev ; 25(6): 2069-2075, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38918669

RESUMEN

OBJECTIVE: Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. Oral carcinogenesis is a complex, multistep process in which genetic events within signal transduction pathways governing normal cellular physiology are quantitatively or qualitatively altered. There are various molecular targets like Cyclin D and PI3k- alpha Ras Binding Domain receptor protein involved in the pathogenesis of Oral Squamous Cell Carcinoma. The aim of the study is to demonstrate the computer aided drug design to identify a potent natural molecule for targeting cyclin D4 and PI3K RAS binding protein. MATERIALS AND METHODS: Target selection (Cyclin D1 and PI3K-alpha Ras Binding Domain receptor) was done and structures were derived from protein data bank. Ligands (Apigenin, Chrysoeriol and Luteolin) selection was done and structure derived. Final docking was performed by Autodock. RESULTS: From the docking results it can be seen that luteolin has the highest binding energy (-5.45) with the Cyclin D receptor molecule followed by Chrysoeriol (-4.99) and Apigenin (-4.96). The binding energies of the ligands against PI3K-alpha Ras Binding Domain receptors were Apigenin (-4.51), Chrysoeriol (-4.6) and Luteolin (-4.56). CONCLUSION: The study concludes that all the three selected ligands possess high binding energy with both the target proteins involved in carcinogenesis with highest binding energy possessed by Luteolin against the Cyclin D receptor and by Chrysoeriol against PI3K-RAS binding protein. Thus their activity can be utilized to derive potential Anti-cancer therapeutic drugs.


Asunto(s)
Simulación del Acoplamiento Molecular , Neoplasias de la Boca , Fitoquímicos , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Fitoquímicos/farmacología , Fitoquímicos/química , Ligandos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Ciclina D1/metabolismo , Apigenina/farmacología , Apigenina/química , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Luteolina/farmacología , Luteolina/química , Simulación por Computador
12.
BMC Complement Med Ther ; 24(1): 223, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851735

RESUMEN

BACKGROUND: The historical use of Laurus nobilis L., the plant is native to the Mediterranean region and has been cultivated for its aromatic leaves, which are used as a flavoring agent in cooking and for their potential therapeutic properties. METHODS: The purpose of the current investigation was to characterize the essential oil composition of the fresh L. nobilis leaves from Palestine by using the gas chromatography-mass spectrometry (GC-MS) technique. DPPH (2,2-diphenyl-1-picrylhydrazyl), p-nitrophenyl butyrate, and 3,5-dinitro salicylic acid (DNSA) methods were employed to estimate the antioxidant, antiobesity, and antidiabetic effects of the essential oil. While MTS assay were used to evaluate their antiproliferative activities on panels of cell lines. Moreover, the docking studies were aided by the Prime MM GBSA method for estimating binding affinities. RESULTS: The GC-MS investigation demonstrated that the fresh L. nobilis leaves essential oil has a variety of chemicals, about 31 different biochemicals were identified, and the major compounds were 1,8-cineole (48.54 ± 0.91%), terpinyl acetate (13.46 ± 0.34%), and α-terpinyl (3.84 ± 0.35%). Furthermore, the investigated oil demonstrated broad-spectrum antimicrobial activity against all tested bacterial and candidal strains and significantly inhibited the growth of MCF-7 cancerous cells more than the chemotherapeutic drug Doxorubicin. Furthermore, it contains robust DPPH free radicals, as well as porcine pancreatic α-amylase and lipase enzymes. Using the 1,8-cineole compound as the predominant biomolecule found in the L. nobilis essential oil, molecular docking studies were performed to confirm these observed fabulous results. The molecular docking simulations proposed that these recorded biological activities almost emanated from its high ability to form strong and effective hydrophobic interactions, this led to the getting of optimal fitting and interaction patterns within the binding sites of the applied crystallographic protein targets. CONCLUSION: The results of these experiments showed that the fresh L. nobilis leaves essential oil has outstanding pharmacological capabilities, making this oil a potential source of natural medications.


Asunto(s)
Laurus , Simulación del Acoplamiento Molecular , Aceites Volátiles , Fitoquímicos , Hojas de la Planta , Aceites Volátiles/farmacología , Aceites Volátiles/química , Hojas de la Planta/química , Humanos , Laurus/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antioxidantes/farmacología , Antioxidantes/química , Medio Oriente , Cromatografía de Gases y Espectrometría de Masas , Línea Celular Tumoral
13.
Planta Med ; 90(7-08): 631-640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843801

RESUMEN

Many polyprenylated acylphloroglucinols with fascinating chemical structures and intriguing biological activities have been identified as key to phytochemicals isolated from Garcinia, Hypericum, and related genera. In the present work, two chiral, tautomeric, highly-oxygenated polyprenylated acylphloroglucinols tethered with acyl and prenyl moieties on a bicyclo[3.3.1]nonanetrione core were isolated from the 95% ethanolic extract of Garcinia gummi-gutta fruit. The structures of both compounds were elucidated based on the NMR and MS data with ambiguity in the exact position of the enol and keto functions at C-1 and C-3 of the core structure. The structures of both polyprenylated acylphloroglucinols were established as a structurally revised guttiferone J and the new iso-guttiferone J with the aid of gauge-independent atomic orbital NMR calculations, CP3 probability analyses, specific rotation calculations, and electronic circular dichroism calculations in combination with the experimental data. The structures of both compounds resemble hyperforin, a potent activator of the human pregnane X receptor. As expected, both compounds showed strong pregnane X receptor activation at 10 µM [7.1-fold (guttiferone J) and 5.0-fold (iso-guttiferone J)], explained by a molecular docking study, necessitating further in-depth investigation to substantiate the herb-drug interaction potential of G. gummi-gutta upon co-administration with pharmaceutical drugs.


Asunto(s)
Garcinia , Espectroscopía de Resonancia Magnética , Garcinia/química , Estructura Molecular , Frutas/química , Benzofenonas/química , Benzofenonas/aislamiento & purificación , Benzofenonas/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/farmacología , Floroglucinol/química , Floroglucinol/aislamiento & purificación , Humanos
14.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791412

RESUMEN

Eczema (atopic dermatitis, AD) is a skin disease characterized by skin barrier dysfunction due to various factors, including genetics, immune system abnormalities, and environmental triggers. Application of emollients and topical drugs such as corticosteroids and calcineurin inhibitors form the mainstay of treatments for this challenging condition. This review aims to summarize the recent advances made in phytochemical-based topical applications to treat AD and the different carriers that are being used. In this review, the clinical efficacy of several plant extracts and bioactive phytochemical compounds in treating AD are discussed. The anti-atopic effects of the herbs are evident through improvements in the Scoring Atopic Dermatitis (SCORAD) index, reduced epidermal thickness, decreased transepidermal water loss, and alleviated itching and dryness in individuals affected by AD as well as in AD mouse models. Histopathological studies and serum analyses conducted in AD mouse models demonstrated a reduction in key inflammatory factors, including thymic stromal lymphopoietin (TSLP), serum immunoglobulin E (IgE), and interleukins (IL). Additionally, there was an observed upregulation of the filaggrin (FLG) gene, which regulates the proteins constituting the stratum corneum, the outermost layer of the epidermis. Carriers play a crucial role in topical drug applications, influencing dose delivery, retention, and bioavailability. This discussion delves into the efficacy of various nanocarriers, including liposomes, ethosomes, nanoemulsions, micelles, nanocrystals, solid-lipid nanoparticles, and polymeric nanoparticles. Consequently, the potential long-term side effects such as atrophy, eruptions, lymphoma, pain, and allergic reactions that are associated with current topical treatments, including emollients, topical corticosteroids, topical calcineurin inhibitors, and crisaborole, can potentially be mitigated through the use of phytochemical-based natural topical treatments.


Asunto(s)
Eccema , Proteínas Filagrina , Fitoquímicos , Humanos , Animales , Fitoquímicos/administración & dosificación , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Eccema/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Administración Tópica , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología
15.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791385

RESUMEN

Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.


Asunto(s)
Estrés Oxidativo , Fitoquímicos , Extractos Vegetales , Thymus (Planta) , Thymus (Planta)/química , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis , Células CACO-2 , Células Hep G2 , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Flavonoides/farmacología , Flavonoides/química , Flavonoides/análisis , Biomarcadores
16.
17.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792128

RESUMEN

The main varieties of Echinopsis Radix recorded in the Chinese Pharmacopoeia are the roots of Echinops latifolius Tausch or Echinops grijsii Hance. However, the chemical constituents and biological activities of this herb have not been reviewed. In order to clarify the chemical constituents of the main varieties of this herb and improve the quality of Chinese medicinal material resources, this paper systematically reviewed their chemical constituents and related biological activities. Phytochemical investigations reveal eighty-five compounds including fort y-nine thiophenes (1-49), eight flavonoids (50-57), seven caffeic acids and its derivatives (58-64), eight sesquiterpenoids (65-72), and thirteen triterpenoids and other compounds (73-85) were reported from Echinopsis Radix. The review of biological activities suggests that thiophenes are the main secondary metabolites of the medicinal material which exert antitumor, insecticidal and antifungal activities. In addition, caffeic acid and its derivatives and sesquiterpenes are potential active ingredients worthy of further study. This review provides an important scientific basis for the development of active ingredients and resource quality evaluation of Echinopsis Radix.


Asunto(s)
Fitoquímicos , Fitoquímicos/química , Fitoquímicos/farmacología , Echinops (Planta)/química , Humanos , Raíces de Plantas/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Flavonoides/química , Flavonoides/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología
18.
Molecules ; 29(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792130

RESUMEN

Lycium ruthenicum Murray possesses significant applications in both food and medicine, including antioxidative, anti-tumor, anti-fatigue, anti-inflammatory, and various other effects. Consequently, there has been a surge in research endeavors dedicated to exploring its potential benefits, necessitating the organization and synthesis of these findings. This article systematically reviews the extraction and content determination methods of active substances such as polysaccharides, anthocyanins, flavonoids, and polyphenols in LRM in the past five years, as well as some active ingredient composition determination methods, biological activities, and product development. This review is divided into three main parts: extraction and determination methods, their bioactivity, and product development. Building upon prior research, we also delve into the economic and medicinal value of Lycium ruthenicum Murray, thereby contributing significantly to its further exploration and development. It is anticipated that this comprehensive review will serve as a valuable resource for advancing research on Lycium ruthenicum Murray.


Asunto(s)
Lycium , Extractos Vegetales , Lycium/química , Extractos Vegetales/química , Antocianinas/química , Humanos , Flavonoides/química , Antioxidantes/química , Antioxidantes/farmacología , Polifenoles/química , Fitoquímicos/química , Fitoquímicos/farmacología , Polisacáridos/química
19.
Nutrients ; 16(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732642

RESUMEN

Vernonia cinerea (L.) Less. is a perennial herbaceous plant found mainly in tropical areas, particularly in Southeast Asia, South America, and India. Various parts of V. cinerea have traditionally been used in folk medicine to treat several diseases, such as malaria, fever, and liver diseases. V. cinerea has so far yielded about 92 secondary metabolites. The majority of these are sesquiterpene lactones, but triterpenes, flavonoids, steroids, phenolics, and other compounds are present as well. V. cinerea crude extracts reportedly exhibit anti-inflammatory, antiprotozoal, antidiabetic, anticancer, antimicrobial, antioxidant, and renoprotective activities. This study aims to provide the latest up-to-date information on the botanical characterization, distribution, traditional uses, phytochemistry, and pharmacological activity of V. cinerea. Information on V. cinerea was thoroughly reviewed. The literature published between 1950 and 2024 was compiled through online bibliographic databases, including SciFinder, Web of Science, Google Scholar, PubMed, ScienceDirect, Springer Link, Wiley, and the MDPI online library. The keywords used for the literature search included Vernonia cinerea (L.) Less. and the synonyms Cyanthillium cinereum (L.) H.Rob., Conyza cinerea L., and various others.


Asunto(s)
Medicina Tradicional , Fitoquímicos , Extractos Vegetales , Vernonia , Vernonia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Fitoquímicos/farmacología , Fitoterapia , Animales , América del Sur , Asia Sudoriental
20.
Phytomedicine ; 129: 155681, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718638

RESUMEN

BACKGROUND: Infertility patients account for an astonishing proportion of individuals worldwide. Due to its complex etiology and challenging treatment, infertility has imposed significant psychological and economic burdens on many patients. C. Herba (Cistanche tubulosa (Schenk) Wight and Cistanche deserticola Ma), renowned as one of the most prominent Chinese herbal medicines (CHMs), is abundant in diverse bioactive compounds that exhibit therapeutic effects on many diseases related to oxidative stress (OS) and disorders of sex hormone levels. OBJECTIVE: Due to the limited drugs currently used in clinical practice to improve reproductive outcomes and their inevitable side effects, developing safe and effective new medications for infertility is of significance. This article comprehensively reviewed the phytochemicals of C. Herba, focusing on their efficacy and mechanisms on infertility and their safety for the first time, aiming to offer valuable insights for the development and application of C. Herba, and for developing novel strategies for treating infertility. METHODS: We used "Cistanche" and its known bioactive components in combination with "sperm", "testicles", "epididymis", "ovaries", "uterus", and "infertility" as keywords to search in PubMed, Web of Science, Scopus and CNKI up to November 2023. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guideline was followed. RESULTS: The therapeutic effects of C. Herba on infertility are mainly attributed to echinacoside (ECH), verbascoside (VB), salidroside (SAL), polysaccharides, and betaine. They can effectively improve spermatogenic dysfunction, gonadal dysfunction and erectile dysfunction (ED) by exerting anti-oxidation, sex hormones regulation and anti-hypoxia. Moreover, they can also improve premature ovarian failure (POF), ovarian and uterine cancer, oocyte maturation by exerting anti-oxidation, anti-apoptosis, and anti-cancer. C. Herba and its active ingredients also exhibit pleasing safety. CONCLUSION: C. Herba is a promising source of natural medicine for infertility. Additionally, compared to current therapeutic drugs, its favorable safety also supports its development as a nutritional supplement. However, high-quality clinical studies are required to validate its effectiveness for the development of novel therapeutic strategies.


Asunto(s)
Cistanche , Medicamentos Herbarios Chinos , Animales , Femenino , Humanos , Masculino , Cistanche/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Glucósidos/farmacología , Glucósidos/uso terapéutico , Glicósidos , Infertilidad/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Fenoles/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Polifenoles , Reproducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA