Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
ACS Nano ; 18(21): 13683-13695, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749906

RESUMEN

Tumor metastases and reoccurrence are considered the leading causes of cancer-associated deaths. As an emerging therapeutic method, increasing research efforts have been devoted to immunogenic cell death (ICD)-inducing compounds to solve the challenge. The clinically approved chemotherapeutic Pt complexes are not or are only poorly able to trigger ICD. Herein, the axial functionalization of the Pt(II) complex cisplatin with perfluorocarbon chains into ICD-inducing Pt(IV) prodrugs is reported. Strikingly, while the Pt(II) complex as well as the perfluorocarbon ligands did not induce ICD, the Pt(IV) prodrug demonstrated unexpectantly the induction of ICD through accumulation in the endoplasmic reticulum and generation of reactive oxygen species in this organelle. To enhance the pharmacological properties, the compound was encapsulated with human serum albumin into nanoparticles. While selectively accumulating in the tumorous tissue, the nanoparticles demonstrated a strong tumor growth inhibitory effect against osteosarcoma inside a mouse model. In vivo tumor vaccine analysis also demonstrated the ability of Pt(IV) to be an ideal ICD inducer. Overall, this study reports on axially perfluorocarbon chain-modified Pt(IV) complexes for ICD induction and chemoimmunotherapy in osteosarcoma.


Asunto(s)
Antineoplásicos , Fluorocarburos , Inmunoterapia , Albúmina Sérica Humana , Fluorocarburos/química , Fluorocarburos/farmacología , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Albúmina Sérica Humana/química , Cisplatino/farmacología , Cisplatino/química , Línea Celular Tumoral , Nanopartículas/química , Profármacos/química , Profármacos/farmacología , Proliferación Celular/efectos de los fármacos , Platino (Metal)/química , Platino (Metal)/farmacología , Ratones Endogámicos BALB C , Muerte Celular Inmunogénica/efectos de los fármacos
2.
Cell Biochem Funct ; 42(4): e4060, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816947

RESUMEN

Perfluorooctane sulfonate (PFOS) is a pervasive organic toxicant that damages body organs, including heart. Isosakuranetin (ISN) is a plant-based flavonoid that exhibits a broad range of pharmacological potentials. The current investigation was conducted to evaluate the potential role of ISN to counteract PFOS-induced cardiac damage in rats. Twenty-four albino rats (Rattus norvegicus) were distributed into four groups, including control, PFOS (10 mg/kg) intoxicated, PFOS + ISN (10 mg/kg + 20 mg/kg) treated, and ISN (20 mg/kg) alone supplemented group. It was revealed that PFOS intoxication reduced the expressions of Nrf-2 and its antioxidant genes while escalating the expression of Keap-1. Furthermore, PFOS exposure reduced the activities of glutathione reductase (GSR), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), Heme oxygenase-1 (HO-1) and glutathione (GSH) contents while upregulating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Besides, PFOS administration upregulated the levels of creatine kinase-MB (CK-MB), troponin I, creatine phosphokinase (CPK), and lactate dehydrogenase (LDH). Moreover, the levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were increased after PFOS intoxication. Additionally, PFOS exposure downregulated the expression of Bcl-2 while upregulating the expressions of Bax and Caspase-3. Furthermore, PFOS administration disrupted the normal architecture of cardiac tissues. Nonetheless, ISN treatment remarkably protected the cardiac tissues via regulating aforementioned dysregulations owing to its antioxidative, anti-inflammatory, and antiapoptotic properties.


Asunto(s)
Ácidos Alcanesulfónicos , Apoptosis , Fluorocarburos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Animales , Ratas , Ácidos Alcanesulfónicos/farmacología , Ácidos Alcanesulfónicos/toxicidad , Apoptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Fluorocarburos/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Flavonas/farmacología
3.
Colloids Surf B Biointerfaces ; 239: 113961, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749169

RESUMEN

Breast cancer, the predominant malignancy afflicting women, continues to pose formidable challenges despite advancements in therapeutic interventions. This study elucidates the potential of phototherapy, comprising both photothermal and photodynamic therapy (PTT/PDT), as a novel and promising modality. To achieve this goal, we devised liposomes coated with macrophage cell membranes including macrophage-associated membrane proteins, which have demonstrated promise in biomimetic delivery systems for targeting tumors while preserving their inherent tumor-homing capabilities. This integrated biomimetic delivery system comprised IR780, NONOate, and perfluorocarbon. This strategic encapsulation aims to achieve a synergistic combination of photodynamic therapy (PDT) and reactive nitrogen species (RNS) therapy. Under near-infrared laser irradiation at 808 nm, IR780 demonstrates its ability to prolifically generate reactive oxygen species (ROS), including superoxide anion (O2•-), singlet oxygen, and hydroxyl radical (·OH). Simultaneously, NONOate releases nitric oxide (NO) gas upon the same laser irradiation, thereby engaging with IR780-induced ROS to facilitate the formation of peroxynitrite anion (ONOO-), ultimately inducing programmed cell death in cancer cells. Additionally, the perfluorocarbon component of our delivery system exhibits a notable affinity for oxygen and demonstrates efficient oxygen-carrying capabilities. Our results demonstrate that IR780-NO-PFH-Lip@M significantly enhances breast cancer cell toxicity, reducing proliferation and in vivo tumor growth through simultaneous heat, ROS, and RNS production. This study contributes valuable insights to the ongoing discourse on innovative strategies for advancing cancer therapeutics.


Asunto(s)
Neoplasias de la Mama , Liposomas , Macrófagos , Fotoquimioterapia , Especies de Nitrógeno Reactivo , Liposomas/química , Femenino , Animales , Especies de Nitrógeno Reactivo/metabolismo , Ratones , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Proliferación Celular/efectos de los fármacos , Fluorocarburos/química , Fluorocarburos/farmacología , Indoles/química , Indoles/farmacología , Supervivencia Celular/efectos de los fármacos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ratones Endogámicos BALB C , Fototerapia/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Propiedades de Superficie , Células RAW 264.7 , Tamaño de la Partícula
4.
ACS Appl Mater Interfaces ; 16(17): 21582-21594, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634578

RESUMEN

Excessive blood loss and infections are the prominent risks accounting for mortality and disability associated with acute wounds. Consequently, wound dressings should encompass adequate adhesive, hemostatic, and bactericidal attributes, yet their development remains challenging. This investigation presented the benefits of incorporating a perfluorocarbon nanoemulsion (PPP NE) into a silk-fibroin (SF)-based hydrogel. By stimulating the ß-sheet conformation of the SF chains, PPP NEs drastically shortened the gelation time while augmenting the elasticity, mechanical stability, and viscosity of the hydrogel. Furthermore, the integration of PPP NEs improved hemostatic competence by boosting the affinity between cells and biomacromolecules. It also endowed the hydrogel with ultrasound-controlled bactericidal ability through the inducement of inner cavitation by perfluorocarbon and reactive oxygen species (ROS) generated by the sonosensitizer protoporphyrin. Ultimately, we employed a laparotomy bleeding model and a Staphylococcus aureus-infected trauma wound to demonstrate the first-aid efficacy. Thus, our research suggested an emulsion-incorporating strategy for managing emergency wounds.


Asunto(s)
Antibacterianos , Emulsiones , Fibroínas , Fluorocarburos , Hidrogeles , Staphylococcus aureus , Fluorocarburos/química , Fluorocarburos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Emulsiones/química , Emulsiones/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Fibroínas/química , Fibroínas/farmacología , Ratones , Hemostáticos/química , Hemostáticos/farmacología , Nanopartículas/química , Infecciones Estafilocócicas/tratamiento farmacológico , Ondas Ultrasónicas , Masculino , Ratas , Humanos
5.
ACS Appl Mater Interfaces ; 16(17): 21557-21570, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648555

RESUMEN

We report the synthesis of biocompatible perfluorinated micelles designed to improve radiotherapeutic efficacy in a radioresistant tumor environment. In vitro and in vivo behaviors of perfluorinated micelles were assessed at both cellular and tissular levels. The micellar platform offers key advantages as theranostic tool: (i) small size, allowing deep tissue penetration; (ii) oxygen transport to hypoxic tissues; (iii) negligible toxicity in the absence of ionizing radiation; (iv) internalization into cancer cells; (v) potent radiosensitizing effect; and (vi) excellent tumor-targeting properties, as monitored by positron emission tomography. We have demonstrated strong in vitro radiosensitizing effects of the micelle and in vivo tumor targeting, making this nanometric carrier a promising tool for the potentiation of focused radiotherapy.


Asunto(s)
Micelas , Tomografía de Emisión de Positrones , Fármacos Sensibilizantes a Radiaciones , Nanomedicina Teranóstica , Animales , Humanos , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/síntesis química , Ratones , Línea Celular Tumoral , Fluorocarburos/química , Fluorocarburos/farmacología , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología
6.
ACS Appl Bio Mater ; 7(5): 3306-3315, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38634490

RESUMEN

Photodynamic therapy (PDT) and ferroptosis show significant potential in tumor treatment. However, their therapeutic efficacy is often hindered by the oxygen-deficient tumor microenvironment and the challenges associated with efficient intracellular drug delivery into tumor cells. Toward this end, this work synthesized perfluorocarbon (PFC)-modified Pluronic F127 (PFC-F127), and then exploits it as a carrier for codelivery of photosensitizer Chlorin e6 (Ce6) and the ferroptosis promoter sorafenib (Sor), yielding an oxygen self-supplying nanoplatform denoted as Ce6-Sor@PFC-F127. The PFCs on the surface of the micelle play a crucial role in efficiently solubilizing and delivering oxygen as well as increasing the hydrophobicity of the micelle surface, giving rise to enhanced endocytosis by cancer cells. The incorporation of an oxygen-carrying moiety into the micelles enhances the therapeutic impact of PDT and ferroptosis, leading to amplified endocytosis and cytotoxicity of tumor cells. Hypotonic saline technology was developed to enhance the cargo encapsulation efficiency. Notably, in a murine tumor model, Ce6-Sor@PFC-F127 effectively inhibited tumor growth through the combined use of oxygen-enhanced PDT and ferroptosis. Taken together, this work underscores the promising potential of Ce6-Sor@PFC-F127 as a multifunctional therapeutic nanoplatform for the codelivery of multiple cargos such as oxygen, photosensitizers, and ferroptosis inducers.


Asunto(s)
Antineoplásicos , Clorofilidas , Ensayos de Selección de Medicamentos Antitumorales , Ferroptosis , Fluorocarburos , Micelas , Oxígeno , Fotoquimioterapia , Fármacos Fotosensibilizantes , Ferroptosis/efectos de los fármacos , Fluorocarburos/química , Fluorocarburos/farmacología , Animales , Ratones , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Humanos , Oxígeno/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Ensayo de Materiales , Tamaño de la Partícula , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Porfirinas/química , Porfirinas/farmacología , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Sorafenib/química , Sorafenib/farmacología , Sorafenib/administración & dosificación , Poloxámero/química , Línea Celular Tumoral , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Estructura Molecular
7.
J Control Release ; 369: 39-52, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508523

RESUMEN

The emergence of multidrug-resistant bacteria along with their resilient biofilms necessitates the development of creative antimicrobial remedies. We designed versatile fluorinated polymer micelles with surface-charge-switchable properties, demonstrating enhanced efficacy against Methicillin-Resistant Staphylococcus Aureus (MRSA) in planktonic and biofilm states. Polymethacrylate diblock copolymers with pendant fluorocarbon chains and carboxyl betaine groups were prepared using reversible addition-fragmentation chain transfer polymerization. Amphiphilic fluorinated copolymers self-assembled into micelles, encapsulating ciprofloxacin in their cores (CIP@FCBMs) for antibacterial and antibiofilm applications. As a control, fluorine-free copolymer micelles loaded with ciprofloxacin (CIP@BCBMs) were prepared. Although both CIP@FCBMs and CIP@BCBMs exhibited pH-responsive surface charges and lipase-triggered drug release, CIP@FCBMs exhibited powerful antimicrobial and antibiofilm activities in vitro and in vivo, attributed to superior serum stability, higher drug loading, enhanced fluorination-facilitated cellular uptake, and lipase-triggered drug release. Collectively, reversing surface charge, on-demand antibiotic release, and fluorination-mediated nanoparticles hold promise for treating bacterial infections and biofilms.


Asunto(s)
Antibacterianos , Betaína , Biopelículas , Ciprofloxacina , Lipasa , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Biopelículas/efectos de los fármacos , Lipasa/metabolismo , Concentración de Iones de Hidrógeno , Animales , Betaína/química , Betaína/administración & dosificación , Betaína/análogos & derivados , Infecciones Estafilocócicas/tratamiento farmacológico , Ciprofloxacina/farmacología , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Fluorocarburos/química , Fluorocarburos/farmacología , Micelas , Liberación de Fármacos , Polímeros/química , Humanos , Ácidos Polimetacrílicos/química
8.
Chem Res Toxicol ; 37(1): 98-108, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150050

RESUMEN

Hexafluoropropylene oxide dimer acid (HFPO-DA; trade name GenX), as a substitute for perfluorooctanoic acid (PFOA), has been attracting increasing attention. However, its impact and corresponding mechanism on hepatic lipid metabolism are less understood. To investigate the possible mechanisms of GenX for hepatotoxicity, a series of in vivo and in vitro experiments were conducted. In in vivo experiment, male mice were exposed to GenX in drinking water at environmental concentrations (0.1 and 10 µg/L) and high concentrations (1 and 100 mg/L) for 14 weeks. In in vitro experiments, human hepatocellular carcinoma cells (HepG2) were exposed to GenX at 10, 160, and 640 µM for 24 and 48 h. GenX exposure via drinking water resulted in liver damage and disruption of lipid metabolism even at environmental concentrations. The results of triglycerides (TG) and total cholesterol (TC) in this study converged with the results of the population study, for which TG increased in the liver but unchanged in the serum, whereas TC increased in both liver and serum concentrations. KEGG and GO analyses revealed that the hepatotoxicity of GenX was associated with fatty acid transport, synthesis, and oxidation pathways and that Peroxisome Proliferator-Activated Receptor (PPARα) contributed significantly to this process. PPARα inhibitors significantly reduced the expression of CD36, CPT1ß, PPARα, SLC27A1, ACOX1, lipid droplets, and TC, suggesting that GenX exerts its toxic effects through PPARα signaling pathway. In general, GenX at environmental concentrations in drinking water causes abnormal lipid metabolism via PPARα signaling pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Agua Potable , Fluorocarburos , Propionatos , Ratones , Masculino , Humanos , Animales , Metabolismo de los Lípidos , PPAR alfa/farmacología , Agua Potable/análisis , Fluorocarburos/farmacología , Hígado , Transducción de Señal
9.
Int Ophthalmol ; 43(12): 5025-5030, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37864619

RESUMEN

PURPOSE: To prospectively assess the effect of regular application of perfluorohexyloctane (F6H8; Evotears®) on the tear film lipid layer, higher order aberrations (HOA) and the repeatability of measurements in healthy eyes. METHODS: This prospective clinical study included 104 eyes treated with F6H8 four times daily for four weeks (group A) and 101 eyes that served as controls (group B). Measurements were performed with the WASCA aberrometer (Carl Zeiss Meditec GmbH, Jena, Germany). Main outcome measurement in addition to subjective refraction were the root mean square values of HOA measured before and after the intervention. RESULTS: Regular use of F6H8 over a period of four weeks significantly increases HOA in healthy eyes (p < 0.05). In addition, the repeatability of measurement increases after the application of F6H8. CONCLUSION: F6H8 may be a suitable treatment option to improve the accuracy of refractive assessment, although it increases HOA. Further studies are needed to confirm the effect on HOA and the repeatability of measurement.


Asunto(s)
Córnea , Fluorocarburos , Humanos , Estudios Prospectivos , Refracción Ocular , Fluorocarburos/farmacología
10.
Environ Res ; 239(Pt 1): 117372, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827365

RESUMEN

Perfluorooctanoic acid (PFOA) is a highly persistent and widespread chemical in the environment with endocrine disruption effects. Although it has been reported that PFOA can affect multiple aspects of thyroid function, the exact mechanism by which it reduces thyroxine levels has not yet been elucidated. In this study, FRTL-5 rat thyroid follicular cells were used as a model to study the toxicity of PFOA to the genes related to thyroid hormone synthesis and their regulatory network. Our results reveal that PFOA interfered with the phosphorylation of the cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) induced by thyroid-stimulating hormone (TSH), as well as the transcription levels of paired box 8 (PAX8), thyroid transcription factor 1 (TTF1), sodium/iodide cotransporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO). However, the above outcomes can be alleviated by enhancing cAMP production with forskolin treatment. Further investigations showed that PFOA reduced the mRNA level of TSH receptor (TSHR) and impaired its N-glycosylation, suggesting that PFOA has disrupting effects on both transcriptional regulation and post-translational regulation. In addition, PFOA increased endoplasmic reticulum (ER) stress and decreased ER mass in FRTL-5 cells. Based on these findings, it can be inferred that PFOA disrupts the TSH-activated cAMP signaling pathway by inhibiting TSHR expression and its N-glycosylation. We propose that this mechanism may contribute to the decrease in thyroid hormone levels caused by PFOA. Our study sheds light on the molecular mechanism by which PFOA can disrupt thyroid function and provides new insights and potential targets for interventions to counteract the disruptive effects of PFOA.


Asunto(s)
Caprilatos , Fluorocarburos , Receptores de Tirotropina , Glándula Tiroides , Tirotropina , Fluorocarburos/farmacología , Caprilatos/farmacología , Glándula Tiroides/efectos de los fármacos , Transducción de Señal , Animales , Ratas , Tirotropina/metabolismo , Receptores de Tirotropina/metabolismo , Procesamiento Proteico-Postraduccional , Glicosilación , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica/efectos de los fármacos , Línea Celular
11.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175700

RESUMEN

The efficacy of photodynamic therapy (PDT) strictly depends on the availability of molecular oxygen to trigger the light-induced generation of reactive species. Fluorocarbons have an increased ability to dissolve oxygen and are attractive tools for gas delivery. We synthesized three fluorous derivatives of chlorin with peripheral polyfluoroalkyl substituents. These compounds were used as precursors for preparing nanoemulsions with perfluorodecalin as an oxygen depot. Therefore, our formulations contained hydrophobic photosensitizers capable of absorbing monochromatic light in the long wavelength region and the oxygen carrier. These modifications did not alter the photosensitizing characteristics of chlorin such as the generation of singlet oxygen, the major cytocidal species in PDT. Emulsions readily entered HCT116 colon carcinoma cells and accumulated largely in mitochondria. Illumination of cells loaded with emulsions rapidly caused peroxidation of lipids and the loss of the plasma membrane integrity (photonecrosis). Most importantly, in PDT settings, emulsions potently sensitized cells cultured under prolonged (8 weeks) hypoxia as well as cells after oxygen depletion with sodium sulfite (acute hypoxia). The photodamaging potency of emulsions in hypoxia was significantly more pronounced compared to emulsion-free counterparts. Considering a negligible dark cytotoxicity, our materials emerge as efficient and biocompatible instruments for PDT-assisted eradication of hypoxic cells.


Asunto(s)
Fluorocarburos , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/química , Porfirinas/química , Fluorocarburos/farmacología , Hipoxia/metabolismo , Oxígeno , Emulsiones/química , Línea Celular Tumoral
12.
Environ Sci Pollut Res Int ; 30(23): 63522-63534, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37052835

RESUMEN

Industrial chemical PFAS are persistent pollutants. Long chain PFAS were taken out of production due to their risk for human health, however, new congeners PFAS have been introduced. The in vitro effects of the long-chain PFOA, the short-chain PFHxA and the new-generation C6O4 were evaluated in normal and in thyroid cancer cell lines in terms of cell viability and proliferation, and secretion of a pro-tumorigenic chemokine (CXCL8), both at the mRNA and at the protein level. The Nthy-ory 3-1 normal-thyroid cell line, the TPC-1 and the 8505C (RET/PTC rearranged and BRAFV600e mutated, respectively) thyroid-cancer cell lines were exposed to increasing concentrations of each PFAS in a time-course. We evaluated viability using WST-1 (confirmed by AnnexinV/PI) and proliferation using the cristal-violet test. To evaluate CXCL8 mRNA we used RT-PCR and measured CXCL8 in the supernatants by ELISA. The exposure to none PFAS did not affect thyroid cells viability (except for a reduction of 8505C cells viability after 144 h) or proliferation. Individual PFAS differently modulated CXCL8 mRNA and protein level. PFOA increased CXCL8 both at mRNA and protein level in the three cell lines; PFHxA increased CXCL8 mRNA in the three cell lines, but increased the protein only in TPC-1 cells; C6O4 increased the CXCL8 mRNA only in thyroid cancer cell lines, but never increased the CXCL8 protein. The results of the present study indicate that the in vitro exposure to different PFAS may modulate both at the mRNA and secreted protein levels of CXCL8 in normal and cancer thyroid cells. Strikingly different effects emerged according to the specific cell type and to the targeted analyte (CXCL8 mRNA or protein).


Asunto(s)
Fluorocarburos , Neoplasias de la Tiroides , Humanos , Línea Celular Tumoral , Supervivencia Celular , Fluorocarburos/farmacología , Interleucina-8
13.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770693

RESUMEN

Industrial farming of livestock is increasingly focused on high productivity and performance. As a result, concerns are growing regarding the safety of food and feed, and the sustainability involved in their production. Therefore, research in areas such as animal health, welfare, and the effects of feed additives on animals is of significant importance. In this study, an in vitro co-culture model of the piglet gut was used to investigate the effects of two phytogenic feed additives (PFA) with similar compositions. Intestinal porcine epithelial cells (IPEC-J2) were co-cultivated with peripheral blood mononuclear cells (PBMC) to model the complex porcine gut environment in vitro. The effects of treatments on epithelial barrier integrity were assessed by means of transepithelial electrical resistance (TEER) in the presence of an inflammatory challenge. Protective effects of PFA administration were observed, depending on treatment duration and the model compartment. After 48 h, TEER values were significantly increased by 12-13% when extracts of the PFA were applied to the basolateral compartment (p < 0.05; n = 4), while no significant effects on cell viability were observed. No significant differences in the activity of a PFA based mainly on pure chemical compounds versus a PFA based mainly on complex, natural essential oils, and extracts were found. Overall, the co-culture model was used successfully to investigate and demonstrate beneficial effects of PFAs on intestinal epithelial barrier function during an inflammatory challenge in vitro. In addition, it demonstrates that the two PFAs are equivalent in effect. This study provides useful insights for further research on porcine gut health status even without invasive in vivo trials.


Asunto(s)
Fluorocarburos , Aceites Volátiles , Animales , Porcinos , Leucocitos Mononucleares , Técnicas de Cocultivo , Células Epiteliales , Aceites Volátiles/farmacología , Fluorocarburos/farmacología
14.
Photochem Photobiol ; 99(2): 793-813, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36148678

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants linked to adverse outcomes, including for female reproductive biology and related cancers. We recently reported, for the first time, that PFAS induce platinum resistance in ovarian cancer, potentially through altered mitochondrial function. Platinum resistance is a major barrier in the management of ovarian cancer, necessitating complementary therapeutic approaches. Photodynamic therapy (PDT) is a light-based treatment modality that reverses platinum resistance and synergizes with platinum-based chemotherapy. The present study is the first to demonstrate the ability of photodynamic priming (PDP), a low-dose, sub-cytotoxic variant of PDT, to overcome PFAS-induced platinum resistance. Comparative studies of PDP efficacy using either benzoporphyrin derivative (BPD) or 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) were conducted in two human ovarian cancer cell lines (NIH:OVCAR-3 and Caov-3). BPD and PpIX are clinically approved photosensitizers that preferentially localize to, or are partly synthesized in, mitochondria. PDP overcomes carboplatin resistance in PFAS-exposed ovarian cancer cells, demonstrating the feasibility of this approach to target the deleterious effects of environmental contaminants. Decreased survival fraction in PDP + carboplatin treated cells was accompanied by decreased mitochondrial membrane potential, suggesting that PDP modulates the mitochondrial membrane, reducing membrane potential and re-sensitizing ovarian cancer cells to carboplatin.


Asunto(s)
Fluorocarburos , Neoplasias Ováricas , Fotoquimioterapia , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Carboplatino/farmacología , Carboplatino/uso terapéutico , Apoptosis , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fluorocarburos/farmacología
15.
Neurotoxicology ; 92: 131-155, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914637

RESUMEN

Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266™) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Fluorocarburos , Neuroblastoma , Síndromes de Neurotoxicidad , Plaguicidas , Dibenzodioxinas Policloradas , Adulto , Animales , Línea Celular Tumoral , Supervivencia Celular , Niño , Contaminantes Ambientales/toxicidad , Retardadores de Llama/farmacología , Fluorocarburos/farmacología , Humanos , Neuroblastoma/metabolismo , Síndromes de Neurotoxicidad/etiología , Parabenos/farmacología , Plaguicidas/farmacología , Dibenzodioxinas Policloradas/farmacología
16.
Mol Cell Biochem ; 477(12): 2773-2786, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35643877

RESUMEN

The main goal of this study was to investigate the cardioprotective properties in terms of effects on cardiodynamics of perfluorocarbon emulsion (PFE) in ex vivo-induced ischemia-reperfusion injury of an isolated rat heart. The first part of the study aimed to determine the dose of 10% perfluoroemulsion (PFE) that would show the best cardioprotective effect in rats on ex vivo-induced ischemia-reperfusion injury of an isolated rat heart. Depending on whether the animals received saline or PFE, the animals were divided into a control or experimental group. They were also grouped depending on the applied dose (8, 12, 16 ml/kg body weight) of saline or PFE. We observed the huge changes in almost all parameters in the PFE groups in comparison with IR group without any pre-treatment. Calculated in percent, dp/dt max was the most changed parameter in group treated with 8 mg/kg, while the dp/dt min, SLVP, DLVP, HR, and CF were the most changed in group treated with 16 mg/kg 10 h before ischemia. The effects of 10% PFE are more pronounced if there is a longer period of time from application to ischemia, i.e., immediate application of PFE before ischemia (1 h) gave the weakest effects on the change of cardiodynamics of isolated rat heart. Therefore, the future of PFE use is in new indications and application methods, and PFE can also be referred to as antihypoxic and antiischemic blood substitute with mild membranotropic effects.


Asunto(s)
Sustitutos Sanguíneos , Fluorocarburos , Daño por Reperfusión Miocárdica , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Fluorocarburos/farmacología , Sustitutos Sanguíneos/farmacología , Sustitutos Sanguíneos/uso terapéutico , Fenómenos Fisiológicos Cardiovasculares
17.
Neoplasma ; 69(2): 331-340, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35081722

RESUMEN

Numerous studies have confirmed the anticancer effects of ferroptosis on a wide range of tumors, specifically in providing new perspectives for tackling drug resistance and treating refractory tumors. Notably, mechanisms of improving tumor susceptibility to ferroptosis have been a focus of current research. This study discovered that co-treatment of LXRS agonist T0901317 and ferroptosis inducers (FINs) significantly inhibited the proliferation of cancer cells, this inhibition effect could be reversed by specific inhibitors of ferroptosis and accompanied by elevated lipid peroxides. Glutathione peroxidase 4 (GPX4) regulates T0901317 induced ferroptotic sensitization, and its overexpression dramatically reverses the joint anticancer effect of T0901317 and FINs. Furthermore, xenograft model results highly confirmed the ferroptotic sensitization effect of T0901317 in vivo. In summary, our findings indicate that drug combination and ferroptosis induction strategies provide novel options for cancer therapy.


Asunto(s)
Ferroptosis , Fluorocarburos , Receptores X del Hígado , Neoplasias , Sulfonamidas , Animales , Línea Celular Tumoral , Fluorocarburos/farmacología , Humanos , Receptores X del Hígado/agonistas , Neoplasias/patología , Sulfonamidas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Bioengineered ; 12(2): 11007-11017, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34781817

RESUMEN

Osteosarcoma is one of the most common primary malignant tumors of bone in adolescents. Human umbilical vein endothelial cells (HUVECs) derived exosomes are associated with osteosarcoma cell stemness. Little is known about the function of HUVECs-exosomes in osteosarcoma cell stemness. This work aimed to investigate the mechanism of action of HUVECs-exosomes in regulating stem cell-like phenotypes of osteosarcoma cells. HUVECs were treated with GW4869 (exosome inhibitor). Human osteosarcoma cells (U2OS and 143B) were treated with HUVECs supernatant, HUVECs-exosomes with or without RO4929097 (γ secretase inhibitor, used to block Notch signaling pathway). We found that HUVECs supernatant and HUVECs-exosomes enhanced the proportions of STRO-1+CD117+ cells and the expression of stem cell-related proteins Oct4 and Sox2. Both HUVECs supernatant and HUVECs-exosomes promoted the sarcosphere formation efficiency of U2OS and 143B cells. These stem-like phenotypes of U2OS and 143B cells conferred by HUVECs-exosomes were repressed by GW4869. Moreover, HUVECs-exosomes promoted the expression of Notch1, Hes1 and Hey1 in the U2OS and 143B cells. RO4929097 treatment reversed the impact of HUVECs-exosomes on Notch1, Hes1, and Hey1 expression by inhibiting Notch1 signaling pathway. In conclusion, this work demonstrated that HUVECs-exosomes promoted cell stemness in osteosarcoma through activating Notch signaling pathway. Thus, our data reveal the mechanism of HUVECs-exosomes in regulating cell stemness of osteosarcoma, and provide a theoretical basis for osteosarcoma treatment by exosomes.


Asunto(s)
Exosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Neoplásicas/patología , Osteosarcoma/metabolismo , Osteosarcoma/patología , Receptores Notch/metabolismo , Transducción de Señal , Benzazepinas/farmacología , Línea Celular Tumoral , Exosomas/efectos de los fármacos , Exosomas/ultraestructura , Fluorocarburos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos
19.
J Nanobiotechnology ; 19(1): 298, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34592996

RESUMEN

BACKGROUND: Hypoxia is a characteristic of solid tumors that can lead to tumor angiogenesis and early metastasis, and addressing hypoxia presents tremendous challenges. In this work, a nanomedicine based on oxygen-absorbing perfluorotributylamine (PFA) and the bioreductive prodrug tirapazamine (TPZ) was prepared by using a polydopamine (PDA)-coated UiO-66 metal organic framework (MOF) as the drug carrier. RESULTS: The results showed that TPZ/PFA@UiO-66@PDA nanoparticles significantly enhanced hypoxia, induced cell apoptosis in vitro through the oxygen-dependent HIF-1α pathway and decreased oxygen levels in vivo after intratumoral injection. In addition, our study demonstrated that TPZ/PFA@UiO-66@PDA nanoparticles can accumulate in the tumor region after tail vein injection and effectively inhibit tumor growth when combined with photothermal therapy (PTT). TPZ/PFA@UiO-66@PDA nanoparticles increased HIF-1α expression while did not promote the expression of CD31 in vivo during the experiment. CONCLUSIONS: By using TPZ and PFA and the enhanced permeability and retention effect of nanoparticles, TPZ/PFA@UiO-66@PDA can target tumor tissues, enhance hypoxia in the tumor microenvironment, and activate TPZ. Combined with PTT, the growth of osteosarcoma xenografts can be effectively inhibited.


Asunto(s)
Fluorocarburos , Estructuras Metalorgánicas , Osteosarcoma/metabolismo , Ácidos Ftálicos , Tirapazamina , Hipoxia Tumoral , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Fluorocarburos/química , Fluorocarburos/farmacología , Humanos , Indoles/química , Indoles/farmacología , Masculino , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ratones , Ratones Desnudos , Nanopartículas/química , Nanopartículas/toxicidad , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacología , Polímeros/química , Polímeros/farmacología , Tirapazamina/química , Tirapazamina/farmacología
20.
Cell Death Dis ; 12(10): 886, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584074

RESUMEN

Osteoarthritis (OA) is characterized by cartilage destruction, chronic inflammation, and local pain. Evidence showed that retinoic acid receptor-related orphan receptor-α (RORα) is crucial in cartilage development and OA pathogenesis. Here, we investigated the role and molecular mechanism of RORα, an important member of the nuclear receptor family, in regulating the development of OA pathologic features. Investigation into clinical cartilage specimens showed that RORα expression level is positively correlated with the severity of OA and cartilage damage. In an in vivo OA model induced by anterior crucial ligament transaction, intra-articular injection of si-Rora adenovirus reversed the cartilage damage. The expression of cartilage matrix components type II collagen and aggrecan were elevated upon RORα blockade. RNA-seq data suggested that the IL-6/STAT3 pathway is significantly downregulated, manifesting the reduced expression level of both IL-6 and phosphorylated STAT3. RORα exerted its effect on IL-6/STAT3 signaling in two different ways, including interaction with STAT3 and IL-6 promoter. Taken together, our findings indicated the pivotal role of the RORα/IL-6/STAT3 axis in OA progression and confirmed that RORα blockade improved the matrix catabolism in OA chondrocytes. These results may provide a potential treatment target in OA therapy.


Asunto(s)
Cartílago Articular/patología , Interleucina-6/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Anciano , Animales , Secuencia de Bases , Benzamidas/química , Benzamidas/farmacología , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Femenino , Fluorocarburos/química , Fluorocarburos/farmacología , Humanos , Interleucina-6/genética , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Osteoartritis/genética , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad , Sulfonamidas/química , Sulfonamidas/farmacología , Tiofenos/química , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA