Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768967

RESUMEN

Mitogen-activated protein kinases (MAPKs) are essential for proper cell functioning as they regulate many molecular effectors. Careful regulation of MAPKs is therefore required to avoid MAPK pathway dysfunctions and pathologies. The mammalian genome encodes about 200 phosphatases, many of which dephosphorylate the MAPKs and bring them back to an inactive state. In this review, we focus on the normal and pathological functions of dual-specificity phosphatase 9 (DUSP9)/MAP kinase phosphatases-4 (MKP-4). This cytoplasmic phosphatase, which belongs to the threonine/tyrosine dual-specific phosphatase family and was first described in 1997, is known to dephosphorylate ERK1/2, p38, JNK and ASK1, and thereby to control various MAPK pathway cascades. As a consequence, DUSP9 plays a major role in human pathologies and more specifically in cardiac dysfunction, liver metabolic syndromes, diabetes, obesity and cancer including drug response and cell stemness. Here, we recapitulate the mechanism of action of DUSP9 in the cell, its levels of regulation and its roles in the most frequent human diseases, and discuss its potential as a therapeutic target.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Animales , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Cardiopatías/enzimología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Enfermedades Metabólicas/enzimología , Redes y Vías Metabólicas , Ratones , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Modelos Moleculares , Células Madre Embrionarias de Ratones/enzimología , Neoplasias/enzimología , Conformación Proteica , Caracteres Sexuales , Distribución Tisular
2.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053837

RESUMEN

Cysteine-based protein tyrosine phosphatases (Cys-based PTPs) perform dephosphorylation to regulate signaling pathways in cellular responses. The hydrogen bonding network in their active site plays an important conformational role and supports the phosphatase activity. Nearly half of dual-specificity phosphatases (DUSPs) use three conserved residues, including aspartate in the D-loop, serine in the P-loop, and asparagine in the N-loop, to form the hydrogen bonding network, the D-, P-, N-triloop interaction (DPN-triloop interaction). In this study, DUSP22 is used to investigate the importance of the DPN-triloop interaction in active site formation. Alanine mutations and somatic mutations of the conserved residues, D57, S93, and N128 substantially decrease catalytic efficiency (kcat/KM) by more than 102-fold. Structural studies by NMR and crystallography reveal that each residue can perturb the three loops and induce conformational changes, indicating that the hydrogen bonding network aligns the residues in the correct positions for substrate interaction and catalysis. Studying the DPN-triloop interaction reveals the mechanism maintaining phosphatase activity in N-loop-containing PTPs and provides a foundation for further investigation of active site formation in different members of this protein class.


Asunto(s)
Sitios de Unión , Dominio Catalítico , Fosfatasas de Especificidad Dual/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Aminoácidos , Secuencia Conservada , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Enlace de Hidrógeno , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Mutación , Unión Proteica , Conformación Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
3.
Int J Mol Sci ; 20(7)2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939861

RESUMEN

Cancer is one of the most diagnosed diseases in developed countries. Inflammation is a common response to different stress situations including cancer and infection. In those processes, the family of mitogen-activated protein kinases (MAPKs) has an important role regulating cytokine secretion, proliferation, survival, and apoptosis, among others. MAPKs regulate a large number of extracellular signals upon a variety of physiological as well as pathological conditions. MAPKs activation is tightly regulated by phosphorylation/dephosphorylation events. In this regard, the dual-specificity phosphatase 10 (DUSP10) has been described as a MAPK phosphatase that negatively regulates p38 MAPK and c-Jun N-terminal kinase (JNK) in several cellular types and tissues. Several studies have proposed that extracellular signal-regulated kinase (ERK) can be also modulated by DUSP10. This suggests a complex role of DUSP10 on MAPKs regulation and, in consequence, its impact in a wide variety of responses involved in both cancer and inflammation. Here, we review DUSP10 function in cancerous and immune cells and studies in both mouse models and patients that establish a clear role of DUSP10 in different processes such as inflammation, immunity, and cancer.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Inmunidad/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Neoplasias/metabolismo , Animales , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Neoplasias/genética , Transducción de Señal
4.
ACS Comb Sci ; 21(3): 158-170, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30629404

RESUMEN

Chemical library screening approaches that focus exclusively on catalytic events may overlook unique effects of protein-protein interactions that can be exploited for development of specific inhibitors. Phosphotyrosyl (pTyr) residues embedded in peptide motifs comprise minimal recognition elements that determine the substrate specificity of protein tyrosine phosphatases (PTPases). We incorporated aminooxy-containing amino acid residues into a 7-residue epidermal growth factor receptor (EGFR) derived phosphotyrosine-containing peptide and subjected the peptides to solution-phase oxime diversification by reacting with aldehyde-bearing druglike functionalities. The pTyr residue remained unmodified. The resulting derivatized peptide library was printed in microarrays on nitrocellulose-coated glass surfaces for assessment of PTPase catalytic activity or on gold monolayers for analysis of kinetic interactions by surface plasmon resonance (SPR). Focusing on amino acid positions and chemical features, we first analyzed dephosphorylation of the peptide pTyr residues within the microarrayed library by the human dual-specificity phosphatases (DUSP) DUSP14 and DUSP22, as well as by PTPases from poxviruses (VH1) and Yersinia pestis (YopH). In order to identify the highest affinity oxime motifs, the binding interactions of the most active derivatized phosphopeptides were examined by SPR using noncatalytic PTPase mutants. On the basis of high-affinity oxime fragments identified by the two-step catalytic and SPR-based microarray screens, low-molecular-weight nonphosphate-containing peptides were designed to inhibit PTP catalysis at low micromolar concentrations.


Asunto(s)
Biblioteca de Péptidos , Fosfopéptidos/química , Análisis por Matrices de Proteínas/métodos , Proteínas Tirosina Fosfatasas/metabolismo , Resonancia por Plasmón de Superficie/métodos , Secuencia de Aminoácidos , Catálisis , Colodión/química , Fosfatasas de Especificidad Dual/química , Receptores ErbB/química , Humanos , Cinética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Estructura Molecular , Fosfotirosina/química , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Propiedades de Superficie
5.
Biochem Biophys Res Commun ; 502(3): 389-396, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29852174

RESUMEN

We previously reported that SUMOylation promotes the aggregation of ataxin-1 and JNK is involved in the process. Here we show that dual-specificity phosphatase 18 (DUSP18), a member of protein tyrosine phosphatases, exerts the opposite effects on ataxin-1. DUSP18 associated with ataxin-1 and suppressed JNK activated by ataxin-1. Interestingly DUSP18, but not the other DUSPs interacting with ataxin-1, caused the mobility shift of ataxin-1. De-phosphorylation by DUSP18 was initially suspected as a cause for such an effect; however, the phosphorylation of ataxin-1 was unchanged. Instead DUSP18 inhibited SUMOylation and reduced ataxin-1 aggregation. The catalytic mutant of DUSP18 failed to reduce the SUMOylation and aggregation of ataxin-1 indicating that the phosphatase activity is indispensable for the effects. Moreover, DUSP18 disrupted the co-localization of ataxin-1 with the PML component Sp100. These results together implicate that JNK and DUSP18 reciprocally modulate the SUMOylation, which plays a regulatory role in the aggregation of ataxin-1.


Asunto(s)
Ataxina-1/química , Ataxina-1/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Antígenos Nucleares/metabolismo , Ataxina-1/genética , Autoantígenos/metabolismo , Dominio Catalítico/genética , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Péptidos/química , Péptidos/genética , Fosforilación , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Sumoilación
6.
Pharmacol Res ; 128: 211-219, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29106959

RESUMEN

Dual specificity phosphatases (DUSPs) include MAP kinase phosphatases and atypical dual specificity phosphatases and mediate cell growth and differentiation, brain function, and immune responses. They serve as targets for drug development against cancers, diabetes and depression. Several DUSPs have non-canonical conformation of the central ß-sheet and active site loops, suggesting that they may have conformational switch that is related to the regulation of enzyme activity. Here, we determined the crystal structure of DUSP13a, and identified two different structures that represent intermediates of the postulated conformational switch. Amino acid sequence of DUSP13a is not significantly homologous to DUSPs with conformational switch, indicating that the conformational switch is not sequence-dependent, but rather determined by ligand interaction. The sequence-independency suggests that other DUSPs with canonical conformation may have the conformational switch during specific cellular regulation. The conformational switch leads to significant changes in the protein surface, including a hydrophobic surface and pockets, which can be exploited for development of allosteric modulators of drug target DUSPs.


Asunto(s)
Fosfatasas de Especificidad Dual , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Conformación Proteica
7.
PLoS One ; 12(11): e0187701, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29121083

RESUMEN

Dual-specificity phosphatases (DUSPs) constitute a subfamily of protein tyrosine phosphatases, and are intimately involved in the regulation of diverse parameters of cellular signaling and essential biological processes. DUSP28 is one of the DUSP subfamily members that is known to be implicated in the progression of hepatocellular and pancreatic cancers, and its biological functions and enzymatic characteristics are mostly unknown. Herein, we present the crystal structure of human DUSP28 determined to 2.1 Å resolution. DUSP28 adopts a typical DUSP fold, which is composed of a central ß-sheet covered by α-helices on both sides and contains a well-ordered activation loop, as do other enzymatically active DUSP proteins. The catalytic pocket of DUSP28, however, appears hardly accessible to a substrate because of the presence of nonconserved bulky residues in the protein tyrosine phosphatase signature motif. Accordingly, DUSP28 showed an atypically low phosphatase activity in the biochemical assay, which was remarkably improved by mutations of two nonconserved residues in the activation loop. Overall, this work reports the structural and biochemical basis for understanding a putative oncological therapeutic target, DUSP28, and also provides a unique mechanism for the regulation of enzymatic activity in the DUSP subfamily proteins.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Fosforilación , Tirosina
8.
Int J Biochem Cell Biol ; 91(Pt B): 98-101, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28504190

RESUMEN

The cyclin-dependent kinase inhibitor-3 (CDKN3) gene encodes a dual-specificity protein tyrosine phosphatase that dephosphorylates CDK1/CDK2 and other proteins. CDKN3 is often overexpressed in human cancer, and this overexpression correlates with reduced survival in several types of cancer. CDKN3 transcript variants and mutations have also been reported. The mechanism of CDKN3 overexpression and the role of CDKN3 transcript variants in human cancer are not entirely clear. Here, we review the literature and provide additional data to assess the correlation of CDKN3 expression with patient survival. Besides the full-length CDKN3 encoding transcript and a major transcript that skips exon 2 express in normal and cancer cells, minor aberrant transcript variants have been reported. Aberrant CDKN3 transcripts were postulated to encode dominant-negative inhibitors of CDKN3 as an explanation for overexpression of the perceived tumor suppressor gene in human cancer. However, while CDKN3 is often overexpressed in human cancer, aberrant CDKN3 transcripts occur infrequently and at lower levels. CDKN3 mutations and copy number alternation are rare in human cancer, implying that neither loss of CDKN3 activity nor constitutive gain of CDKN3 expression offer an advantage to tumorigenesis. Recently, it was found that CDKN3 transcript and protein levels fluctuate during the cell cycle, peaking in mitosis. Given that rapidly growing tumors have more mitotic cells, the high level of mitotic CDKN3 expression is the most plausible mechanism of frequent CDKN3 overexpression in human cancer. This finding clarifies the mechanism of CDKN3 overexpression in human cancer and questions the view of CDKN3 as a tumor suppressor.


Asunto(s)
Empalme Alternativo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Fosfatasas de Especificidad Dual/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/enzimología , Neoplasias/genética , Secuencia de Aminoácidos , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/química , Fosfatasas de Especificidad Dual/química , Humanos , Mitosis/genética , Neoplasias/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia
9.
PLoS One ; 11(9): e0162115, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27583453

RESUMEN

Human dual-specificity phosphatase 26 (DUSP26) is a novel target for anticancer therapy because its dephosphorylation of the p53 tumor suppressor regulates the apoptosis of cancer cells. DUSP26 inhibition results in neuroblastoma cell cytotoxicity through p53-mediated apoptosis. Despite the previous structural studies of DUSP26 catalytic domain (residues 61-211, DUSP26-C), the high-resolution structure of its catalytically active form has not been resolved. In this study, we determined the crystal structure of a catalytically active form of DUSP26 (residues 39-211, DUSP26-N) with an additional N-terminal region at 2.0 Å resolution. Unlike the C-terminal domain-swapped dimeric structure of DUSP26-C, the DUSP26-N (C152S) monomer adopts a fold-back conformation of the C-terminal α8-helix and has an additional α1-helix in the N-terminal region. Consistent with the canonically active conformation of its protein tyrosine phosphate-binding loop (PTP loop) observed in the structure, the phosphatase assay results demonstrated that DUSP26-N has significantly higher catalytic activity than DUSP26-C. Furthermore, size exclusion chromatography-multiangle laser scattering (SEC-MALS) measurements showed that DUSP26-N (C152S) exists as a monomer in solution. Notably, the crystal structure of DUSP26-N (C152S) revealed that the N-terminal region of DUSP26-N (C152S) serves a scaffolding role by positioning the surrounding α7-α8 loop for interaction with the PTP-loop through formation of an extensive hydrogen bond network, which seems to be critical in making the PTP-loop conformation competent for phosphatase activity. Our study provides the first high-resolution structure of a catalytically active form of DUSP26, which will contribute to the structure-based rational design of novel DUSP26-targeting anticancer therapeutics.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Línea Celular Tumoral , Cromatografía en Gel , Cristalografía por Rayos X , Fosfatasas de Especificidad Dual/química , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Conformación Proteica , Homología de Secuencia de Aminoácido
10.
Br J Cancer ; 113(12): 1735-43, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26554648

RESUMEN

BACKGROUND: The cyclin-dependent kinase inhibitor 3 (CDKN3) has been perceived as a tumour suppressor. Paradoxically, CDKN3 is often overexpressed in human cancer. It was unclear if CDKN3 overexpression is linked to alternative splicing variants or mutations that produce dominant-negative CDKN3. METHODS: We analysed CDKN3 expression and its association with patient survival in three cohorts of lung adenocarcinoma. We also examined CDKN3 mutations in the Cancer Genome Atlas (TCGA) and the Moffitt Cancer Center's Total Cancer Care (TCC) projects. CDKN3 transcripts were further analysed in a panel of cell lines and lung adenocarcinoma tissues. CDKN3 mRNA and protein levels in different cell cycle phases were examined. RESULTS: CDKN3 is overexpressed in non small cell lung cancer. High CDKN3 expression is associated with poor overall survival in lung adenocarcinoma. Two CDKN3 transcripts were detected in all samples. These CDKN3 transcripts represent the full length CDKN3 mRNA and a normal transcript lacking exon 2, which encodes an out of frame 23-amino acid peptide with little homology to CDKN3. CDKN3 mutations were found to be very rare. CDKN3 mRNA and protein were elevated during the mitosis phase of cell cycle. CONCLUSIONS: CDKN3 overexpression is prognostic of poor overall survival in lung adenocarcinoma. CDKN3 overexpression in lung adenocarcinoma is not attributed to alternative splicing or mutation but is likely due to increased mitotic activity, arguing against CDKN3 as a tumour suppressor.


Asunto(s)
Adenocarcinoma/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Fosfatasas de Especificidad Dual/genética , Neoplasias Pulmonares/genética , ARN Mensajero/genética , Análisis de Supervivencia , Secuencia de Aminoácidos , Estudios de Cohortes , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/química , Fosfatasas de Especificidad Dual/química , Humanos , Datos de Secuencia Molecular
11.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 650-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057789

RESUMEN

Human dual-specificity phosphatase 7 (DUSP7/Pyst2) is a 320-residue protein that belongs to the mitogen-activated protein kinase phosphatase (MKP) subfamily of dual-specificity phosphatases. Although its precise biological function is still not fully understood, previous reports have demonstrated that DUSP7 is overexpressed in myeloid leukemia and other malignancies. Therefore, there is interest in developing DUSP7 inhibitors as potential therapeutic agents, especially for cancer. Here, the purification, crystallization and structure determination of the catalytic domain of DUSP7 (Ser141-Ser289/C232S) at 1.67 Å resolution are reported. The structure described here provides a starting point for structure-assisted inhibitor-design efforts and adds to the growing knowledge base of three-dimensional structures of the dual-specificity phosphatase family.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Proteínas de Neoplasias/química , Proteínas Recombinantes de Fusión/química , Secuencias de Aminoácidos , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Fosfatasas de Especificidad Dual/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Electricidad Estática
12.
J Biomol Screen ; 19(10): 1383-90, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25245988

RESUMEN

Recently, dual-specificity phosphatase 16 (DUSP16) emerged as a promising therapeutic target protein for the development of anti-atherosclerosis and anticancer medicines. The present study was undertaken to identify the novel inhibitors of DUSP16 based on the structure-based virtual screening. We have been able to find seven novel inhibitors of DUSP16 through the drug design protocol involving homology modeling of the target protein, docking simulations between DUSP16 and its putative inhibitors with the modified scoring function, and in vitro enzyme assay. These inhibitors revealed good potency, with IC50 values ranging from 1 to 22 µM, and they were also screened computationally for having desirable physicochemical properties as drug candidates. Therefore, they deserve consideration for further development by structure-activity relationship studies to optimize the inhibitory activity against DUSP16. Structural features relevant to the stabilization of the newly identified inhibitors in the active site of DUSP16 are addressed in detail.


Asunto(s)
Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Fosfatasas de Especificidad Dual/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Dominio Catalítico , Diseño de Fármacos , Fosfatasas de Especificidad Dual/metabolismo , Inhibidores Enzimáticos/metabolismo , Concentración 50 Inhibidora , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Homología Estructural de Proteína , Relación Estructura-Actividad , Interfaz Usuario-Computador
13.
Mol Nutr Food Res ; 58(10): 2036-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24975273

RESUMEN

SCOPE: Vitamin D3, its biologically most active metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), and the vitamin D receptor (VDR) are important for adipose tissue biology. METHODS AND RESULTS: We extrapolated genomic VDR association loci in adipocytes from 55 conserved genome-wide VDR-binding sites in nonfat tissues. Taking the genes DUSP10, TRAK1, NRIP1, and THBD as examples, we confirmed the predicted VDR binding sites upstream of their transcription start sites and showed rapid mRNA up-regulation of all four genes in SGBS human pre-adipocytes. Using adipose tissue biopsy samples from 47 participants of a 5-month vitamin D3 intervention study, we demonstrated that all four primary VDR target genes can serve as biomarkers for the vitamin D3 responsiveness of human individuals. Changes in DUSP10 gene expression appear to be the most comprehensive marker, while THBD mRNA changes characterized a rather different group of study participants. CONCLUSION: We present a new approach to predict vitamin D target genes based on conserved genomic VDR-binding sites. Using human adipocytes as examples, we show that such ubiquitous VDR target genes can be used as markers for the individual's response to a supplementation with vitamin D3.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/agonistas , Proteínas Adaptadoras del Transporte Vesicular/agonistas , Tejido Adiposo/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Proteínas Nucleares/agonistas , Receptores de Calcitriol/agonistas , Trombomodulina/agonistas , Elemento de Respuesta a la Vitamina D , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Tejido Adiposo/patología , Anciano , Biomarcadores/metabolismo , Calcitriol/metabolismo , Línea Celular , Células Cultivadas , Colecalciferol/administración & dosificación , Colecalciferol/deficiencia , Colecalciferol/metabolismo , Colecalciferol/uso terapéutico , Secuencia Conservada , Suplementos Dietéticos , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Finlandia , Humanos , Masculino , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de Interacción con Receptores Nucleares 1 , ARN Mensajero/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Estaciones del Año , Trombomodulina/química , Trombomodulina/genética , Trombomodulina/metabolismo , Regulación hacia Arriba , Deficiencia de Vitamina D/dietoterapia , Deficiencia de Vitamina D/metabolismo , Deficiencia de Vitamina D/patología
14.
PLoS One ; 9(2): e89577, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24651368

RESUMEN

Sequencing of individual clones from a newly established cDNA library from the chemoresistant Hodgkin's lymphoma cell line L-1236 led to the isolation of a cDNA clone corresponding to a short sequence from chromosome 1. Reverse transcriptase-polymerase chain reaction indicated high expression of this sequence in Hodgkin's lymphoma derived cell lines but not in normal blood cells. Further characterization of this sequence and the surrounding genomic DNA revealed that this sequence is part of a human endogenous retrovirus locus. The sequence of this endogenous retrovirus is interrupted by a pseudogene of the dual specificity phosphatase 5 (DUSP5). Reverse transcriptase-polymerase chain reaction revealed high expression of this pseudogene (DUSP5P1) in HL cell lines but not in normal blood cells or Epstein-Barr virus-immortalized B cells. Cells from other tumor types (Burkitt's lymphoma, leukemia, neuroblastoma, Ewing sarcoma) also showed a higher DUSP5P1/DUSP5 ratio than normal cells. Furthermore, we observed that higher expression of DUSP5 in relation to DUSP5P1 correlated with the expression of the pro-apoptotic factor B cell leukemia/lymphoma 2-like 11 (BCL2L11) in peripheral blood cells and HL cells. Knock-down of DUSP5 in HL cells resulted in down-regulation of BCL2L11. Thus, the DUSP5/DUSP5P1 system could be responsible for regulation of BCL2L11 leading to inhibition of apoptosis in these tumor cells.


Asunto(s)
Fosfatasas de Especificidad Dual/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Seudogenes/genética , Secuencia de Aminoácidos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Línea Celular Tumoral , Células Cultivadas , Cromosomas Humanos Par 1/genética , Fosfatasas de Especificidad Dual/química , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Humanos , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias/genética , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
15.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 421-35, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531476

RESUMEN

Dual-specificity protein phosphatases (DUSPs), which dephosphorylate both phosphoserine/threonine and phosphotyrosine, play vital roles in immune activation, brain function and cell-growth signalling. A family-wide structural library of human DUSPs was constructed based on experimental structure determination supplemented with homology modelling. The catalytic domain of each individual DUSP has characteristic features in the active site and in surface-charge distribution, indicating substrate-interaction specificity. The active-site loop-to-strand switch occurs in a subtype-specific manner, indicating that the switch process is necessary for characteristic substrate interactions in the corresponding DUSPs. A comprehensive analysis of the activity-inhibition profile and active-site geometry of DUSPs revealed a novel role of the active-pocket structure in the substrate specificity of DUSPs. A structure-based analysis of redox responses indicated that the additional cysteine residues are important for the protection of enzyme activity. The family-wide structures of DUSPs form a basis for the understanding of phosphorylation-mediated signal transduction and the development of therapeutics.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/clasificación , Inhibidores Enzimáticos/química , Filogenia , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Fosfatasas de Especificidad Dual/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Oxidación-Reducción , Fosfoserina/química , Fosfotreonina/química , Fosfotirosina/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética , Transducción de Señal , Homología Estructural de Proteína , Especificidad por Sustrato
16.
Biochemistry ; 53(5): 862-71, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24447265

RESUMEN

PIR1 is an atypical dual-specificity phosphatase (DSP) that dephosphorylates RNA with a higher specificity than phosphoproteins. Here we report the atomic structure of a catalytically inactive mutant (C152S) of the human PIR1 phosphatase core (PIR1-core, residues 29-205), refined at 1.20 Šresolution. PIR1-core shares structural similarities with DSPs related to Vaccinia virus VH1 and with RNA 5'-phosphatases such as the baculovirus RNA triphosphatase and the human mRNA capping enzyme. The PIR1 active site cleft is wider and deeper than that of VH1 and contains two bound ions: a phosphate trapped above the catalytic cysteine C152 exemplifies the binding mode expected for the γ-phosphate of RNA, and ∼6 Šaway, a chloride ion coordinates the general base R158. Two residues in the PIR1 phosphate-binding loop (P-loop), a histidine (H154) downstream of C152 and an asparagine (N157) preceding R158, make close contacts with the active site phosphate, and their nonaliphatic side chains are essential for phosphatase activity in vitro. These residues are conserved in all RNA 5'-phosphatases that, analogous to PIR1, lack a "general acid" residue. Thus, a deep active site crevice, two active site ions, and conserved P-loop residues stabilizing the γ-phosphate of RNA are defining features of atypical DSPs that specialize in dephosphorylating 5'-RNA.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Dominio Catalítico , Cristalografía por Rayos X , Fosfatasas de Especificidad Dual/genética , Humanos , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estabilidad Proteica
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1160-70, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23695260

RESUMEN

Dual-specificity phosphatases (DUSPs) play an important role in regulating cellular signalling pathways governing cell growth, differentiation and apoptosis. Human DUSP26 inhibits the apoptosis of cancer cells by dephosphorylating substrates such as p38 and p53. High-resolution crystal structures of the DUSP26 catalytic domain (DUSP26-C) and its C152S mutant [DUSP26-C (C152S)] have been determined at 1.67 and 2.20 Å resolution, respectively. The structure of DUSP26-C showed a novel type of domain-swapped dimer formed by extensive crossover of the C-terminal α7 helix. Taken together with the results of a phosphatase-activity assay, structural comparison with other DUSPs revealed that DUSP26-C adopts a catalytically inactive conformation of the protein tyrosine phosphate-binding loop which significantly deviates from that of canonical DUSP structures. In particular, a noticeable difference exists between DUSP26-C and the active forms of other DUSPs at the hinge region of a swapped C-terminal domain. Additionally, two significant gaps were identified between the catalytic core and its surrounding loops in DUSP26-C, which can be exploited as additional binding sites for allosteric enzyme regulation. The high-resolution structure of DUSP26-C may thus provide structural insights into the rational design of DUSP26-targeted anticancer drugs.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Proteínas Mutantes/química , Calorimetría , Dominio Catalítico , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Mutagénesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Difracción de Rayos X
18.
BMB Rep ; 46(1): 1-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23351377

RESUMEN

Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.


Asunto(s)
Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Inositol Polifosfato 5-Fosfatasas , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
19.
Biochemistry ; 52(5): 938-48, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23298255

RESUMEN

Regulation of p53 phosphorylation is critical to control its stability and biological activity. Dual-specificity phosphatase 26 (DUSP26) is a brain phosphatase highly overexpressed in neuroblastoma, which has been implicated in dephosphorylating phospho-Ser20 and phospho-Ser37 in the p53 transactivation domain. In this paper, we report the 1.68 Å crystal structure of a catalytically inactive mutant (Cys152Ser) of DUSP26 lacking the first 60 N-terminal residues (ΔN60-C/S-DUSP26). This structure reveals the architecture of a dual-specificity phosphatase domain related in structure to Vaccinia virus VH1. DUSP26 adopts a closed conformation of the protein tyrosine phosphatase (PTP)-binding loop, which results in an unusually shallow active site pocket and buried catalytic cysteine. A water molecule trapped inside the PTP-binding loop makes close contacts both with main chain and with side chain atoms. The hydrodynamic radius (R(H)) of ΔN60-C/S-DUSP26 measured from velocity sedimentation analysis (R(H) ∼ 22.7 Å) and gel filtration chromatography (R(H) ∼ 21.0 Å) is consistent with an ∼18 kDa globular monomeric protein. Instead in crystal, ΔN60-C/S-DUSP26 is more elongated (R(H) ∼ 37.9 Å), likely because of the extended conformation of C-terminal helix α9, which swings away from the phosphatase core to generate a highly basic surface. As in the case of phosphatase MKP-4, we propose that a substrate-induced conformational change, possibly involving rearrangement of helix α9 with respect to the phosphatase core, allows DUSP26 to adopt a catalytically active conformation. The structural characterization of DUSP26 presented in this paper provides the first atomic insight into this disease-associated phosphatase.


Asunto(s)
Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Proteína p53 Supresora de Tumor/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Fosfatasas de Especificidad Dual/metabolismo , Activación Enzimática , Humanos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Modelos Moleculares , Neuroblastoma/enzimología , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia , Virus Vaccinia/química , Virus Vaccinia/enzimología
20.
FEBS J ; 280(2): 538-48, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22372537

RESUMEN

Starch is the major carbohydrate reserve in plants, and is degraded for growth at night. Starch breakdown requires reversible glucan phosphorylation at the granule surface by novel dikinases and phosphatases. The dual-specificity phosphatase starch excess 4 (SEX4) is required for glucan desphosphorylation; however, regulation of the enzymatic activity of SEX4 is not well understood. We show that SEX4 switches between reduced (active) and oxidized (inactive) states, suggesting that SEX4 is redox-regulated. Although only partial reactivation of SEX4 was achieved using artificial reductants (e.g. dithiothreitol), use of numerous chloroplastic thioredoxins recovered activity completely, suggesting that thioredoxins could reduce SEX4 in vivo. Analysis of peptides from oxidized and reduced SEX4 identified a disulfide linkage between the catalytic cysteine at position 198 (Cys198) and the cysteine at position 130 (Cys130) within the phosphatase domain. The position of these cysteines was structurally analogous to that for known redox-regulated dual-specificity phosphatases, suggesting a common mechanism of reversible oxidation amongst these phosphatases. Mutation of Cys130 renders SEX4 more sensitive to oxidative inactivation and less responsive to reductive reactivation. Together, these results provide the first biochemical evidence for a redox-dependent structural switch that regulates SEX4 activity, which represents the first plant phosphatase known to undergo reversible oxidation via disulfide bond formation like its mammalian counterparts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Glucanos/metabolismo , Almidón/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico , Cromatografía Liquida , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Ditiotreitol/farmacología , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/genética , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Cinética , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nitrofenoles/metabolismo , Compuestos Organofosforados/metabolismo , Oxidantes/farmacología , Oxidación-Reducción/efectos de los fármacos , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA