Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.747
Filtrar
1.
J Environ Sci (China) ; 148: 38-45, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095173

RESUMEN

Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.


Asunto(s)
Electrodos , Hierro , Nitratos , Fosfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Nitratos/química , Hierro/química , Fosfatos/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Técnicas Electroquímicas/métodos
2.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125035

RESUMEN

In this study, the protein and salts distribution (Ca, P, Na and Mg) in processed cheese (PC) samples prepared with 180 or 360 mEq/kg of the calcium sequestering salts (CSS) disodium phosphate (DSP), disodium pyrophosphate (DSPP), sodium hexametaphosphate (SHMP) and trisodium citrate (TSC) was studied. For this purpose, a water-soluble extract (WSE) of PC samples was prepared. All PC samples contained 45-46% moisture, 26-27% fat and 20-21% protein and had a pH of 5.2 or 5.7. Ultracentrifugation slightly reduced the protein content of the WSE of PC, indicating that most protein in the WSE was non-sedimentable. At equal concentration of CSS, the protein content of the WSE was higher for PC at pH 5.7 compared to PC at pH 5.2. Approximately 55-85% of the Ca and P in the WSE of samples was 10 kDa-permeable for PC prepared with DSPP and SHMP. This suggests that the formation of non-permeable Ca-polyphosphate-casein complexes. For PC prepared with TSC, >90% of Ca in the WSE was 10 kDa-permeable, indicating that micellar disruption arises from sequestration of micellar Ca. These results indicate that the WSE method is an appropriate method to understand how salts present in PC are distributed. However, the WSE and ultracentrifugal supernatant of the WSE can include both soluble and protein-associated salts. Therefore, determining levels of salts in 10 kDa permeate of ultracentrifugal supernatant of the WSE is most appropriate.


Asunto(s)
Queso , Difosfatos , Fosfatos , Sales (Química) , Solubilidad , Queso/análisis , Fosfatos/química , Sales (Química)/química , Difosfatos/química , Calcio/química , Citratos/química , Concentración de Iones de Hidrógeno , Manipulación de Alimentos/métodos
3.
Sci Rep ; 14(1): 20279, 2024 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217204

RESUMEN

Bone cement based on magnesium phosphate has extremely favorable properties for its application as a bioactive bone substitute. However, further improvement is still expected due to difficult injectability and high brittleness. This paper reported the preparation of novel biocomposite cement, classified as dual-setting, obtained through ceramic hydration reaction and polymer cross-linking. Cement was composed of magnesium potassium phosphate and sodium alginate cross-linked with calcium carbonate and gluconolactone. The properties of the obtained composite material and the influence of sodium alginate modification on cement reaction were investigated. Our results indicated that proposed cements have several advantages compared to ceramic cement, like shortened curing time, diverse microstructure, increased wettability and biodegradability and improved paste cohesion and injectability. The magnesium phosphate cement with 1.50% sodium alginate obtained using a powder-to-liquid ratio of 2.5 g/mL and cross-linking ratio 90/120 of GDL/CC showed the most favorable properties, with no adverse effect on mechanical strength and osteoblasts cytocompatibility. Overall, our research suggested that this novel cement might have promising medical application prospects, especially in minimally invasive procedures.


Asunto(s)
Alginatos , Cementos para Huesos , Hidrogeles , Compuestos de Magnesio , Fosfatos , Alginatos/química , Cementos para Huesos/química , Hidrogeles/química , Fosfatos/química , Compuestos de Magnesio/química , Ensayo de Materiales , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Ácido Glucurónico/química , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Animales , Reactivos de Enlaces Cruzados/química , Ácidos Hexurónicos/química , Inyecciones , Materiales Biocompatibles/química
4.
Water Res ; 264: 122194, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39121821

RESUMEN

Estimating the availability of phosphorus in soils and sediments is complicated by the diverse mineralogical properties of iron (hydr)oxides that control the environmental fate of phosphorus. Despite various surface complexation models have been developed, lack of generic phosphate affinity constants (logKPO4s) for iron (hydr)oxides hinders the prediction of phosphate adsorption to iron (hydr)oxides in nature. The aim of this work is to derive generic logKPO4s for the Charge Distribution-Multisite Complexation extended-Stern-Gouy-Chapman (CD-MUSIC-eSGC) model using a large phosphate adsorption database and previously derived generic protonation parameters. The optimized logKPO4s of goethite, hematite and ferrihydrite are located in a much narrower range than those in the RES3T database. Specifically, the logKPO4 ranges of FeOPO3, FeOPO2OH, FeOPO(OH)2, (FeO)2PO2, and (FeO)2POOH complexes were 17.40-18.00, 24.20-27.40, 27.90-29.80, 26.50-29.60, and 30.70-33.40, respectively. A simplified CD-MUSIC-eSGC model with species FeOPO2OH and (FeO)2PO2 and generic logKPO4 values 26.0 ± 0.9 and 27.9 ± 0.8, respectively, provides an accurate prediction of phosphate adsorption and dominant speciation to the iron (hydr)oxides at environmental pH and phosphate levels. For ferrihydrite at low pH and high phosphate levels the species FeOPO(OH)2 and (FeO)2POOH cannot be neglected. The simplified model expands the application boundaries of CD-MUSIC-eSGC model in predicting the phosphate adsorption on natural iron (hydr)oxides without laborious characterization.


Asunto(s)
Compuestos Férricos , Fosfatos , Adsorción , Fosfatos/química , Compuestos Férricos/química , Compuestos de Hierro/química
5.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201778

RESUMEN

The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.


Asunto(s)
Estabilidad Proteica , Cloruro de Sodio , Sulfatos , Cloruro de Sodio/química , Sulfatos/química , Fosfatos/química , Dominios Proteicos , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular
6.
Int J Biol Macromol ; 277(Pt 3): 134169, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097057

RESUMEN

The uncontrolled administration of the cisplatin drug (CPTN) resulted in numerous drawbacks. Therefore, effective, affordable, and biocompatible delivery systems were suggested to regulate the loading, release, and therapeutic effect of CPTN. Zinc phosphate/hydroxyapatite hybrid form (ZP/HP) and core-shell nano-rod morphology, as well as its functionalized derivative with cellulose (CF@ZP/HP), were synthesized by the facile dissolution precipitation method followed by mixing with cellulose fibers, respectively. The developed CF@ZP/HP displayed remarkable enhanced CPTN loading properties (418.2 mg/g) as compared to ZP/HP (259.8 mg/g). The CPTN loading behaviors into CF@ZP/HP follow the Langmuir isotherm properties (R2 > 0.98) in addition to the kinetic activities of the pseudo-first-order model (R2 > 0.96). The steric assessment validates the notable increase in the existing loading receptors after the functionalization of ZP/HP with CF from 57.7 mg/g (ZP/HP) to 90.5 mg/g. The functionalization also impacted the capacity of each existing receptor to be able to ensure 5 CPTN molecules. This, in addition to the loading energies (<40 kJ/mol), donates the loading of CPTN by physical multi-molecular processes and in vertical orientation. The CPTN releasing patterns of CF@ZP/HP exhibit slow and controlled properties (95.7 % after 200 h at pH 7.4 and 100 % after 120 h at pH 5.5), but faster than the properties of ZP/HP. The kinetic modeling of the release activities together with the diffusion exponent (>0.45) reflected the release of CPTN according to both erosion and diffusion mechanisms. The loading of CPTN into both ZP/HP and CF@ZP/HP also resulted in a marked enhancement in the anticancer activity of CPTN against human cervical epithelial malignancies (HeLa) (cell viability = 5.6 % (CPTN), 3.2 % (CPTN loaded ZP/HP), and 1.12 % (CPTN loaded CF@ZP/HP)).


Asunto(s)
Celulosa , Cisplatino , Portadores de Fármacos , Liberación de Fármacos , Durapatita , Fosfatos , Compuestos de Zinc , Celulosa/química , Durapatita/química , Durapatita/farmacología , Cisplatino/farmacología , Cisplatino/química , Humanos , Portadores de Fármacos/química , Compuestos de Zinc/química , Fosfatos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Cinética , Supervivencia Celular/efectos de los fármacos
7.
Water Res ; 265: 122261, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39167970

RESUMEN

Phosphorus (P) recovered from sludge-incinerated ash (SIA) could be applied to synthesize highly added-value products (FePO4 and LiFePO4) with in situ Fe in SIA. Indeed, LiFePO4 is a future of rechargeable batteries, which makes lithium (Li) highly needed. Alternatively, Li could also be extracted from concentrated brines to face a potential crisis of Li depletion on lands. Based on H3PO4 and Fe3+ co-extracted from the acidic leachate of SIA by tributyl phosphate (TBP), FePO4 (31.2 wt% Fe, 17.6 wt% P and the molar ratio of Fe/P = 0.98) was easily formed only adjusting pH of the stripping solution to 1.6. Interestingly, the organic phase from the first-stage co-extraction process of Fe3+ and H3PO4 could be utilized for Li-extraction from salt-lake brine, based on the TBP-FeCl3-kerosene system, and a good performance (78.7%) of Li-extraction and separation factors (ß) (186.0-217.4) were obtained. Furthermore, the compounds with Li-extraction are complex, possibly LiFeCl4∙2TBP, in which Li+ could be stripped to form Li2CO3 by 4.0 M HCl (with a stripping rate up to 83%). Besides, Li2CO3 could also be obtained from desalinated brine by adsorption with manganese oxide ion sieve (HMO) and desorption with HCl. In the two cases, almost pure Li2CO3 products were obtained, up to 99.7 and 99.5 wt% Li2CO3 respectively, after further purification and concentration. Finally, recovered FePO4 and extracted Li2CO3 were synthesized for producing LiFePO4 that had a similar electrochemical property (69.5 and 77.8 mAh/g of the initial discharge capacity) to those synthesized from commercial raw materials.


Asunto(s)
Hierro , Litio , Fosfatos , Aguas del Alcantarillado , Litio/química , Fosfatos/química , Hierro/química , Aguas del Alcantarillado/química , Sales (Química)/química , Compuestos Férricos
8.
Int J Nanomedicine ; 19: 6829-6843, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005958

RESUMEN

Background: With the rapid development of nanotechnology, constructing a multifunctional nanoplatform that can deliver various therapeutic agents in different departments and respond to endogenous/exogenous stimuli for multimodal synergistic cancer therapy remains a major challenge to address the inherent limitations of chemotherapy. Methods: Herein, we synthesized hollow mesoporous Prussian Blue@zinc phosphate nanoparticles to load glucose oxidase (GOx) and DOX (designed as HMPB-GOx@ZnP-DOX NPs) in the non-identical pore structures of their HMPB core and ZnP shell, respectively, for photothermally augmented chemo-starvation therapy. Results: The ZnP shell coated on the HMPB core, in addition to providing space to load DOX for chemotherapy, could also serve as a gatekeeper to protect GOx from premature leakage and inactivation before reaching the tumor site because of its degradation characteristics under mild acidic conditions. Moreover, the loaded GOx can initiate starvation therapy by catalyzing glucose oxidation while causing an upgradation of acidity and H2O2 levels, which can also be used as forceful endogenous stimuli to trigger smart delivery systems for therapeutic applications. The decrease in pH can improve the pH-sensitivity of drug release, and O2 can be supplied by decomposing H2O2 through the catalase-like activity of HMPBs, which is beneficial for relieving the adverse conditions of anti-tumor activity. In addition, the inner HMPB also acts as a photothermal agent for photothermal therapy and the generated hyperthermia upon laser irradiation can serve as an external stimulus to further promote drug release and enzymatic activities of GOx, thereby enabling a synergetic photothermally enhanced chemo-starvation therapy effect. Importantly, these results indicate that HMPB-GOx@ZnP-DOX NPs can effectively inhibit tumor growth by 80.31% and exhibit no obvious systemic toxicity in mice. Conclusion: HMPB-GOx@ZnP-DOX NPs can be employed as potential theranostic agents that incorporate multiple therapeutic modes to efficiently inhibit tumors.


Asunto(s)
Doxorrubicina , Ferrocianuros , Glucosa Oxidasa , Fosfatos , Terapia Fototérmica , Compuestos de Zinc , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Animales , Glucosa Oxidasa/química , Glucosa Oxidasa/farmacología , Ratones , Ferrocianuros/química , Ferrocianuros/farmacología , Humanos , Compuestos de Zinc/química , Fosfatos/química , Fosfatos/farmacología , Terapia Fototérmica/métodos , Porosidad , Nanopartículas/química , Línea Celular Tumoral , Liberación de Fármacos , Ratones Endogámicos BALB C , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Portadores de Fármacos/química
9.
Proc Natl Acad Sci U S A ; 121(29): e2408156121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980907

RESUMEN

After ATP-actin monomers assemble filaments, the ATP's [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.


Asunto(s)
Citoesqueleto de Actina , Adenosina Trifosfato , Simulación de Dinámica Molecular , Fosfatos , Fosfatos/metabolismo , Fosfatos/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adenosina Trifosfato/metabolismo , Actinas/metabolismo , Actinas/química , Enlace de Hidrógeno , Magnesio/metabolismo , Magnesio/química , Microscopía por Crioelectrón
10.
Anal Chim Acta ; 1317: 342908, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39030009

RESUMEN

BACKGROUND: Sugar phosphates (SPx) play important role in the metabolism of the organism. SPx such as glycerate 3-phosphate, fructose 6-phosphate and glucose 6-phosphate in biological samples have the poor stability, similar structure and low abundance, which make their separation and detection more challenging. METHOD: UiO-66-NH2 and ZrO2 coated SiO2(SBA-15) hard-core-shell adsorbents (UiO-66-NH2@SBA-15 and ZrO2@SBA-15) were synthesized, which were further used for dispersive solid-phase extraction for enriching the SPx in biological samples. The protocol was developed by UiO-66-NH2@SBA-15 and ZrO2@SBA-15 coupled with gas chromatography-mass spectrometry for the detection of trace SPx. The univariate experiment and response surface methodology were used to optimize the adsorption and desorption conditions. RESULTS: The adsorbents showed excellent adsorption capacity and specificity towards SPx, which were proved by adsorption and selective experiments. Under the optimized conditions, there were good linearity within the range of 5.0-5000.0 ng mL-1, low limits of detection (0.001-1.0 ng mL-1), low limits of quantification (0.005-5.0 ng mL-1) and good precision (relative standard deviation less than 14.7 % for intra-day and inter-day). The satisfactory recoveries (89.1-113.8 %) and precision (0.5-14.6 %) were obtained when the sorbents were used to extract SPx from serum, saliva and cell samples. Moreover, UiO-66-NH2@SBA-15 was applied to the quantitative analysis of SPx from gastric cancer patients, because of a higher adsorption capacity (169.5-196.1 mg g-1). CONCLUSIONS: UiO-66-NH2@SBA-15 showed great potential in the extraction of SPx in biological samples, which was beneficial to find out the metabolic change of SPx and explain the pathogenesis of the disease.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Estructuras Metalorgánicas , Dióxido de Silicio , Extracción en Fase Sólida , Circonio , Circonio/química , Extracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Estructuras Metalorgánicas/química , Humanos , Dióxido de Silicio/química , Adsorción , Límite de Detección , Fosfatos/química , Ácidos Ftálicos
11.
J Environ Manage ; 367: 121983, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068782

RESUMEN

The recycling of spent lithium iron phosphate batteries has recently become a focus topic. Consequently, evaluating different spent lithium iron phosphate recycling processes becomes necessary for industrial development. Here, based on multiple perspectives of environment, economy and technology, four typical spent lithium iron phosphate recovery processes (Hydro-A: hydrometallurgical total leaching recovery process; Hydro-B(H2O2/O2): hydrometallurgical selective lithium extraction process; Pyro: Pyrometallurgical recovery process; Direct: Direct regeneration process) were compared comprehensively. The comprehensive evaluation study uses environment, economy and technology as evaluation indicators, and uses the entropy weight method and analytic hierarchy process to couple the comprehensive indicator weights. Results show that the comprehensive evaluation values of Hydro-A, Hydro-B (H2O2), Hydro-B (O2), Pyro and Direct are 0.347, 0.421, 0.442, 0.099 and 0.857, respectively. Therefore, the technological maturity of Direct should be further improved to enable early industrialization. On this basis, this study conducted a quantitative evaluation of the spent lithium iron phosphate recycling process by comprehensively considering environmental, economic and technical factors, providing further guidance for the formulation of recycling processes.


Asunto(s)
Litio , Fosfatos , Reciclaje , Fosfatos/química , Litio/química , Hierro/química
12.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000305

RESUMEN

Nitrosyl iron complexes are remarkably multifactorial pharmacological agents. These compounds have been proven to be particularly effective in treating cardiovascular and oncological diseases. We evaluated and compared the antioxidant activity of tetranitrosyl iron complexes (TNICs) with thiosulfate ligands and dinitrosyl iron complexes (DNICs) with glutathione (DNIC-GS) or phosphate (DNIC-PO4-) ligands in hemoglobin-containing systems. The studied effects included the production of free radical intermediates during hemoglobin (Hb) oxidation by tert-butyl hydroperoxide, oxidative modification of Hb, and antioxidant properties of nitrosyl iron complexes. Measuring luminol chemiluminescence revealed that the antioxidant effect of TNICs was higher compared to DNIC-PO4-. DNIC-GS either did not exhibit antioxidant activity or exerted prooxidant effects at certain concentrations, which might have resulted from thiyl radical formation. TNICs and DNIC-PO4- efficiently protected the Hb heme group from decomposition by organic hydroperoxides. DNIC-GS did not exert any protective effects on the heme group; however, it abolished oxoferrylHb generation. TNICs inhibited the formation of Hb multimeric forms more efficiently than DNICs. Thus, TNICs had more pronounced antioxidant activity than DNICs in Hb-containing systems.


Asunto(s)
Antioxidantes , Hemoglobinas , Hierro , Fosfatos , Tiosulfatos , Tiosulfatos/farmacología , Tiosulfatos/química , Hemoglobinas/metabolismo , Hemoglobinas/química , Hierro/metabolismo , Hierro/química , Fosfatos/química , Fosfatos/metabolismo , Ligandos , Antioxidantes/farmacología , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Oxidación-Reducción/efectos de los fármacos , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/farmacología , Óxidos de Nitrógeno/metabolismo , Glutatión/metabolismo , Animales
13.
J Environ Manage ; 366: 121722, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38991346

RESUMEN

The breeding of livestock raises substantial environmental concerns, especially the efficient management of nutrients and pollution. This research is designed to assess the potency of char and modified char in diluting nutrient concentrations in livestock wastewater. The characteristics of graphene oxide, struvite, and calcium-modified char were inspected, defining their efficacy in both batch and bed-column investigations of nutrient sorption. Various factors, including sorption capacity, time of contact, ion levels, a decrease in ion levels over time, and sorption kinetics, have been considered, along with their appropriateness for respective models. The first evaluation of the options concluded that 600 °C char was better since it exhibited higher removal efficiency. Modified char sorption data at 600 °C was used to adjust the models "PSOM, Langmuir", and "Thomas". The models were applied to both batch and bed-column experiments. The maximum phosphate sorption was 110.8 mg/g, 85.73 mg/g, and 82.46 mg/g for B-GO, B-S, and B-C modified chars respectively, in the batch experiments. The highest phosphate sorption in column experiments, at a flow rate of 400 µl/min, was 51.23 mg per 10 g of sorbent. This corresponds to a sorption rate of 5.123 mg/g. B-GO and B-S modified chars showed higher sorption capacities; this was observed in both the batch and bed-column studies. This displayed the capability of graphene oxide and struvite-modified chars for efficient ion and nutrient uptake, whether in single or multi-ion environments, making them a very good candidate for nutrient filtration in livestock wastewater treatment. Additionally, B-GO char enhanced the sorption of phosphate, resulting in augmented seed germination and seedling growth. These results reveal that B-GO char can be used as a possible substitute for chemical fertilizers.


Asunto(s)
Carbón Orgánico , Ganado , Aguas Residuales , Aguas Residuales/química , Carbón Orgánico/química , Animales , Adsorción , Fosfatos/química , Nutrientes , Grafito/química , Nanocompuestos/química
14.
Acta Crystallogr C Struct Chem ; 80(Pt 8): 440-447, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39046815

RESUMEN

Ruxolitinib {RUX; systematic name: (3R)-3-cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propanenitrile, C17H18N6} is an orally bioavailable JAK1/2 inhibitor approved for treating intermediate- or high-risk myelofibrosis (MF) and high-risk polycythemia vera (PV). Recent patents claim that RUX can exist in many different forms, information for which is important for the clinical utilization of RUX, especially for the formulation and bioavailability of the drug. But there has been no detailed study on its forms so far. Herein crystals of RUX and its dihydrate (RUX-2H; C17H18N6·2H2O) and phosphate (RUX-P; systematic name: 4-{1-[(1R)-2-cyano-1-cyclopentylethyl]-1H-pyrazol-4-yl}-7H-pyrrolo[2,3-d]pyrimidin-3-ium dihydrogen phosphate, C17H19N6+·H2PO4-) were prepared successfully and their structures studied in detail for the first time. Our study shows that the three crystals of RUX differ in the orientation of the pyrimidine ring relative to the pyrazole ring of the RUX molecule, and in their hydrogen-bond interactions. The water molecules in RUX-2H and the dihydrogen phosphate anion in RUX-P enrich the hydrogen-bond networks in these forms. The expected proton transfer occurs in RUX phosphate and the protonated N atom is engaged in a charge-assisted hydrogen bond with the counter-anion. Hydrogen-bonding interactions dominate in the crystal packing of the three forms. The detailed conformations and packing of the three forms were compared through the calculation of both Hirshfeld surfaces and fingerprint plots.


Asunto(s)
Enlace de Hidrógeno , Janus Quinasa 1 , Janus Quinasa 2 , Nitrilos , Fosfatos , Pirazoles , Pirimidinas , Pirimidinas/química , Pirimidinas/farmacología , Pirazoles/química , Pirazoles/farmacología , Nitrilos/química , Cristalografía por Rayos X , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/química , Janus Quinasa 2/metabolismo , Fosfatos/química , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Humanos
15.
Environ Res ; 260: 119618, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39009211

RESUMEN

Lignites are widely available and cost-effective in many countries. Sustainable methods for their utilization drive innovation, potentially advancing environmental sustainability and resource efficiency. In the present study, Fe3O4 (∼25.1 nm) supported on KOH-activated lignite (A-L) displayed 8 times higher phosphate removal than pristine A-L (67.6 mg/g vs. 8.5 mg/g at pH 5, 50 mg of absorbent in 25 mL of 1500 ppm [phosphate]), owing to its abundant Fe3O4 (10 wt% of Fe) nanoparticle content. The removal occurred within ∼2 h, following a pseudo-second-order kinetic model. Across pH levels ranging from 5.0 to 9.0, Fe3O4-A-L's phosphate removal occurs via both chemisorption and precipitation, as evident by kinetic, pH, and XPS analyses. The phosphate adsorption fits better with the Freundlich isotherm. The combined benefits of facile recovery, rapid phosphate uptake, straightforward regeneration, and attractive post-adsorption benefits (e.g., possibly use as a Fe, P-rich fertilizer) make magnetic Fe3O4-A-L a promising candidate for real-world applications. Artificial Neural Network (ANN) modeling indicates an excellent accuracy (R2 = 0.99) in predicting the amount of phosphate removed by Fe3O4-A-L. Sensitivity analysis revealed both temperature and initial concentration as the most influencing factors. Leveraging lignite in environmentally friendly applications not only addresses immediate challenges but also aligns with sustainability goals. The study clearly articulates the potential benefits of utilizing lignite for sustainable phosphate removal and recovery, offering avenues for mitigating environmental concerns while utilizing resources efficiently.


Asunto(s)
Redes Neurales de la Computación , Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Carbón Mineral , Compuestos Férricos/química , Cinética , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos
16.
Environ Sci Technol ; 58(24): 10601-10610, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833530

RESUMEN

The mobility and bioavailability of phosphate in paddy soils are closely coupled to redox-driven Fe-mineral dynamics. However, the role of phosphate during Fe-mineral dissolution and transformations in soils remains unclear. Here, we investigated the transformations of ferrihydrite and lepidocrocite and the effects of phosphate pre-adsorbed to ferrihydrite during a 16-week field incubation in a flooded sandy rice paddy soil in Thailand. For the deployment of the synthetic Fe-minerals in the soil, the minerals were contained in mesh bags either in pure form or after mixing with soil material. In the latter case, the Fe-minerals were labeled with 57Fe to allow the tracing of minerals in the soil matrix with 57Fe Mössbauer spectroscopy. Porewater geochemical conditions were monitored, and changes in the Fe-mineral composition were analyzed using 57Fe Mössbauer spectroscopy and/or X-ray diffraction analysis. Reductive dissolution of ferrihydrite and lepidocrocite played a minor role in the pure mineral mesh bags, while in the 57Fe-mineral-soil mixes more than half of the minerals was dissolved. The pure ferrihydrite was transformed largely to goethite (82-85%), while ferrihydrite mixed with soil only resulted in 32% of all remaining 57Fe present as goethite after 16 weeks. In contrast, lepidocrocite was only transformed to 12% goethite when not mixed with soil, but 31% of all remaining 57Fe was found in goethite when it was mixed with soil. Adsorbed phosphate strongly hindered ferrihydrite transformation to other minerals, regardless of whether it was mixed with soil. Our results clearly demonstrate the influence of the complex soil matrix on Fe-mineral transformations in soils under field conditions and how phosphate can impact Fe oxyhydroxide dynamics under Fe reducing soil conditions.


Asunto(s)
Compuestos Férricos , Oryza , Fosfatos , Suelo , Oryza/química , Fosfatos/química , Suelo/química , Adsorción , Compuestos Férricos/química , Minerales/química , Espectroscopía de Mossbauer , Hierro/química , Oxidación-Reducción
17.
J Mater Sci Mater Med ; 35(1): 33, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900208

RESUMEN

Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (P < 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.


Asunto(s)
Regeneración Ósea , Supervivencia Celular , Vidrio , Fosfatos , Estroncio , Titanio , Estroncio/química , Estroncio/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Fosfatos/química , Fosfatos/farmacología , Vidrio/química , Titanio/química , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales , Zinc/química , Línea Celular , Osteoblastos/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Microtomografía por Rayos X
18.
J Mater Chem B ; 12(26): 6492-6499, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38872610

RESUMEN

Antisense oligonucleotides (ASOs) are molecules used to regulate RNA expression by targeting specific RNA sequences. One specific type of ASO, known as neutralized DNA (nDNA), contains site-specific methyl phosphotriester (MPTE) linkages on the phosphate backbone, changing the negatively charged DNA phosphodiester into a neutralized MPTE with designed locations. While nDNA has previously been employed as a sensitive nucleotide sequencing probe for the PCR, the potential of nDNA in intracellular RNA regulation and gene therapy remains underexplored. Our study aims to evaluate the regulatory capacity of nDNA as an ASO probe in cellular gene expression. We demonstrated that by tuning MPTE locations, partially and intermediately methylated nDNA loaded onto mesoporous silica nanoparticles (MSNs) can effectively knock down the intracellular miRNA, subsequently resulting in downstream mRNA regulation in colorectal cancer cell HCT116. Additionally, the nDNA ASO-loaded MSNs exhibit superior efficacy in reducing miR-21 levels over 72 hours compared to the efficacy of canonical DNA ASO-loaded MSNs. The reduction in the miR-21 level subsequently resulted in the enhanced mRNA levels of tumour-suppressing genes PTEN and PDCD4. Our findings underscore the potential of nDNA in gene therapies, especially in cancer treatment via a fine-tuned methylation location.


Asunto(s)
ADN , MicroARNs , Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Nanopartículas/química , ADN/química , Porosidad , Células HCT116 , Fosfatos/química , Tamaño de la Partícula , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/farmacología , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Propiedades de Superficie , Proteínas de Unión al ARN/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética
19.
Environ Geochem Health ; 46(7): 216, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38941030

RESUMEN

Iron phosphate-based coating and iron silicate-based coating were used to inhibit the oxidation of sulfide minerals in rainy and submerged environments. The inhibiting effectiveness of coating agents on the oxidation of iron sulfide minerals was investigated using pyrite and rock samples resulting from acid drainage. The film formed with both surface-coating agents was identified by pyrite surface analysis. It was also confirmed that the formation of coatings varies depending on the crystallographic orientation. The inhibitory effects under rainy and submerged conditions were investigated using column experiments. Submerged conditions accelerated deterioration compared to that under rainy conditions. Iron phosphate coating had a significantly better oxidation-inhibitory effect (84.86-98.70%) than iron silicate coating (56.80-92.36%), and at a concentration of 300 mM, H+ elution was inhibited by more than 90% throughout the experiment. Furthermore, methods for effective film formation were investigated in terms of producing Fe3+; (1) application of coating agents mixed with oxidant (H2O2), (2) application of coating agent after the use of the oxidant. In a rainy environment, applying iron phosphate-based coating using the sequential method showed oxidation inhibition effects for cycles 1-9, whereas applying the mixed material showed effects for cycles 9-13. The use of a surface-coating agent after applying an oxidant did not inhibit oxidation. The surface coating agent and the oxidizing agent should be applied as a mixture to form a film.


Asunto(s)
Hierro , Oxidación-Reducción , Fosfatos , Silicatos , Silicatos/química , Hierro/química , Fosfatos/química , Lluvia Ácida , Sulfuros/química , Peróxido de Hidrógeno/química , Compuestos Férricos/química
20.
Water Res ; 260: 121912, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875858

RESUMEN

Numerous investigations have illuminated the profound impact of phosphate on the adsorption of uranium, however, the effect of phosphate-mediated surface modification on the reactivity of zero-valent iron (ZVI) remained enigmatic. In this study, a phosphate-modified ZVI (P-ZVIbm) was prepared with a facile ball milling strategy, and compared with ZVIbm, the U(VI) removal amount (435.2 mg/g) and efficiency (3.52×10-3 g·mg-1·min-1) of P-ZVIbm were disclosed nearly 2.0 and 54 times larger than those of ZVIbm respectively. The identification of products revealed that the adsorption mechanism dominated the removal process for ZVIbm, while the reactive modified layer strengthened both the adsorption pattern and reduction performance on P-ZVIbm. DFT calculation result demonstrated that the binding configuration shifted from bidentate binuclear to multidentate configuration, further shortening the Fe-U atomic distance. More importantly, the electron transferred is more accessible through the surface phosphate layer, and selectively donated to U(VI), accounting for the elevated reduction performance of P-ZVIbm. This investigation explicitly underscores the critical role of ZVI's surface microenvironment in the domain of radioactive metal ion mitigation and introduces a novel methodology to amplify the sequestration of U(VI) from aqueous environments.


Asunto(s)
Hierro , Fosfatos , Hierro/química , Fosfatos/química , Adsorción , Uranio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA