Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Endocrinol Metab (Seoul) ; 39(1): 98-108, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38171209

RESUMEN

BACKGRUOUND: Sodium-dependent glucose cotransporter 2 (SGLT2) mediates glucose reabsorption in the renal proximal tubules, and SGLT2 inhibitors are used as therapeutic agents for treating type 2 diabetes mellitus. This study aimed to elucidate the effects and mechanisms of SGLT2 inhibition on hepatic glucose metabolism in both serum deprivation and serum supplementation states. METHODS: Huh7 cells were treated with the SGLT2 inhibitors empagliflozin and dapagliflozin to examine the effect of SGLT2 on hepatic glucose uptake. To examine the modulation of glucose metabolism by SGLT2 inhibition under serum deprivation and serum supplementation conditions, HepG2 cells were transfected with SGLT2 small interfering RNA (siRNA), cultured in serum-free Dulbecco's modified Eagle's medium for 16 hours, and then cultured in media supplemented with or without 10% fetal bovine serum for 8 hours. RESULTS: SGLT2 inhibitors dose-dependently decreased hepatic glucose uptake. Serum deprivation increased the expression levels of the gluconeogenesis genes peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), glucose 6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (PEPCK), and their expression levels during serum deprivation were further increased in cells transfected with SGLT2 siRNA. SGLT2 inhibition by siRNA during serum deprivation induces nuclear localization of the transcription factor forkhead box class O 1 (FOXO1), decreases nuclear phosphorylated-AKT (p-AKT), and p-FOXO1 protein expression, and increases phosphorylated-adenosine monophosphate-activated protein kinase (p-AMPK) protein expression. However, treatment with the AMPK inhibitor, compound C, reversed the reduction in the protein expression levels of nuclear p- AKT and p-FOXO1 and decreased the protein expression levels of p-AMPK and PEPCK in cells transfected with SGLT2 siRNA during serum deprivation. CONCLUSION: These data show that SGLT2 mediates glucose uptake in hepatocytes and that SGLT2 inhibition during serum deprivation increases gluconeogenesis via the AMPK/AKT/FOXO1 signaling pathway.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Gluconeogénesis/genética , Glucosa , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal , Sodio/metabolismo , Sodio/farmacología , Sodio/uso terapéutico , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/farmacología , Transportador 2 de Sodio-Glucosa/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
2.
Proteins ; 91(9): 1261-1275, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37226637

RESUMEN

Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.


Asunto(s)
Propionibacterium freudenreichii , Fosfoenolpiruvato , Propionibacterium freudenreichii/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Ácido Oxaloacético/química , Guanosina Trifosfato , Nucleótidos , Adenosina Trifosfato , Cinética
3.
Cancer Med ; 12(2): 1588-1601, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35757841

RESUMEN

BACKGROUND: Tumor cells may aberrantly express metabolic enzymes to adapt to their environment for survival and growth. Targeting cancer-specific metabolic enzymes is a potential therapeutic strategy. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and links the tricarboxylic acid cycle and glycolysis/gluconeogenesis. Mitochondrial PEPCK (PEPCK-M), encoded by PCK2, is an isozyme of PEPCK and is distributed in mitochondria. Overexpression of PCK2 has been identified in many human cancers and demonstrated to be important for the survival program initiated upon metabolic stress in cancer cells. We evaluated the expression status of PEPCK-M and investigated the function of PEPCK-M in breast cancer. METHODS: We checked the expression status of PEPCK-M in breast cancer samples by immunohistochemical staining. We knocked down or overexpressed PCK2 in breast cancer cell lines to investigate the function of PEPCK-M in breast cancer. RESULTS: PEPCK-M was highly expressed in estrogen receptor-positive (ER+ ) breast cancers. Decreased cell proliferation and G0 /G1 arrest were induced in ER+ breast cancer cell lines by knockdown of PCK2. PEPCK-M promoted the activation of mTORC1 downstream signaling molecules and the E2F1 pathways in ER+ breast cancer. In addition, glucose uptake, intracellular glutamine levels, and mTORC1 pathways activation by glucose and glutamine in ER+ breast cancer were attenuated by PCK2 knockdown. CONCLUSION: PEPCK-M promotes proliferation and cell cycle progression in ER+ breast cancer via upregulation of the mTORC1 and E2F1 pathways. PCK2 also regulates nutrient status-dependent mTORC1 pathway activation in ER+ breast cancer. Further studies are warranted to understand whether PEPCK-M is a potential therapeutic target for ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Receptores de Estrógenos , Humanos , Femenino , Fosfoenolpiruvato/metabolismo , Receptores de Estrógenos/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Glutamina/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
4.
Int J Oral Sci ; 14(1): 54, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376276

RESUMEN

As an important enzyme for gluconeogenesis, mitochondrial phosphoenolpyruvate carboxykinase (PCK2) has further complex functions beyond regulation of glucose metabolism. Here, we report that conditional knockout of Pck2 in osteoblasts results in a pathological phenotype manifested as craniofacial malformation, long bone loss, and marrow adipocyte accumulation. Ablation of Pck2 alters the metabolic pathways of developing bone, particularly fatty acid metabolism. However, metformin treatment can mitigate skeletal dysplasia of embryonic and postnatal heterozygous knockout mice, at least partly via the AMPK signaling pathway. Collectively, these data illustrate that PCK2 is pivotal for bone development and metabolic homeostasis, and suggest that regulation of metformin-mediated signaling could provide a novel and practical strategy for treating metabolic skeletal dysfunction.


Asunto(s)
Metformina , Ratones , Animales , Metformina/farmacología , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Gluconeogénesis/genética , Ratones Noqueados
5.
J Cell Physiol ; 237(11): 4262-4274, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36125908

RESUMEN

Obesity is a worldwide health problem and is directly associated with insulin resistance and type 2 diabetes. The liver is an important organ for the control of healthy glycemic levels, since insulin resistance in this organ reduces phosphorylation of forkhead box protein 1 (FOXO1) protein, leading to higher hepatic glucose production (HGP) and fasting hyperglycemia. Aerobic physical training is known as an important strategy in increasing the insulin action in the liver by increasing FOXO1 phosphorylation and reducing gluconeogenesis. However, little is known about the effects of strength training in this context. This study aimed to investigate the effects of short-term strength training on hepatic insulin sensitivity and glycogen synthase kinase-3ß (GSK3ß) and FOXO1 phosphorylation in obese (OB) mice. To achieve this goal, OB Swiss mice performed the strength training protocol (one daily session for 15 days). Short-term strength training increased the phosphorylation of protein kinase B and GSK3ß in the liver after insulin stimulus and improved the control of HGP during the pyruvate tolerance test. On the other hand, sedentary OB animals reduced FOXO1 phosphorylation and increased the levels of nuclear FOXO1 in the liver, increasing the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) content. The bioinformatics analysis also showed positive correlations between hepatic FOXO1 levels and gluconeogenic genes, reinforcing our findings. However, strength-trained animals reverted to this scenario, regardless of body adiposity changes. In conclusion, short-term strength training is an efficient strategy to enhance the insulin action in the liver of OB mice, contributing to glycemic control by reducing the activity of hepatic FOXO1 and lowering PEPCK and G6Pase contents.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Entrenamiento de Fuerza , Ratones , Humanos , Animales , Ratones Obesos , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Hígado/metabolismo , Insulina/metabolismo , Obesidad/genética , Obesidad/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Ratones Endogámicos C57BL
6.
Cell Death Dis ; 13(8): 730, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002449

RESUMEN

On glucose restriction, epithelial cells can undergo entosis, a cell-in-cell cannibalistic process, to allow considerable withstanding to this metabolic stress. Thus, we hypothesized that reduced protein glycosylation might participate in the activation of this cell survival pathway. Glucose deprivation promoted entosis in an MCF7 breast carcinoma model, as evaluated by direct inspection under the microscope, or revealed by a shift to apoptosis + necrosis in cells undergoing entosis treated with a Rho-GTPase kinase inhibitor (ROCKi). In this context, curbing protein glycosylation defects with N-acetyl-glucosamine partially rescued entosis, whereas limiting glycosylation in the presence of glucose with tunicamycin or NGI-1, but not with other unrelated ER-stress inducers such as thapsigargin or amino-acid limitation, stimulated entosis. Mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M; PCK2) is upregulated by glucose deprivation, thereby enhancing cell survival. Therefore, we presumed that PEPCK-M could play a role in this process by offsetting key metabolites into glycosyl moieties using alternative substrates. PEPCK-M inhibition using iPEPCK-2 promoted entosis in the absence of glucose, whereas its overexpression inhibited entosis. PEPCK-M inhibition had a direct role on total protein glycosylation as determined by Concanavalin A binding, and the specific ratio of fully glycosylated LAMP1 or E-cadherin. The content of metabolites, and the fluxes from 13C-glutamine label into glycolytic intermediates up to glucose-6-phosphate, and ribose- and ribulose-5-phosphate, was dependent on PEPCK-M content as measured by GC/MS. All in all, we demonstrate for the first time that protein glycosylation defects precede and initiate the entosis process and implicates PEPCK-M in this survival program to dampen the consequences of glucose deprivation. These results have broad implications to our understanding of tumor metabolism and treatment strategies.


Asunto(s)
Neoplasias de la Mama , Entosis , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Femenino , Glucosa/metabolismo , Glicosilación , Humanos
7.
Int J Biol Sci ; 18(13): 5154-5167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982907

RESUMEN

Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (GSE28829, GSE43292, GSE100927, and GSE120521), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis.


Asunto(s)
Aterosclerosis , Fosfoenolpiruvato Carboxiquinasa (ATP) , Placa Aterosclerótica , Animales , Aterosclerosis/metabolismo , Movimiento Celular , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo
8.
IUBMB Life ; 74(9): 896-907, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35580079

RESUMEN

Cell cycle arrest, one of the main characteristics of cellular senescence, has been described as a crucial barrier that needs to be bypassed for cancer progression. Typically, cellular senescence can be induced by multiple stresses including telomere shortening, oncogenic activation as well as therapy treatment, and contributes to the inhibition of epithelial-mesenchymal transition (EMT), tumor suppression or progression depending on the senescence-associated secretory phenotype (SASP) components. However, the mechanisms underlying cancer cell senescence remain partially understood. Here, according to METABRIC database, we identified that patients with senescent-like breast tumors show better short-term survival, lower tendency of neoplasm histological grades, lower tumor stages, and negative status of estrogen receptor (ER) and progesterone receptor (PR) compared with non-senescent ones. Interestingly, Kyoto encyclopedia of genes and genomes (KEGG) analysis identified insulin signaling was significantly repressed in senescent breast tumors. Further verification in cultured breast cancer cells indicated that phosphoenolpyruvate carboxykinase 2 (PCK2) was significantly inhibited after therapy treatment. In addition, knockdown of PCK2 induced a senescent phenotype of breast cancer cells. Moreover, comparing with the non-senescent group, the senescent breast cancers displayed lower EMT capacity both in patients and breast cancer cell lines after knocking down PCK2. In conclusion, we described for the first time that low expression level of PCK2 may contribute to better prognosis via triggering senescent phenotype and thereby inhibiting EMT capacity in breast cancers.


Asunto(s)
Neoplasias de la Mama/metabolismo , Senescencia Celular , Transición Epitelial-Mesenquimal , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Neoplasias de la Mama/patología , Humanos , Células MCF-7 , Fosfoenolpiruvato , Receptores de Estrógenos
9.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35457131

RESUMEN

The balance between oxidative phosphorylation and glycolysis is important for cancer cell growth and survival, and changes in energy metabolism are an emerging therapeutic target. Adenylate kinase (AK) regulates adenine nucleotide metabolism, maintaining intracellular nucleotide metabolic homeostasis. In this study, we focused on AK3, the isozyme localized in the mitochondrial matrix that reversibly mediates the following reaction: Mg2+ GTP + AMP ⇌ Mg2+ GDP + ADP. Additionally, we analyzed AK3-knockout (KO) HeLa cells, which showed reduced proliferation and were detected at an increased number in the G1 phase. A metabolomic analysis showed decreased ATP; increased glycolytic metabolites such as glucose 6 phosphate (G6P), fructose 6 phosphate (F6P), and phosphoenolpyruvate (PEP); and decreased levels of tricarboxylic acid (TCA) cycle metabolites in AK3KO cells. An intracellular ATP evaluation of AK3KO HeLa cells transfected with ATeam plasmid, an ATP sensor, showed decreased whole cell levels. Levels of mitochondrial DNA (mtDNA), a complementary response to mitochondrial failure, were increased in AK3KO HeLa cells. Oxidative stress levels increased with changes in gene expression, evidenced as an increase in related enzymes such as superoxide dismutase 2 (SOD2) and SOD3. Phosphoenolpyruvate carboxykinase 2 (PCK2) expression and PEP levels increased, whereas PCK2 inhibition affected AK3KO HeLa cells more than wild-type (WT) cells. Therefore, we concluded that increased PCK2 expression may be complementary to increased GDP, which was found to be deficient through AK3KO. This study demonstrated the importance of AK3 in mitochondrial matrix energy metabolism.


Asunto(s)
Adenilato Quinasa , Isoenzimas , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Metabolismo Energético , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo
10.
Biochem Biophys Res Commun ; 586: 121-128, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839190

RESUMEN

Postoperative fatigue (POF) is the most common and long-lasting complication after surgery, which brings heavy burden to individuals and society. Recently, hastening postoperative recovery receives increasing attention, but unfortunately, the mechanisms underlying POF remain unclear. Propofol is a wildly used general anesthetic in clinic, and inspired by the rapid antidepressant effects induced by ketamine at non-anesthetic dose, the present study was undertaken to investigate the anti-fatigue effects and underlying mechanisms of propofol at a non-anesthetic dose in 70% hepatectomy induced POF model in rats. We first showed here that single administration of propofol at 0.1 mg/kg ameliorated acute POF in hepatectomy induced POF rats. Based on metabonomics analysis, we hypothesized that propofol exerted anti-fatigue activity in POF rats by facilitating free fatty acid (FFA) oxidation and gluconeogenesis. We further confirmed that propofol restored the deficit in FFA oxidation and gluconeogenesis in POF rats, as evidenced by the elevated FFA utilization, acetyl coenzyme A content, pyruvic acid content, phosphoenolpyruvic acid content, hepatic glucose output and glycogen storage. Moreover, propofol stimulated glucagon secretion and up-regulated expression of cAMP-response element binding protein (CREB), phosphorylated CREB, peroxlsome prolifeator-activated receptor-γ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinade1 and carnitine palmitoltransferase 1A. In summary, our study suggests for the first time that propofol ameliorates acute POF by promoting glucagon-regulated gluconeogenesis via CREB/PGC-1α signaling and accelerating FFA beta-oxidation.


Asunto(s)
Fatiga/prevención & control , Ácidos Grasos no Esterificados/metabolismo , Gluconeogénesis/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Hígado/efectos de los fármacos , Propofol/farmacología , Acetilcoenzima A/metabolismo , Animales , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Fatiga/genética , Fatiga/metabolismo , Fatiga/fisiopatología , Regulación de la Expresión Génica , Gluconeogénesis/genética , Hepatectomía/métodos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Hígado/cirugía , Masculino , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Complicaciones Posoperatorias/genética , Complicaciones Posoperatorias/metabolismo , Complicaciones Posoperatorias/fisiopatología , Ácido Pirúvico/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Cells ; 10(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34943788

RESUMEN

The liver is among the principal organs for glucose homeostasis and metabolism. Studies of liver metabolism are limited by the inability to expand primary hepatocytes in vitro while maintaining their metabolic functions. Human hepatic three-dimensional (3D) organoids have been established using defined factors, yet hepatic organoids from adult donors showed impaired expansion. We examined conditions to facilitate the expansion of adult donor-derived hepatic organoids (HepAOs) and HepG2 cells in organoid cultures (HepGOs) using combinations of growth factors and small molecules. The expansion dynamics, gluconeogenic and HNF4α expression, and albumin secretion are assessed. The conditions tested allow the generation of HepAOs and HepGOs in 3D cultures. Nevertheless, gluconeogenic gene expression varies greatly between conditions. The organoid expansion rates are limited when including the TGFß inhibitor A8301, while are relatively higher with Forskolin (FSK) and Oncostatin M (OSM). Notably, expanded HepGOs grown in the optimized condition maintain detectable gluconeogenic expression in a spatiotemporal distribution at 8 weeks. We present optimized conditions by limiting A8301 and incorporating FSK and OSM to allow the expansion of HepAOs from adult donors and HepGOs with gluconeogenic competence. These models increase the repertoire of human hepatic cellular tools available for use in liver metabolic assays.


Asunto(s)
Bioensayo/métodos , Técnicas de Cultivo de Célula , Hepatocitos/metabolismo , Hígado/metabolismo , Organoides/metabolismo , Adulto , Albúminas/metabolismo , Biomarcadores/metabolismo , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Medios de Cultivo/farmacología , Congelación , Glucosa-6-Fosfatasa/metabolismo , Células Hep G2 , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Organoides/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo
12.
Nutrients ; 13(12)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34959930

RESUMEN

Theaflavin-3,3'-digallate (TF3) is the most important theaflavin monomer in black tea. TF3 was proved to reduce blood glucose level in mice and rats. However, the elaborate anti-diabetic mechanism was not well elucidated. In this work, human hepatoma G2 (HepG2) cells and zebrafish (Danio rerio) were used simultaneously to reveal anti-diabetic effect of TF3. The results showed that TF3 could effectively rise glucose absorption capacity in insulin-resistant HepG2 cells and regulate glucose level in diabetic zebrafish. The hypoglycemic effect was mediated through down-regulating phosphoenolpyruvate carboxykinase and up-regulating glucokinase. More importantly, TF3 could significantly improve ß cells regeneration in diabetic zebrafish at low concentrations (5 µg/mL and 10 µg/mL), which meant TF3 had a strong anti-diabetic effect. Obviously, this work provided the potential benefit of TF3 on hypoglycemic effect, regulating glucose metabolism enzymes, and protecting ß cells. TF3 might be a promising agent for combating diabetes.


Asunto(s)
Biflavonoides/farmacología , Catequina/análogos & derivados , Evaluación Preclínica de Medicamentos/métodos , Hipoglucemiantes , Animales , Biflavonoides/aislamiento & purificación , Catequina/aislamiento & purificación , Catequina/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Glucoquinasa/metabolismo , Glucosa/metabolismo , Células Hep G2 , Humanos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Té/química , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra
13.
Cell Death Dis ; 12(10): 918, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620839

RESUMEN

Pancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Adulto , Anciano , Animales , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Free Radic Biol Med ; 176: 34-45, 2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34520823

RESUMEN

Cancer cells frequently lack nutrients like glucose, due to insufficient vascular networks. Mitochondrial phosphoenolpyruvate carboxykinase, PCK2, has recently been found to mediate partial gluconeogenesis and hence anabolic metabolism in glucose starved cancer cells. Here we show that PCK2 acts as a regulator of mitochondrial respiration and maintains the redox balance in nutrient-deprived human lung cancer cells. PCK2 silencing increased the abundance and interconversion of tricarboxylic acid (TCA) cycle intermediates, augmented mitochondrial respiration and enhanced glutathione oxidation under glucose and serum starvation, in a PCK2 re-expression reversible manner. Moreover, enhancing the TCA cycle by PCK2 inhibition severely reduced colony formation of lung cancer cells under starvation. As a conclusion, PCK2 contributes to maintaining a reduced glutathione pool in starved cancer cells besides mediating the biosynthesis of gluconeogenic/glycolytic intermediates. The study sheds light on adaptive responses in cancer cells to nutrient deprivation and shows that PCK2 confers protection against respiration-induced oxidative stress.


Asunto(s)
Neoplasias Pulmonares , Gluconeogénesis , Humanos , Neoplasias Pulmonares/genética , Oxidación-Reducción , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Respiración
15.
FEBS J ; 288(23): 6683-6699, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34227245

RESUMEN

Oncogenic mutations in the KRAS gene are found in 30-50% of colorectal cancers (CRC), and recent findings have demonstrated independent and nonredundant roles for wild-type and mutant KRAS alleles in governing signaling and metabolism. Here, we quantify proteomic changes manifested by KRAS mutation and KRAS allele loss in isogenic cell lines. We show that the expression of KRASG13D upregulates aspartate metabolizing proteins including PCK1, PCK2, ASNS, and ASS1. Furthermore, differential expression analyses of transcript-level data from CRC tumors identified the upregulation of urea cycle enzymes in CRC. We find that expression of ASS1 supports colorectal cancer cell proliferation and promotes tumor formation in vitro. We show that loss of ASS1 can be rescued with high levels of several metabolites.


Asunto(s)
Ácido Aspártico/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/genética , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/metabolismo , Ácido Aspártico/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolómica/métodos , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
16.
EMBO J ; 40(15): e106800, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34156108

RESUMEN

How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.


Asunto(s)
Arabidopsis/efectos de los fármacos , Dipéptidos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Nicotiana/efectos de los fármacos , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulación por Computador , Dipéptidos/química , Dipéptidos/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Plantones/efectos de los fármacos , Plantones/metabolismo , Nicotiana/metabolismo
17.
Sci Rep ; 11(1): 11367, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059756

RESUMEN

Recent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


Asunto(s)
Dieta Alta en Grasa , Gluconeogénesis/fisiología , Riñón/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ATPasas de Translocación de Protón/fisiología , Receptores de Superficie Celular/fisiología , Animales , Glucemia/análisis , Peso Corporal , Fructosa-Bifosfatasa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Riñón/enzimología , Ratones , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , ATPasas de Translocación de Protón/genética , Piruvato Quinasa/metabolismo , ARN Mensajero/genética , Receptores de Superficie Celular/genética
18.
Bioorg Chem ; 114: 105113, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175718

RESUMEN

From the 95% aqueous ethanol extract of Murraya microphylla, five pairs of new carbazole alkaloid enantiomers, (+/-)-microphylines N-R (1a/1b-5a/5b), were isolated, together with 20 known carbazole alkaloids. The structures of the new compounds were determined by the HRMS and NMR spectroscopic data, along with the calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. The known compound (+)-mahanine (21) showed significant cytotoxicities against Du145, HepG2, HeLa, and HCT-116 cell lines, and its possible mechanism was deduced to target on phosphoenolpyruvate carboxykinase 2 (PCK2) protein via surface plasmon resonance (SPR) and molecular docking.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos/farmacología , Carbazoles/farmacología , Inhibidores Enzimáticos/farmacología , Murraya/química , Fosfoenolpiruvato Carboxiquinasa (ATP)/antagonistas & inhibidores , Alcaloides/química , Alcaloides/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Carbazoles/química , Carbazoles/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Relación Estructura-Actividad
19.
Cancer Lett ; 519: 46-62, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34166767

RESUMEN

Sorafenib and lenvatinib are approved first-line targeted therapies for advanced liver cancer, but most patients develop acquired resistance. Herein, we found that sorafenib induced extensive acetylation changes towards a more energetic metabolic phenotype. Metabolic adaptation was mediated via acetylation of the Lys-491 (K491) residue of phosphoenolpyruvate carboxykinase isoform 2 (PCK2) (PCK2-K491) and Lys-473 (K473) residue of PCK1 (PCK1-K473) by the lysine acetyltransferase 8 (KAT8), resulting in isoenzyme transition from cytoplasmic PCK1 to mitochondrial PCK2. KAT8-catalyzed PCK2 acetylation at K491 impeded lysosomal degradation to increase the level of PCK2 in resistant cells. PCK2 inhibition in sorafenib-resistant cells significantly reversed drug resistance in vitro and in vivo. High levels of PCK2 predicted a shorter progression-free survival time in patients who received sorafenib treatment. Therefore, acetylation-induced isoenzyme transition from PCK1 to PCK2 contributes to resistance to systemic therapeutic drugs in liver cancer. PCK2 may be an emerging target for delaying tumor recurrence.


Asunto(s)
Isoenzimas/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Acetilación/efectos de los fármacos , Adaptación Fisiológica/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Citoplasma/metabolismo , Células HEK293 , Células Hep G2 , Histona Acetiltransferasas/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Compuestos de Fenilurea/farmacología , Supervivencia sin Progresión , Quinolinas/farmacología , Sorafenib/farmacología
20.
Curr Genet ; 67(6): 857-863, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34100129

RESUMEN

Stress granule (SG) assembly is a conserved cellular strategy that copes with stress-related damage and promotes cell survival. SGs form through a process of liquid-liquid phase separation. Cellular signaling also appears to employ SG assembly as a mechanism for controlling cell survival and cell death by spatial compartmentalization of signal-transducing factors. While several lines of evidence highlight the importance of SGs as signaling hubs, where protein components of signaling pathways can be temporarily sequestered, shielded from the cytoplasm, the regulation and physiological significance of SGs in this aspect remain largely obscure. A recent study of the heat-shock response in the fission yeast Schizosaaccharomyces pombe provides an unexpected answer to this question. Recently, we demonstrated that the PKC orthologue Pck2 in fission yeast translocates into SGs through phase separation in a PKC kinase activity-dependent manner upon high-heat stress (HHS). Importantly, the downstream MAPK Pmk1 promotes Pck2 recruitment into SGs, which intercepts MAPK hyperactivation and cell death, thus posing SGs as a negative feedback circuit in controlling MAPK signaling. Intriguingly, HHS, but not modest-heat stress targets Pck2 to SGs, independent of canonical SG machinery. Finally, cells fail to activate MAPK signaling when Pck2 is sequestrated into SGs. In this review, we will discuss how SGs have a role as signaling hubs beyond serving as a repository for non-translated mRNAs during acute stress.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteína Quinasa C/metabolismo , Transducción de Señal , Gránulos de Estrés/metabolismo , Estrés Fisiológico , Proteínas Portadoras , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA