Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Exp Parasitol ; 251: 108574, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37353138

RESUMEN

Per-ARNT-Sim (PAS) domains constitute a family of domains present in a wide variety of prokaryotic and eukaryotic organisms. They form part of the structure of various proteins involved in diverse cellular processes. Regulation of enzymatic activity and adaptation to environmental conditions, by binding small ligands, are the main functions attributed to PAS-containing proteins. Recently, genes for a diverse set of proteins with a PAS domain were identified in the genomes of several protists belonging to the group of kinetoplastids, however, until now few of these proteins have been characterized. In this work, we characterize a phosphoglycerate kinase containing a PAS domain present in Trypanosoma cruzi (TcPAS-PGK). This PGK isoform is an active enzyme of 58 kDa with a PAS domain located at its N-terminal end. We identified the protein's localization within glycosomes of the epimastigote form of the parasite by differential centrifugation and selective permeabilization of its membranes with digitonin, as well as in an enriched mitochondrial fraction. Heterologous expression systems were developed for the protein with the N-terminal PAS domain (PAS-PGKc) and without it (PAS-PGKt), and the substrate affinities of both forms of the protein were determined. The enzyme does not exhibit standard Michaelis-Menten kinetics. When evaluating the dependence of the specific activity of the recombinant PAS-PGK on the concentration of its substrates 3-phosphoglycerate (3PGA) and ATP, two peaks of maximal activity were found for the complete enzyme with the PAS domain and a single peak for the enzyme without the domain. Km values measured for 3PGA were 219 ± 26 and 8.8 ± 1.3 µM, and for ATP 291 ± 15 and 38 ± 2.2 µM, for the first peak of PAS-PGKc and for PAS-PGKt, respectively, whereas for the second PAS-PGKc peak values of approximately 1.1-1.2 mM were estimated for both substrates. Both recombinant proteins show inhibition by high concentrations of their substrates, ATP and 3PGA. The presence of hemin and FAD exerts a stimulatory effect on PAS-PGKc, increasing the specific activity by up to 55%. This stimulation is not observed in the absence of the PAS domain. It strongly suggests that the PAS domain has an important function in vivo in T. cruzi in the modulation of the catalytic activity of this PGK isoform. In addition, the PAS-PGK through its PAS and PGK domains could act as a sensor for intracellular conditions in the parasite to adjust its intermediary metabolism.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Humanos , Fosfoglicerato Quinasa/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Adenosina Trifosfato/metabolismo
2.
J Biomol Struct Dyn ; 41(19): 10059-10069, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36455998

RESUMEN

In the glycolysis pathway, phosphoglycerate kinase 1 (PGK1) transfers one phosphoryl-group from 1,3-diphosphoglycerate (1,3BPG) to ADP to product 3-phosphoglycerate (3PG) and ATP. The catalytic process is accompanied with the conversion between the open conformation and the closed conformation of PGK1. However, the dynamic collaboration mechanism between the PGK1 conformation transition and the products releasing process remains poorly understood. Here using molecular dynamics simulations combined with molecular mechanics generalized born surface area (MM/GBSA) analysis, we demonstrated that PGK1 in the closed conformation first releases the product ATP to reach a semi-open conformation, and releases the product 3PG to achieve the full open conformation, which could accept new substrates ADP and 1,3BPG for the next cycle. It is noteworthy that the phosphorylation of PGK1 at T243 causes the loop region (residues L248-E260) flip outside the protein, and the phosphorylation of Y324 leads PGK1 become looser. Both modifications cause the exposure of the ADP/ATP binding site, which was beneficial for the substrates/products binding/releasing of PGK1. In addition, the other post translational modifications (PTMs) were also able to regulate the ligands binding/releasing with different effects. Our results revealed the dynamic cooperative molecular mechanism of PGK1 conformational transition with products releasing, as well as the influence of PTMs, which would contribute to the understanding of PGK1 substrates/products conversion process and the development of small molecule drugs targeting PGK1.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Fosfoglicerato Quinasa , Transducción de Señal , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/metabolismo
3.
Bull Cancer ; 109(12): 1298-1307, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36096942

RESUMEN

Phosphoglycerate kinase 1 (PGK1) catalyzes the conversion of 1,3-bisphosphoglyceride (1,3-BPG) and ADP into 3-phosphate (3-PG) and ATP, which is a key process of glycolysis. PGK1 is considered a major regulator of various events, including one-carbon metabolism, serine biosynthesis and cell redox regulation. In the past decade, PGK1 has been found to be closely associated with various malignancies, making it a potential therapeutic target. PGK1 is involved in a series of biological processes related to tumorigenesis through post-translational modifications and various signaling pathways. PGK1 not only can participate in glucose metabolism but also acts as a protein kinase to participate in EMT, autophagy, angiogenesis, DNA replication and other processes related to tumor development. However, PGK1 also acts as a disulfide reductase to inhibit tumor by affecting angiogenesis. Exploring the structure, function and posttranslational modification of PGK1 will be helpful in further understanding the effect of metabolism on tumor progression. This manuscript reviews the role and mechanism of PGK1 in human malignancies, providing the theoretical basis for PGK1 as a possible clinical anticancer target.


Asunto(s)
Neoplasias , Fosfoglicerato Quinasa , Humanos , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Neoplasias/metabolismo , Glucólisis , Carcinogénesis , Transducción de Señal
4.
Biochemistry (Mosc) ; 86(8): 976-991, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34488574

RESUMEN

The genetic code sets the correspondence between the sequence of a given nucleotide triplet in an mRNA molecule, called a codon, and the amino acid that is added to the growing polypeptide chain during protein synthesis. With four bases (A, G, U, and C), there are 64 possible triplet codons: 61 sense codons (encoding amino acids) and 3 nonsense codons (so-called, stop codons that define termination of translation). In most organisms, there are 20 common/standard amino acids used in protein synthesis; thus, the genetic code is redundant with most amino acids (with the exception of Met and Trp) are being encoded by more than one (synonymous) codon. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in mRNA suggested that the specific codon choice might have functional implications beyond coding for amino acid. Observation of nonequivalent use of codons in mRNAs implied a possibility of the existence of auxiliary information in the genetic code. Indeed, it has been found that genetic code contains several layers of such additional information and that synonymous codons are strategically placed within mRNAs to ensure a particular translation kinetics facilitating and fine-tuning co-translational protein folding in the cell via step-wise/sequential structuring of distinct regions of the polypeptide chain emerging from the ribosome at different points in time. This review summarizes key findings in the field that have identified the role of synonymous codons and their usage in protein folding in the cell.


Asunto(s)
Codón/metabolismo , Biosíntesis de Proteínas , Pliegue de Proteína , Animales , Escherichia coli , Código Genético , Humanos , Ratones , Péptidos/metabolismo , Fosfoglicerato Quinasa/química , Proteínas/química , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae
5.
J Phys Chem Lett ; 12(11): 2805-2808, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33710900

RESUMEN

Protein function may be modulated by an event occurring far away from the functional site, a phenomenon termed allostery. While classically allostery involves conformational changes, we recently observed that charge redistribution within an antibody can also lead to an allosteric effect, modulating the kinetics of binding to target antigen. In the present work, we study the association of a polyhistidine tagged enzyme (phosphoglycerate kinase, PGK) to surface-immobilized anti-His antibodies, finding a significant Charge-Reorganization Allostery (CRA) effect. We further observe that PGK's negatively charged nucleotide substrates modulate CRA substantially, even though they bind far away from the His-tag-antibody interaction interface. In particular, binding of ATP reduces CRA by more than 50%. The results indicate that CRA is affected by the binding of charged molecules to a protein and provide further insight into the significant role that charge redistribution can play in protein function.


Asunto(s)
Fosfoglicerato Quinasa/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Anticuerpos/inmunología , Reacciones Antígeno-Anticuerpo , Histidina/genética , Histidina/inmunología , Histidina/metabolismo , Oligopéptidos/genética , Oligopéptidos/inmunología , Oligopéptidos/metabolismo , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Conformación Proteica , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
6.
Open Biol ; 10(11): 200302, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33234025

RESUMEN

Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or 'dead' enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.


Asunto(s)
Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/metabolismo , Sitios de Unión , Catálisis , Activación Enzimática , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Humanos , Kinetoplastida/clasificación , Kinetoplastida/enzimología , Kinetoplastida/genética , Modelos Moleculares , Fosfoglicerato Quinasa/genética , Filogenia , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
7.
J Biol Chem ; 295(19): 6425-6446, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32217690

RESUMEN

Phosphoglycerate kinase 1 (PGK1) plays important roles in glycolysis, yet its forward reaction kinetics are unknown, and its role especially in regulating cancer cell glycolysis is unclear. Here, we developed an enzyme assay to measure the kinetic parameters of the PGK1-catalyzed forward reaction. The Km values for 1,3-bisphosphoglyceric acid (1,3-BPG, the forward reaction substrate) were 4.36 µm (yeast PGK1) and 6.86 µm (human PKG1). The Km values for 3-phosphoglycerate (3-PG, the reverse reaction substrate and a serine precursor) were 146 µm (yeast PGK1) and 186 µm (human PGK1). The Vmax of the forward reaction was about 3.5- and 5.8-fold higher than that of the reverse reaction for the human and yeast enzymes, respectively. Consistently, the intracellular steady-state concentrations of 3-PG were between 180 and 550 µm in cancer cells, providing a basis for glycolysis to shuttle 3-PG to the serine synthesis pathway. Using siRNA-mediated PGK1-specific knockdown in five cancer cell lines derived from different tissues, along with titration of PGK1 in a cell-free glycolysis system, we found that the perturbation of PGK1 had no effect or only marginal effects on the glucose consumption and lactate generation. The PGK1 knockdown increased the concentrations of fructose 1,6-bisphosphate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, and 1,3-BPG in nearly equal proportions, controlled by the kinetic and thermodynamic states of glycolysis. We conclude that perturbation of PGK1 in cancer cells insignificantly affects the conversion of glucose to lactate in glycolysis.


Asunto(s)
Glucólisis , Proteínas de Neoplasias , Neoplasias , Fosfoglicerato Quinasa , Células A549 , Ácidos Difosfoglicéricos/química , Ácidos Difosfoglicéricos/metabolismo , Glucosa/química , Glucosa/metabolismo , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Células HeLa , Humanos , Cinética , Ácido Láctico/química , Ácido Láctico/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/química , Neoplasias/metabolismo , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 11(1): 36, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911580

RESUMEN

Many cancer cells display enhanced glycolysis and suppressed mitochondrial metabolism. This phenomenon, known as the Warburg effect, is critical for tumor development. However, how cancer cells coordinate glucose metabolism through glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle is largely unknown. We demonstrate here that phosphoglycerate kinase 1 (PGK1), the first ATP-producing enzyme in glycolysis, is reversibly and dynamically modified with O-linked N-acetylglucosamine (O-GlcNAc) at threonine 255 (T255). O-GlcNAcylation activates PGK1 activity to enhance lactate production, and simultaneously induces PGK1 translocation into mitochondria. Inside mitochondria, PGK1 acts as a kinase to inhibit pyruvate dehydrogenase (PDH) complex to reduce oxidative phosphorylation. Blocking T255 O-GlcNAcylation of PGK1 decreases colon cancer cell proliferation, suppresses glycolysis, enhances the TCA cycle, and inhibits tumor growth in xenograft models. Furthermore, PGK1 O-GlcNAcylation levels are elevated in human colon cancers. This study highlights O-GlcNAcylation as an important signal for coordinating glycolysis and the TCA cycle to promote tumorigenesis.


Asunto(s)
Acetilglucosamina/metabolismo , Ciclo del Ácido Cítrico , Neoplasias del Colon/enzimología , Glucólisis , Fosfoglicerato Quinasa/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Masculino , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo
9.
Neoplasia ; 21(9): 893-907, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31401411

RESUMEN

Telomere signaling and metabolic dysfunction are hallmarks of cell aging. New agents targeting these processes might provide therapeutic opportunities, including chemoprevention strategies against cancer predisposition. We report identification and characterization of a pyrazolopyrimidine compound series identified from screens focused on cell immortality and whose targets are glycolytic kinase PGK1 and oxidative stress sensor DJ1. We performed structure-activity studies on the series to develop a photoaffinity probe to deconvolute the cellular targets. In vitro binding and structural analyses confirmed these targets, suggesting that PGK1/DJ1 interact, which we confirmed by immunoprecipitation. Glucose homeostasis and oxidative stress are linked to telomere signaling and exemplar compound CRT0063465 blocked hypoglycemic telomere shortening. Intriguingly, PGK1 and DJ1 bind to TRF2 and telomeric DNA. Compound treatment modulates these interactions and also affects Shelterin complex composition, while conferring cellular protection from cytotoxicity due to bleomycin and desferroxamine. These results demonstrate therapeutic potential of the compound series.


Asunto(s)
Complejos Multiproteicos/metabolismo , Fosfoglicerato Quinasa/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Estrés Fisiológico , Homeostasis del Telómero/efectos de los fármacos , Proteínas de Unión a Telómeros/metabolismo , Línea Celular Tumoral , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Complejos Multiproteicos/química , Fosfoglicerato Quinasa/química , Unión Proteica , Proteína Desglicasa DJ-1/química , Pirazoles/síntesis química , Pirazoles/química , Pirimidinas/síntesis química , Pirimidinas/química , Complejo Shelterina , Relación Estructura-Actividad , Telómero/genética , Telómero/metabolismo , Acortamiento del Telómero/efectos de los fármacos , Acortamiento del Telómero/genética , Proteínas de Unión a Telómeros/química
10.
Biochem J ; 476(8): 1303-1321, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30988012

RESUMEN

Per-Arnt-Sim (PAS) domains are structurally conserved and present in numerous proteins throughout all branches of the phylogenetic tree. Although PAS domain-containing proteins are major players for the adaptation to environmental stimuli in both prokaryotic and eukaryotic organisms, these types of proteins are still uncharacterized in the trypanosomatid parasites, Trypanosome and Leishmania In addition, PAS-containing phosphoglycerate kinase (PGK) protein is uncharacterized in the literature. Here, we report a PAS domain-containing PGK (LmPAS-PGK) in the unicellular pathogen Leishmania The modeled structure of N-terminal of this protein exhibits four antiparallel ß sheets centrally flanked by α helices, which is similar to the characteristic signature of PAS domain. Activity measurements suggest that acidic pH can directly stimulate PGK activity. Localization studies demonstrate that the protein is highly enriched in the glycosome and its presence can also be seen in the lysosome. Gene knockout, overexpression and complement studies suggest that LmPAS-PGK plays a fundamental role in cell survival through autophagy. Furthermore, the knockout cells display a marked decrease in virulence when host macrophage and BALB/c mice were infected with them. Our work begins to clarify how acidic pH-dependent ATP generation by PGK is likely to function in cellular adaptability of Leishmania.


Asunto(s)
Autofagosomas/inmunología , Leishmania major , Macrófagos , Modelos Moleculares , Fosfoglicerato Quinasa , Proteínas Protozoarias , Animales , Leishmania major/genética , Leishmania major/inmunología , Leishmania major/patogenicidad , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/deficiencia , Fosfoglicerato Quinasa/inmunología , Estructura Secundaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
11.
Nat Commun ; 10(1): 1179, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862837

RESUMEN

As an integral part of modern cell biology, fluorescence microscopy enables quantification of the stability and dynamics of fluorescence-labeled biomolecules inside cultured cells. However, obtaining time-resolved data from individual cells within a live vertebrate organism remains challenging. Here we demonstrate a customized pipeline that integrates meganuclease-mediated mosaic transformation with fluorescence-detected temperature-jump microscopy to probe dynamics and stability of endogenously expressed proteins in different tissues of living multicellular organisms.


Asunto(s)
Proteínas Fúngicas/metabolismo , Microscopía Intravital/métodos , Fosfoglicerato Quinasa/metabolismo , Animales , Línea Celular Tumoral , Embrión no Mamífero , Endodesoxirribonucleasas/metabolismo , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Microscopía Intravital/instrumentación , Cinética , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Pliegue de Proteína , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Temperatura , Pez Cebra
12.
Biochem Biophys Res Commun ; 508(1): 60-65, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30471866

RESUMEN

Mounting evidence has shown that the Rab11-FIP2 has critical roles in cancer cell growth. However, the clinical significance of Rab11-FIP2 in Non-small cell lung cancer (NSCLC) remains to be fully elucidated. In this study, we investigated the expression of Rab11-FIP2 using immunohistochemistry in 150 patients with NSCLC. We found that its expression level in NSCLC was much lower than that in the corresponding adjacent normal tissues. The DNA methylation data revealed that Rab11-FIP2 were significantly hypermethylated in NSCLC. The methylation level in the gene body was negatively correlated with the expression level of Rab11-FIP2 in NSCLC. Furthermore, enforced expression of Rab11-FIP2 dramatically reduced cancer cell proliferation and tumorigenesis, indicating a tumor suppressor role of PGK1 in NSCLC progression. Mechanistic investigations showed that Rab11-FIP2 interacted with the glycolytic kinase PGK1 and promoted its ubiquitination in NSCLC cells, leading to inactivation of the oncogenic AKT/mTOR signaling pathway. Overall, our data indicate that reduced expression of Rab11-FIP2 by DNA hypermethylation plays an important role in NSCLC tumor growth.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Portadoras/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoglicerato Quinasa/metabolismo , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteínas Portadoras/genética , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Fosfoglicerato Quinasa/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rab
13.
Biomacromolecules ; 19(9): 3894-3901, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30064224

RESUMEN

The widespread interest in neutral, water-soluble polymers such as poly(ethylene glycol) (PEG) and poly(zwitterions) such as poly(sulfobetaine) (pSB) for biomedical applications is due to their widely assumed low protein binding. Here we demonstrate that pSB chains in solution can interact with proteins directly. Moreover, pSB can reduce the thermal stability and increase the protein folding cooperativity relative to proteins in buffer or in PEG solutions. Polymer-dependent changes in the tryptophan fluorescence spectra of three structurally-distinct proteins reveal that soluble, 100 kDa pSB interacts directly with all three proteins and changes both the local polarity near tryptophan residues and the protein conformation. Thermal denaturation studies show that the protein melting temperatures decrease by as much as ∼1.9 °C per weight percent of polymer and that protein folding cooperativity increases by as much as ∼130 J mol-1 K-1 per weight percent of polymer. The exact extent of the changes is protein-dependent, as some proteins exhibit increased stability, whereas others experience decreased stability at high soluble pSB concentrations. These results suggest that pSB is not universally protein-repellent and that its efficacy in biotechnological applications will depend on the specific proteins used.


Asunto(s)
Betaína/análogos & derivados , Peptidilprolil Isomerasa de Interacción con NIMA/química , Fosfoglicerato Quinasa/química , Pliegue de Proteína , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química , Betaína/química , Humanos , Polietilenglicoles/química , Estabilidad Proteica
14.
PLoS One ; 13(7): e0199191, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29995887

RESUMEN

Cancer cells are able to survive in difficult conditions, reprogramming their metabolism according to their requirements. Under hypoxic conditions they shift from oxidative phosphorylation to aerobic glycolysis, a behavior known as Warburg effect. In the last years, glycolytic enzymes have been identified as potential targets for alternative anticancer therapies. Recently, phosphoglycerate kinase 1 (PGK1), an ubiquitous enzyme expressed in all somatic cells that catalyzes the seventh step of glycolysis which consists of the reversible phosphotransfer reaction from 1,3-bisphosphoglycerate to ADP, has been discovered to be overexpressed in many cancer types. Moreover, several somatic variants of PGK1 have been identified in tumors. In this study we analyzed the effect of the single nucleotide variants found in cancer tissues on the PGK1 structure and function. Our results clearly show that the variants display a decreased catalytic efficiency and/or thermodynamic stability and an altered local tertiary structure, as shown by the solved X-ray structures. The changes in the catalytic properties and in the stability of the PGK1 variants, mainly due to the local changes evidenced by the X-ray structures, suggest also changes in the functional role of PGK to support the biosynthetic need of the growing and proliferating tumour cells.


Asunto(s)
Adenosina Difosfato/química , Ácidos Glicéricos/química , Proteínas de Neoplasias/química , Fosfoglicerato Quinasa/química , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácidos Glicéricos/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica
15.
PLoS One ; 13(6): e0198645, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29897971

RESUMEN

Amino acid mutations in proteins are random and those mutations which are beneficial or neutral survive during the course of evolution. Conservation or co-evolution analyses are performed on the multiple sequence alignment of homologous proteins to understand how important different amino acids or groups of them are. However, these traditional analyses do not explore the directed influence of amino acid mutations, such as compensatory effects. In this work we develop a method to capture the directed evolutionary impact of one amino acid on all other amino acids, and provide a visual network representation for it. The method developed for these directed networks of inter- and intra-protein evolutionary interactions can also be used for noting the differences in amino acid evolution between the control and experimental groups. The analysis is illustrated with a few examples, where the method identifies several directed interactions of functionally critical amino acids. The impact of an amino acid is quantified as the number of amino acids that are influenced as a consequence of its mutation, and it is intended to summarize the compensatory mutations in large evolutionary sequence data sets as well as to rationally identify targets for mutagenesis when their functional significance can not be assessed using structure or conservation.


Asunto(s)
Aminoácidos/metabolismo , Modelos Moleculares , Aminoácidos/genética , Dominio Catalítico , Bases de Datos de Proteínas , Evolución Molecular , Productos del Gen gag/química , Productos del Gen gag/genética , Productos del Gen gag/metabolismo , VIH/enzimología , VIH/metabolismo , Proteasa del VIH/química , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Mutagénesis , Redes Neurales de la Computación , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Serina Proteasas/química , Serina Proteasas/genética , Serina Proteasas/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
16.
Biomol NMR Assign ; 11(2): 251-256, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28866776

RESUMEN

Human phosphoglycerate kinase (PGK) is an energy generating glycolytic enzyme that catalyses the transfer of a phosphoryl group from 1,3-bisphosphoglycerate (BPG) to ADP producing 3-phosphoglycerate (3PG) and ATP. PGK is composed of two α/ß Rossmann-fold domains linked by a central α-helix and the active site is located in the cleft formed between the N-domain which binds BPG or 3PG, and the C-domain which binds the nucleotides ADP or ATP. Domain closure is required to bring the two substrates into close proximity for phosphoryl transfer to occur, however previous structural studies involving a range of native substrates and substrate analogues only yielded open or partly closed PGK complexes. X-ray crystallography using magnesium trifluoride (MgF3-) as a isoelectronic and near-isosteric mimic of the transferring phosphoryl group (PO3-), together with 3PG and ADP has been successful in trapping human PGK in a fully closed transition state analogue (TSA) complex. In this work we report the 1H, 15N and 13C backbone resonance assignments of human PGK in the solution conformation of the fully closed PGK:3PG:MgF3:ADP TSA complex. Assignments were obtained by heteronuclear multidimensional NMR spectroscopy. In total, 97% of all backbone resonances were assigned in the complex, with 385 out of a possible 399 residues assigned in the 1H-15N TROSY spectrum. Prediction of solution secondary structure from a chemical shift analysis using the TALOS-N webserver is in good agreement with the published X-ray crystal structure of this complex.


Asunto(s)
Adenosina Difosfato/metabolismo , Fluoruros/metabolismo , Gliceraldehído 3-Fosfato/metabolismo , Compuestos de Magnesio/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa
17.
Molecules ; 22(6)2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28635653

RESUMEN

Inhibition of apoptosis is a potential therapy to treat human diseases such as neurodegenerative disorders (e.g., Parkinson's disease), stroke, and sepsis. Due to the lack of druggable targets, it remains a major challenge to discover apoptosis inhibitors. The recent repositioning of a marketed drug (i.e., terazosin) as an anti-apoptotic agent uncovered a novel target (i.e., human phosphoglycerate kinase 1 (hPgk1)). In this study, we developed a virtual screening (VS) pipeline based on the X-ray structure of Pgk1/terazosin complex and applied it to a screening campaign for potential anti-apoptotic agents. The hierarchical filters in the pipeline (i.e., similarity search, a pharmacophore model, a shape-based model, and molecular docking) rendered 13 potential hits from Specs chemical library. By using PC12 cells (exposed to rotenone) as a cell model for bioassay, we first identified that AK-918/42829299, AN-465/41520984, and AT-051/43421517 were able to protect PC12 cells from rotenone-induced cell death. Molecular docking suggested these hit compounds were likely to bind to hPgk1 in a similar mode to terazosin. In summary, we not only present a versatile VS pipeline for potential apoptosis inhibitors discovery, but also provide three novel-scaffold hit compounds that are worthy of further development and biological study.


Asunto(s)
Apoptosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Fosfoglicerato Quinasa/antagonistas & inhibidores , Fosfoglicerato Quinasa/metabolismo , Prazosina/análogos & derivados , Inhibidores de Proteínas Quinasas/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular/métodos , Células PC12 , Fosfoglicerato Quinasa/química , Prazosina/química , Prazosina/metabolismo , Prazosina/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Ratas , Bibliotecas de Moléculas Pequeñas
18.
J Steroid Biochem Mol Biol ; 171: 270-280, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28457968

RESUMEN

17beta-hydroxysteroid dehydrogenase type 5 (17ß-HSD5) is an important enzyme associated with sex steroid metabolism in hormone-dependent cancer. However, reports on its expression and its prognostic value in breast cancer are inconsistent. Here, we demonstrate the impact of 17ß-HSD5 expression modulation on the proteome of estrogen receptor-positive (ER+) breast cancer cells. RNA interference technique (siRNA) was used to knock down 17ß-HSD5 gene expression in the ER+ breast cancer cell line MCF-7 and the proteome of the 17ß-HSD5-knockdown cells was compared to that of MCF-7 cells using two-dimensional (2-D) gel electrophoresis followed by mass spectrometry analysis. Ingenuity pathway analysis (IPA) was additionally used to assess functional enrichment analyses of the proteomic dataset, including protein network and canonical pathways. Our proteomic analysis revealed only four differentially expressed protein spots (fold change > 2, p<0.05) between the two cell lines. The four spots were up-regulated in 17ß-HSD5-knockdown MCF-7 cells, and comprised 21 proteins involved in two networks and in functions that include apoptosis inhibition, regulation of cell growth and differentiation, signal transduction and tumor metastasis. Among the proteins are nucleoside diphosphate kinase A (NME1), 78kDa glucose-regulated protein (GRP78) and phosphoglycerate kinase 1 (PGK1). We also showed that expression of 17ß-HSD5 and that of the apoptosis inhibitor GRP78 are strongly but negatively correlated. Consistent with their opposite regulation, GRP78 knockdown decreased MCF-7 cell viability whereas 17ß-HSD5 knockdown or inhibition increased cell viability and proliferation. Besides, IPA analysis revealed that ubiquitination pathway is significantly affected by 17ß-HSD5 knockdown. Furthermore, IPA predicted the proto-oncogene c-Myc as an upstream regulator linked to the tumor-secreted protein PGK1. The latter is over-expressed in invasive ductal breast carcinoma as compared with normal breast tissue and its expression increased following 17ß-HSD5 knockdown. Our present results indicate a 17ß-HSD5 role in down-regulating breast cancer development. We thus propose that 17ß-HSD5 may not be a potent target for breast cancer treatment but its low expression could represent a poor prognosis factor.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/metabolismo , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfoglicerato Quinasa/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiesteroide Deshidrogenasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Neoplasias de la Mama/patología , Proliferación Celular , Supervivencia Celular , Chaperón BiP del Retículo Endoplásmico , Activación Enzimática , Femenino , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Hidroxiprostaglandina Deshidrogenasas/antagonistas & inhibidores , Hidroxiprostaglandina Deshidrogenasas/química , Hidroxiprostaglandina Deshidrogenasas/genética , Procesamiento de Imagen Asistido por Computador , Células MCF-7 , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Nucleósido Difosfato Quinasas NM23/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/genética , Proteómica/métodos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , Receptores de Estrógenos/metabolismo , Electroforesis Bidimensional Diferencial en Gel
19.
FEBS Lett ; 590(10): 1409-16, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27129718

RESUMEN

The interior of a cell interacts differently with proteins than a dilute buffer because of a wide variety of macromolecules, chaperones, and osmolytes that crowd and interact with polypeptide chains. We compare folding of fluorescent constructs of protein VlsE among three environments inside cells. The nucleus increases the stability of VlsE relative to the cytoplasm, but slows down folding kinetics. VlsE is also more stable in the endoplasmic reticulum, but unlike PGK, tends to aggregate there. Although fluorescent-tagged VlsE and PGK show opposite stability trends from in vitro to the cytoplasm, their trends from cytoplasm to nucleus are similar.


Asunto(s)
Antígenos Bacterianos/química , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Antígenos Bacterianos/metabolismo , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Modelos Moleculares , Fosfoglicerato Quinasa/química , Fosfoglicerato Quinasa/metabolismo , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína
20.
Biochemistry ; 55(13): 1968-76, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26959408

RESUMEN

The tetracysteine (tc) tag/biarsenical dye system (FlAsH or ReAsH) promises to combine the flexibility of fluorescent protein tags with the small size of dye labels, allowing in-cell study of target proteins that are perturbed by large protein tags. Quantitative thermodynamic and kinetic studies in-cell using FlAsH and ReAsH have been hampered by methodological complexities presented by the fluorescence properties of the tag-dye complex probed by either Förster resonance energy transfer (FRET) or direct excitation. We label the model protein phosphoglycerate kinase (PGK) with AcGFP1 and ReAsH for direct comparison with AcGFP1/mCherry-labeled PGK. We find that fast relaxation imaging (FReI), combining millisecond temperature jump kinetics with fluorescence microscopy detection, circumvents many of the difficulties encountered working with the ReAsH system, allowing us to obtain quantitative FRET measurements of protein stability and kinetics both in vitro and in cells. We also demonstrate the to us surprising result that fluorescence from directly excited, unburied ReAsH at the C-terminus of the model protein also reports on folding in vitro and in cells. Comparing the ReAsH-labeled protein to a construct labeled with two fluorescent protein tags allows us to evaluate how a bulkier protein tag affects protein dynamics in cells and in vitro. We find that the average folding rate in the cell is closer to the in vitro rate with the smaller tag, highlighting the effect of tags on quantitative in-cell measurements.


Asunto(s)
Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Modelos Moleculares , Proteínas Mutantes/química , Fosfoglicerato Quinasa/química , Proteínas de Saccharomyces cerevisiae/química , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Calor , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Imagen Molecular , Peso Molecular , Proteínas Mutantes/metabolismo , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Conformación Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Recombinantes de Fusión , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA