Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Int J Biol Macromol ; 270(Pt 2): 132517, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777008

RESUMEN

The rapid activation of phosphatidylinositol-specific phospholipase C (PI-PLC) occurs early after the stimulation of biotic and abiotic stress in plants, which directly associated with the calcium channel-induced calcium ion (Ca2+) influx. Exogenous calcium chloride (CaCl2) mediates the calcium signaling transduction to promote the γ-aminobutyric acid accumulation and nutritional quality in shredded carrots whereas the generation mechanism remains uncertain. Therefore, the involvement of PI-PLC-associated phospholipid metabolism was investigated in present study. Our result revealed that CaCl2 treatment promoted the expression and activity of PI-PLC and increased the inositol 1,4,5-trisphosphate and hexakisphosphate content in shredded carrots. The transcripts of multi-glutamate receptor-like channels (DcGLRs), the glutamate and γ-aminobutyric acid (GABA) content, and Ca2+ influx were induced by CaCl2 treatment in shredded carrots during storage. However, PI-PLC inhibitor (U73122) treatment inhibited the activation of PI-PLC, the increase of many DcGLRs family genes expression levels, and Ca2+ influx. Moreover, the identification of DcPI-PLC4/6 and DcGLRs proteins, along with the analysis of characteristic domains such as PLCXc, PLCYc, C2 domain, transmembranous regions, and ligand binding domain, suggests their involvement in phospholipid catalysis and calcium transport in carrots. Furthermore, DcPI-PLC4/6 overexpression in tobacco leaves induced the Ca2+ influx by activating the expressions of NtGLRs and the accumulation of glutamate and GABA. These findings collectively indicate that CaCl2 treatment-induced PI-PLC activation influences DcGLRs expression levels to mediate cytosolic Ca2+ influx, thus, highlighting the "PI-PLC-GLRs-Ca2+" pathway in calcium signaling generation and GABA biosynthesis in shredded carrots.


Asunto(s)
Cloruro de Calcio , Calcio , Daucus carota , Fosfolípidos , Calcio/metabolismo , Daucus carota/metabolismo , Daucus carota/efectos de los fármacos , Cloruro de Calcio/farmacología , Fosfolípidos/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Pharmacol Res ; 203: 107173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580186

RESUMEN

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Asunto(s)
Cnidarios , Péptidos , Receptores de Neuropéptido Y , Animales , Humanos , Ratones , Movimiento Celular/efectos de los fármacos , Quinasa 1 de Adhesión Focal/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Ligandos , Simulación del Acoplamiento Molecular , Neovascularización Fisiológica/efectos de los fármacos , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Péptidos/farmacología , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Receptores de Neuropéptido Y/efectos de los fármacos , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/efectos de los fármacos , Familia-src Quinasas/metabolismo , Pez Cebra , Cnidarios/química , Fosfoinositido Fosfolipasa C/efectos de los fármacos , Fosfoinositido Fosfolipasa C/metabolismo
3.
Sci Rep ; 14(1): 9752, 2024 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679676

RESUMEN

The TTG2 transcription factor of Arabidopsis regulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of the AtPLC1 gene rescues the trichome and seed coat phenotypes of the ttg2-1 mutant plant. Moreover, in the case of seed coat color rescue, AtPLC1 overexpression restored expression of the TTG2 flavonoid pathway target genes, TT12 and TT13/AHA10. Consistent with these observations, a dominant AtPLC1 T-DNA insertion allele (plc1-1D) promotes trichome development in both wild-type and ttg2-3 plants. Also, AtPLC1 promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction between TTG2 and AtPLC1 suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.


Asunto(s)
Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Fosfoinositido Fosfolipasa C , Epidermis de la Planta , Transducción de Señal , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/metabolismo , Mutación , Fenotipo , Fosfatidilinositoles/metabolismo , Epidermis de la Planta/metabolismo , Epidermis de la Planta/genética , Epidermis de la Planta/citología , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tricomas/genética , Tricomas/metabolismo , Tricomas/crecimiento & desarrollo , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo
4.
Hum Reprod ; 39(6): 1256-1274, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38670547

RESUMEN

STUDY QUESTION: Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER: Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY: While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION: A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS: We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE: A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION: The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS: We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S): J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Desarrollo Embrionario , Fosfoinositido Fosfolipasa C , Espermatozoides , Femenino , Animales , Masculino , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Ratones , Humanos , Embarazo , Desarrollo Embrionario/fisiología , Infertilidad Masculina/genética , Oocitos , Adulto
5.
Biomolecules ; 14(3)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38540777

RESUMEN

During mammalian fertilization, repetitive intracellular Ca2+ increases known as Ca2+ oscillations occur. These oscillations are considered crucial for successful fertilization and subsequent embryonic development. Numerous researchers have endeavored to elucidate the factors responsible for inducing Ca2+ oscillations across various mammalian species. Notably, sperm-specific phospholipase C zeta (PLCζ) emerged as a prominent candidate capable of initiating Ca2+ oscillations, particularly in mammals. Genetic mutation of PLCζ in humans results in the absence of Ca2+ oscillations in mouse oocytes. Recent studies further underscored PLCζ's significance, revealing that sperm from PLCζ-deficient (Plcz1-/-) mice fail to induce Ca2+ oscillations upon intracytoplasmic sperm injection (ICSI). Despite these findings, observations from in vitro fertilization (IVF) experiments using Plcz1-/- sperm revealed some residual intracellular Ca2+ increases and successful oocyte activation, hinting at potential alternative mechanisms. In this review, we introduced the current hypothesis surrounding oocyte activation in mammals, informed by contemporary literature, and probed into the enigmatic mechanisms underlying mammalian fertilization-induced oocyte activation.


Asunto(s)
Señalización del Calcio , Semen , Embarazo , Femenino , Masculino , Humanos , Ratones , Animales , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Fosfoinositido Fosfolipasa C/farmacología , Semen/metabolismo , Oocitos/metabolismo , Espermatozoides/metabolismo , Fosfolipasas de Tipo C/metabolismo , Mamíferos/metabolismo
6.
Hum Reprod ; 39(5): 902-911, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38461455

RESUMEN

STUDY QUESTION: Is a microfluidic sperm sorter (MSS) able to select higher quality sperm compared to conventional methods? SUMMARY ANSWER: The MSS selects sperm with improved parameters, lower DNA fragmentation, and higher fertilizing potential. WHAT IS KNOWN ALREADY: To date, the few studies that have compared microfluidics sperm selection with conventional methods have used heterogeneous study population and have lacked molecular investigations. STUDY DESIGN, SIZE, DURATION: The efficiency of a newly designed MSS in isolating high-quality sperm was compared to the density-gradient centrifugation (DGC) and swim-up (SU) methods, using 100 semen samples in two groups, during 2023-2024. PARTICIPANTS/MATERIALS, SETTING, METHODS: Semen specimens from 50 normozoospermic and 50 non-normozoospermic men were sorted using MSS, DGC, and SU methods to compare parameters related to the quality and fertilizing potential of sperm. The fertilizing potential of sperm was determined by measurement of phospholipase C zeta (PLCζ) and post-acrosomal sheath WW domain-binding protein (PAWP) expression using flow cytometry, and the chromatin dispersion test was used to assess sperm DNA damage. MAIN RESULTS AND THE ROLE OF CHANCE: In both normozoospermic and non-normozoospermic groups, the MSS-selected sperm with the highest progressive motility, PLCζ positive expression and PLCζ and PAWP fluorescence intensity the lowest non-progressive motility, and minimal DNA fragmentation, compared to sperm selected by DGC and SU methods (P < 0.05). LIMITATION, REASONS FOR CAUTION: The major limitations of our study were the low yield of sperm in the MSS chips and intentional exclusion of severe male factor infertility to yield a sufficient sperm count for molecular experiments; thus testing with severe oligozoospermic semen and samples with low count and motility is still required. In addition, due to ethical considerations, at present, it was impossible to use the sperm achieved from MSS in the clinic to assess the fertilization rate and further outcomes. WIDER IMPLICATIONS OF THE FINDINGS: Our research presents new evidence that microfluidic sperm sorting may result in the selection of high-quality sperm from raw semen. This novel technology might be a key to improving clinical outcomes of assisted reproduction in infertile patients. STUDY FUNDING/COMPETING INTEREST(S): The study is funded by the Iran University of Medical Sciences and no competing interest exists. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Citometría de Flujo , Análisis de Semen , Proteínas de Plasma Seminal , Espermatozoides , Masculino , Humanos , Espermatozoides/fisiología , Citometría de Flujo/métodos , Análisis de Semen/métodos , Fragmentación del ADN , Motilidad Espermática , Fosfoinositido Fosfolipasa C/metabolismo , Adulto , Microfluídica/métodos , Fertilización/fisiología , Técnicas Analíticas Microfluídicas/métodos , Separación Celular/métodos , Proteínas Portadoras/metabolismo
7.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279344

RESUMEN

During fertilization, the fusion of the spermatozoa with the oocytes causes the release of calcium from the oocyte endoplasmatic reticulum. This, in turn, triggers a series of calcium ion (Ca2+) oscillations, a process known as oocyte activation. The sperm-specific factor responsible for oocyte activation is phospholipase C zeta (PLCζ). Men undergoing intracytoplasmic sperm injection (ICSI) with their spermatozoa lacking PLCζ are incapable of generating Ca2+ oscillation, leading to fertilization failure. The immunofluorescence assay is the most used technique to assess the expression and localization of PLCζ and to diagnose patients with reduced/absent ability to activate the oocytes. In these patients, the use of assisted oocyte activation (AOA) technique can help to yield successful ICSI results and shorten the time of pregnancy. However, the production of a stable PLCζ recombinant protein represents a new powerful therapeutic approach to treating individuals with this condition. We aim to conduct a systematic review focusing on the expression, level, and localization of PLCζ, discussing the novel genetic mutation associated with its impairment. In addition, we highlight the benefits of AOA, looking at new and less invasive methods to diagnose and treat cases with PLCζ dysfunction.


Asunto(s)
Espermatozoides , Fosfolipasas de Tipo C , Femenino , Humanos , Masculino , Embarazo , Calcio/metabolismo , Oocitos/metabolismo , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Fosfolipasas de Tipo C/metabolismo
8.
Plant Sci ; 340: 111971, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38160760

RESUMEN

Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/microbiología , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Fosfatidilinositoles , Proliferación Celular , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo
9.
Cancer Res ; 84(4): 560-576, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38117512

RESUMEN

Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE: PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Línea Celular Tumoral , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo
10.
Can J Microbiol ; 69(12): 501-511, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37672795

RESUMEN

Bacillus cereus endophthalmitis is a devastating eye infection that causes rapid blindness through the release of extracellular tissue-destructive exotoxins. The phagocytic and antibacterial functions of ocular cells are the keys to limiting ocular bacterial infections. In a previous study, we identified a new virulence gene, plcA-2 (different from the original plcA-1 gene), that was strongly associated with the plcA gene of Listeria monocytogenes. This plcA gene had been confirmed to play an important role in phagocytosis. However, how the Bc-phosphatidylinositol-specific phospholipase C (PI-PLC) proteins encoded by the plcA-1/2 genes affect phagocytes remains unclear in B. cereus endophthalmitis. Here, we found that the enzymatic activity of Bc-PI-PLC-A2 was approximately twofold higher than that of Bc-PI-PLC-A1, and both proteins inhibited the viability of Müller cells. In addition, PI-PLC proteins reduced phagocytosis of Müller cells by decreasing the phosphorylation levels of key proteins in the PI3K/AKT signaling pathway. In conclusion, we showed that PI-PLC proteins contribute to inhibit the viability of and suppress the phagocytosis of Müller cells, providing new insights into the pathogenic mechanism of B. cereus endophthalmitis.


Asunto(s)
Endoftalmitis , Listeria monocytogenes , Humanos , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Fosfatidilinositol Diacilglicerol-Liasa/genética , Fosfatidilinositol Diacilglicerol-Liasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Supervivencia Celular , Células Ependimogliales/metabolismo , Fagocitos/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
11.
mBio ; 14(4): e0141323, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37489900

RESUMEN

For its replication within red blood cells, the malaria parasite depends on a highly active and regulated lipid metabolism. Enzymes involved in lipid metabolic processes such as phospholipases are, therefore, potential drug targets. Here, using reverse genetics approaches, we show that only 1 out of the 19 putative phospholipases expressed in asexual blood stages of Plasmodium falciparum is essential for proliferation in vitro, pointing toward a high level of redundancy among members of this enzyme family. Using conditional mislocalization and gene disruption techniques, we show that this essential phosphoinositide-specific phospholipase C (PI-PLC, PF3D7_1013500) has a previously unrecognized essential role during intracellular parasite maturation, long before its previously perceived role in parasite egress and invasion. Subsequent lipidomic analysis suggests that PI-PLC mediates cleavage of phosphatidylinositol bisphosphate (PIP2) in schizont-stage parasites, underlining its critical role in regulating phosphoinositide levels in the parasite. IMPORTANCE The clinical symptoms of malaria arise due to repeated rounds of replication of Plasmodium parasites within red blood cells (RBCs). Central to this is an intense period of membrane biogenesis. Generation of membranes not only requires de novo synthesis and acquisition but also the degradation of phospholipids, a function that is performed by phospholipases. In this study, we investigate the essentiality of the 19 putative phospholipase enzymes that the human malaria parasite Plasmodium falciparum expresses during its replication within RBCs. We not only show that a high level of functional redundancy exists among these enzymes but, at the same time, also identify an essential role for the phosphoinositide-specific phospholipase C in parasite development and cleavage of the phospholipid phosphatidylinositol bisphosphate.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum/metabolismo , Parásitos/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Fosfolipasas/genética , Fosfolipasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Malaria/metabolismo , Fosfolípidos/metabolismo , Fosfatidilinositoles/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/parasitología
12.
Brain ; 146(4): 1267-1280, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36448305

RESUMEN

Phospholipase C (PLC) is an essential isozyme involved in the phosphoinositide signalling pathway, which maintains cellular homeostasis. Gain- and loss-of-function mutations in PLC affect enzymatic activity and are therefore associated with several disorders. Alternative splicing variants of PLC can interfere with complex signalling networks associated with oncogenic transformation and other diseases, including brain disorders. Cells and tissues with various mutations in PLC contribute different phosphoinositide signalling pathways and disease progression, however, identifying cryptic mutations in PLC remains challenging. Herein, we review both the mechanisms underlying PLC regulation of the phosphoinositide signalling pathway and the genetic variation of PLC in several brain disorders. In addition, we discuss the present challenges associated with the potential of deep-learning-based analysis for the identification of PLC mutations in brain disorders.


Asunto(s)
Encefalopatías , Aprendizaje Profundo , Humanos , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Fosfatidilinositoles/metabolismo , Mutación/genética
13.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234717

RESUMEN

Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are a virulence factor in many Gram-positive organisms. The specific activity of the Bacillus thuringiensis PI-PLC is significantly increased by adding phosphatidylcholine (PC) to vesicles composed of the substrate phosphatidylinositol, in part because the inclusion of PC reduces the apparent Kd for the vesicle binding by as much as 1000-fold when comparing PC-rich vesicles to PI vesicles. This review summarizes (i) the experimental work that localized a site on BtPI-PLC where PC is bound as a PC choline cation-Tyr-π complex and (ii) the computational work (including all-atom molecular dynamics simulations) that refined the original complex and found a second persistent PC cation-Tyr-π complex. Both complexes are critical for vesicle binding. These results have led to a model for PC functioning as an allosteric effector of the enzyme by altering the protein dynamics and stabilizing an 'open' active site conformation.


Asunto(s)
Fosfolipasas de Tipo C , Tirosina , Cationes , Colina , Lecitinas , Fosfatidilinositoles/metabolismo , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Fosfolipasas de Tipo C/metabolismo , Factores de Virulencia
14.
Bosn J Basic Med Sci ; 22(6): 992-1004, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35765945

RESUMEN

Phospholipase C epsilon 1 (PLCE1) is involved in the pathogenesis of many cancers. However, the biological role of PLCE1 in osteosarcoma (OS) is still poorly understood. The prognostic survival analysis was performed on the PLCE1gene in the TARGET data set and the differential expression of PLCE1 in OS tissue and normal bone tissue on the tissue chip was detected by immunohistochemistry. Spearman's rank correlation coefficient analysis was implemented to explore the relationship between PLCE1 and immune genes. Finally, PLCE1 was silenced to explore its biological function in OS cells. The results of tissue chip immunohistochemistry showed that PLCE1 expression in OS tissue was higher than in normal bone tissue. The survival curve of PLCE1 and its corresponding receiver operating characteristic curve (ROC) showed that PLCE1 had a significant effect on the survival status of patients with OS and that the prognosis of patients with high PLCE1 expression was relatively poor. Spearman's rank correlation coefficient analysis and qRT-PCR assays found that PLCE1 may promote immune escape from OS via CD70-CD27 signaling pathway. Silencing of PLCE1 causes the following biological behaviors of OS cells: it promotes apoptosis, inhibits proliferation of OS cells, and inhibits the ability of cell migration and invasion. PLCE1 is a poor prognostic marker and a potential key factor affecting the immune status of the OS tumor microenvironment.


Asunto(s)
Osteosarcoma , Transducción de Señal , Humanos , Pronóstico , Fosfoinositido Fosfolipasa C/metabolismo , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Ligando CD27/genética , Ligando CD27/metabolismo
15.
Reproduction ; 164(1): F9-F20, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35521902

RESUMEN

The discovery of PLCZ1 nearly 20 years ago as the primary Ca2+ oscillation-inducing factor in the sperm of mammals represented a significant breakthrough in our quest to elucidate the molecules and pathways that promote egg activation during fertilization. The advent of the intracytoplasmic sperm injection (ICSI) technique, which made fertilization possible without sperm capacitation, acrosome reaction, and gamete fusion, strengthened the research that led to the discovery of PLCZ1 and became an essential clinical tool for humans. The use of ICSI combined with the detection of PLCZ1 expression and mutations in infertile patients established the fundamental role of PLCZ1 in human fertility while leading to the discovery of novel components of the perinuclear theca, the site of the residence of PLCZ1 in sperm before fertilization. Remarkably, the more extensive use of ICSI in species other than humans and mice revealed poor success and exposed gaps in our understanding of PLCZ1 release and/or activation. Similarly, fertilization using sperm from mouse models lacking Plcz1 has produced striking results whose true implications are yet to be determined. Nevertheless, answers to these unresolved questions will produce a complete picture of the adaptations and molecular players that mammalian species employ to ensure the success of the triggering event of embryo development that has linked generations since the beginning of times.


Asunto(s)
Oocitos , Inyecciones de Esperma Intracitoplasmáticas , Animales , Fertilización , Humanos , Masculino , Mamíferos/metabolismo , Ratones , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Espermatozoides/metabolismo
16.
Reproduction ; 164(1): F1-F8, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35521907

RESUMEN

In 2002, sperm-specific phospholipase C zeta1 (PLCZ1) was discovered and through these 20 years, it has been established as the predominant sperm oocyte-activating factor. PLCZ1 cRNA expression or direct protein microinjection into mammalian oocytes triggers calcium (Ca2+) oscillations indistinguishable from those observed at fertilization. The imperative role of PLCZ1 in oocyte activation is revealed by the vast number of human mutations throughout the PLCZ1 gene that have been identified and directly linked with certain forms of male infertility due to oocyte activation deficiency. PLCZ1 is the smallest PLC in size, comprising four N-terminal EF-hand domains, followed by X and Y catalytic domains, which are separated by the XY-linker, and ending with a C-terminal C2 domain. The EF hands are responsible for the high Ca2+ sensitivity of PLCZ1. The X and Y catalytic domains are responsible for the catalysis of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] substrate to produce the Ca2+-mobilising messenger, inositol 1,4,5-trisphosphate (IP3), while the XY-linker plays multiple roles in the unique mode of PLCZ1 action. Finally, the C2 domain has been proposed to facilitate the anchoring of PLCZ1 to intracellular vesicles through its direct interactions with specific phosphoinositides. This review discusses recent advances in the structure and function relationship of PLCZ1 and the potential binding partners of this important sperm-specific protein in the sperm and oocyte. The unravelling of all the remaining hidden secrets of sperm PLCZ1 should help us to understand the precise mechanism of fertilization, as well as enabling the diagnosis and treatment of currently unknown forms of PLCZ1 -linked human infertility.


Asunto(s)
Calcio , Fosfolipasas de Tipo C , Animales , Calcio/metabolismo , Fertilización/fisiología , Humanos , Masculino , Mamíferos/metabolismo , Oocitos , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Espermatozoides/metabolismo , Fosfolipasas de Tipo C/metabolismo
17.
Reproduction ; 164(1): F21-F28, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35239501

RESUMEN

In 2002, a report suggested that oocyte activation is induced by Plcz1 in mouse oocytes, which prompted great interest in exploring the role of sperm PLCZ1. Thus, PLCZ1 loss-of-function experiments became a crucial tool for addressing this subject. Although the only option to completely delete a target protein in fully functional spermatozoa is to use gene-deficient animals, Plcz1-deficient mice were not reported until 2017. Challenges to obtain suitable in vivo models have been related to altered expression of Capza3, a neighbor gene to Plcz1 locus in mammalian genomes that is required for spermatogenesis. With the advancement of genome-editing technologies, two groups independently and simultaneously produced Plcz1 mutant mouse lines, which were the first animal models to be artificially and reliably deficient for sperm PLCZ1. All Plcz1 mutant mouse lines display normal spermatogenesis and, surprisingly, subfertility rather than complete infertility. Moreover, analysis of oocyte Ca2+ dynamics indicates that mouse PLCζ1 is an essential sperm-derived oocyte activation factor via intracytoplasmic sperm injection, as PLCZ1 deficiency causes a complete lack of Ca2+ oscillations. This seemingly contradictory phenotype can be explained by atypical Ca2+ oscillations that are provoked slowly and less frequently in the case of fertilization accompanied by physiological sperm-egg fusion. These findings not only raise new questions concerning the sperm basic biology, by clearly demonstrating the existence of a PLCZ1-independent oocyte activation mechanism in mice, but also have implications for the treatment and phenotypic interpretation of patients presenting oocyte activation failure.


Asunto(s)
Calcio , Fertilización , Animales , Calcio/metabolismo , Humanos , Masculino , Mamíferos/metabolismo , Ratones , Oocitos , Fenotipo , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Espermatozoides/metabolismo
18.
Reproduction ; 164(1): F53-F66, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35312629

RESUMEN

Oocyte activation deficiency (OAD) remains the predominant cause of total/low fertilization rate in assisted reproductive technology. Phospholipase C zeta (PLCZ1) is the dominant sperm-specific factor responsible for triggering oocyte activation in mammals. OAD has been linked to numerous PLCZ1 abnormalities in patients experiencing failed in vitro fertilization or intracytoplasmic sperm injection cycles. While significant efforts have enhanced our understanding of the clinical relevance of PLCZ1, and the potential effects of genetic variants upon functionality, our ability to apply PLCZ1 in a diagnostic or therapeutic role remains limited. Artificial oocyte activation is the only option for patients experiencing OAD but lacks a reliable diagnostic approach. Immunofluorescence analysis has revealed that the levels and localization patterns of PLCZ1 within sperm can help us to indirectly diagnose a patient's ability to induce oocyte activation. Screening of the gene encoding PLCZ1 protein is also critical if we are to fully determine the extent to which genetic factors might play a role in the aberrant expression and/or localization patterns observed in infertile patients. Collectively, these findings highlight the clinical potential of PLCZ1, both as a prognostic indicator of OAD and eventually as a therapeutic agent. In this review, we focus on our understanding of the association between OAD and PLCZ1 by discussing the localization and expression of this key protein in human sperm, the potential genetic causes of OAD, and the diagnostic tools that are currently available to us to identify PLCZ1 deficiency and select patients that would benefit from targeted therapy.


Asunto(s)
Infertilidad Masculina , Fosfolipasas de Tipo C , Animales , Fertilización , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/genética , Masculino , Mamíferos/metabolismo , Oocitos , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Espermatozoides/metabolismo , Fosfolipasas de Tipo C/metabolismo
19.
Asian J Androl ; 24(4): 345-352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34893574

RESUMEN

Phospholipase C zeta (PLCζ) is a sperm-specific protein that triggers oocyte activation. The analysis of PLCζ expression in human spermatozoa can be used as a diagnostic marker for oocyte activation deficiency. Our laboratory has previously optimized a standard "in-house" assay to determine PLCζ expression in human spermatozoa. However, one study has suggested that an antigen unmasking method (AUM) would be more efficient in visualizing PLCζ in human sperm. This study aimed to compare our established assay and AUM (involving HCl, acidic Tyrode's solution [AT], and heat). The mean relative fluorescence (RF) intensity of PLCζ in frozen-thawed spermatozoa from fourteen fertile donors stained with the in-house method was significantly higher than three other AUM groups (in-house [mean ± standard error of mean]: 18.87 ± 2.39 arbitrary units [a.u.] vs non-AUM: 11.44 ± 1.61 a.u., AT-AUM: 12.38 ± 1.89 a.u., and HCl-AUM: 12.51 ± 2.16 a.u., P < 0.05, one-way analysis of variance). The mean RF intensity of PLCζ in AT- and HCl-treated spermatozoa from 12 infertile males was not significantly different from that of the non-AUM group. However, the in-house method resulted in the highest RF intensity (12.11 ± 1.36 a.u., P < 0.01). Furthermore, specificity testing of antibody-antigen binding indicated that the in-house method showed more specific binding than spermatozoa treated by the AUM. In conclusion, our in-house method showed superior visualization and reliability than the AUM, thus supporting the continued use of our in-house assay for clinical research screening.


Asunto(s)
Fosfoinositido Fosfolipasa C/metabolismo , Semen , Fosfolipasas de Tipo C , Humanos , Masculino , Oocitos/fisiología , Reproducibilidad de los Resultados , Semen/metabolismo , Espermatozoides/metabolismo , Fosfolipasas de Tipo C/metabolismo
20.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613757

RESUMEN

Phospholipase C zeta1 (Plcz1) was known to be a physiological factor in sperm that activates oocytes to complete meiosis by triggering Ca2+ oscillations after fertilisation. However, the role of male Plcz1 in spermatogenesis and early embryo development in progeny has been controversial. Plcz1 knockout (Plcz1-/-) mouse model (Plcz1m3 and Plcz1m5) was generated by using the CRISPR-Cas9 system. The fertility of Plcz1-/- mice was evaluated by analysing the number of offsprings, sperm quality, pathological changes in the testis and epididymis. RNA-seq and RT-PCR were performed to screen differentially expressed genes and signalling pathways related to fertility in Plcz1-/- mice. Further mechanism was explored by using Plcz1-/- cells. Plcz1 knockout led to hypofertility in male mice. In particular, a significant time delay in development and polyspermy was found in eggs fertilized by both Plcz1m3 and Plcz1m5 sperm. Interestingly, a decline in sperm quality combined with pathological changes in epididymis was found in Plcz1m3 mice but not in Plcz1m5 mice. Notably, abnormal cytoskeleton appears in epididymis of Plcz1m3 mice and Plcz1-/- cells. Cytoskeleton damage of epididymis is involved in fertility decline of males upon Plcz1 deficiency in this model.


Asunto(s)
Epidídimo , Fosfolipasas de Tipo C , Animales , Masculino , Ratones , Citoesqueleto/metabolismo , Epidídimo/metabolismo , Fertilidad/genética , Ratones Noqueados , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Semen/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA