Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.616
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791284

RESUMEN

Bruton's Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Resistencia a Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Inhibidores de Proteínas Quinasas , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/farmacología , Pirazoles/uso terapéutico , Pirazoles/farmacología , Piperidinas/uso terapéutico , Piperidinas/farmacología , Adenina/análogos & derivados , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Mutación
2.
Exp Gerontol ; 192: 112452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718888

RESUMEN

Ischemic stroke rapidly increases the expression level of vascular endothelial growth factor (VEGF), which promotes neovascularization during hypoxia. However, the effect and mechanism of VEGF intervention on cerebrovascular formation remain unclear. Therefore, our research discussed the protective effect of exogenous VEGF on cells in hypoxia environment in cerebral microvascular endothelial cells, simulating ischemic stroke in hypoxic environment. Firstly, we detected the proliferation and apoptosis of cerebral microvascular endothelial cells under hypoxia environment, as well the expression levels of VEGF-E, vascular endothelial growth factor re-ceptor-2 (VEGFR-2), BCL2, PRKCE and PINK1. Moreover, immunofluorescence and western blotting were used to verify the regulation of exogenous VEGF-E on VEGFR-2 expression in hypoxic or normal oxygen environment. Lastly, we manipulated the concentration of VEGF-E in the culture medium to investigate its impact on phospholipase Cγ1 (PLCγ1)/extracellular signaling regulatory protein kinase (ERK) -1/2 and protein kinase B (AKT) pathways. Additionally, we employed a PLCγ1 inhibitor (U73122) to investigate its impact on proliferation and PLCγ1/ERK pathways. The results show that hypoxia inhibited the proliferation of cerebral microvascular endothelial cells, promoted cell apoptosis, significantly up-regulated the expression of VEGF-E, VEGFR-2, PRKCE and PINK1, but down-regulated the expression of BCL2. Interference from exogenous VEGF-E activated PLCγ1/ERK-1/2 and AKT pathways, promoting cell proliferation and inhibiting apoptosis of hypoxic brain microvascular endothelial cells. In summary, exogenous VEGF-E prevents hypoxia-induced damage to cerebral microvascular endothelial cells by activating the PLCγ1/ERK and AKT pathways. This action inhibits the apoptosis pathway in hypoxic cerebral microvascular endothelial cells, thereby safeguarding the blood-brain barrier and the nervous system.


Asunto(s)
Apoptosis , Hipoxia de la Célula , Células Endoteliales , Fosfolipasa C gamma , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Fosfolipasa C gamma/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Encéfalo/irrigación sanguínea , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ratas , Microvasos/efectos de los fármacos , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
3.
J Hazard Mater ; 474: 134756, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820747

RESUMEN

The fetus and infants are particularly vulnerable to Cadmium (Cd) due to the immaturity of the blood-brain barrier. In utero and early life exposure to Cd is associated with cognitive deficits. Although such exposure has attracted widespread attention, its gender-specificity remains controversial, and there are no reports disclosing the underlying mechanism of gender­specific neurotoxicity. We extensively evaluated the learning and cognitive functions and synaptic plasticity of male and female rats exposed to maternal Cd. Maternal Cd exposure induced learning and memory deficits in male offspring rats, but not in female offspring rats. PLCß4 was identified as a critical protein, which might be related to the gender­specific cognitive deficits in male rats. The up-regulated PLCß4 competed with PLCγ1 to bind to PIP2, which counteracted the hydrolysis of PIP2 by PLCγ1. The decreased activation of PLCγ1 inhibited the phosphorylation of CREB to reduce BDNF transcription, which consequently resulted in the damage of hippocampal neurons and cognitive deficiency. Moreover, the low level of BDNF promoted AEP activation to induce Aß deposition in the hippocampus. These findings highlight that PLCß4 might be a potential target for the therapy of learning and cognitive deficits caused by Cd exposure in early life.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cadmio , Disfunción Cognitiva , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Hipocampo , Lactancia , Fosfolipasa C gamma , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Animales , Femenino , Masculino , Embarazo , Cadmio/toxicidad , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fosfolipasa C gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Disfunción Cognitiva/inducido químicamente , Fosfolipasa C beta/metabolismo , Ratas Sprague-Dawley , Fosfatidilinositol 4,5-Difosfato/metabolismo , Exposición Materna , Ratas
4.
CNS Neurosci Ther ; 30(3): e14679, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38528842

RESUMEN

AIMS: Intracerebral hemorrhage (ICH) is a disease with high rates of disability and mortality. The role of epidermal growth factor receptor 1 (ERBB1) in ICH was elucidated in this study. METHODS: ICH model was constructed by injecting autologous arterial blood into the right basal ganglia. The protein level of ERBB1 was detected by western blot analysis. To up- and downregulation of ERBB1 in rats, intraventricular injection of a lentivirus overexpression vector of ERBB1 and AG1478 (a specific inhibitor of ERBB1) was used. The cell apoptosis, neuronal loss, and pro-inflammatory cytokines were assessed by TUNEL, Nissl staining, and ELISA. Meanwhile, behavioral cognitive impairment of ICH rats was evaluated after ERBB1-targeted interventions. RESULTS: ERBB1 increased significantly in brain tissue of ICH rats. Overexpression of ERBB1 remarkably reduced cell apoptosis and neuronal loss induced by ICH, as well as pro-inflammatory cytokines and oxidative stress. Meanwhile, the behavioral and cognitive impairment of ICH rats were alleviated after upregulation of ERBB1; however, the secondary brain injury (SBI) was aggravated by AG1478 treatment. Furthermore, the upregulation of PLC-γ and PKC in ICH rats was reversed by AG1478 treatment. CONCLUSIONS: ERBB1 can improve SBI and has a neuroprotective effect in experimental ICH rats via PLC-γ/PKC pathway.


Asunto(s)
Lesiones Encefálicas , Hemorragia Cerebral , Receptores ErbB , Quinazolinas , Animales , Ratas , Apoptosis , Lesiones Encefálicas/metabolismo , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Fosfolipasa C gamma/metabolismo , Ratas Sprague-Dawley , Tirfostinos , Receptores ErbB/metabolismo , Proteína Quinasa C/metabolismo
5.
PLoS One ; 19(3): e0299541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551930

RESUMEN

The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.


Asunto(s)
Colorantes Fluorescentes , Fosfatidilinositoles , Fosfolipasa C gamma , Hidrolasas Diéster Fosfóricas , Cumarinas/farmacología , Fosfolipasas de Tipo C
7.
J Cell Mol Med ; 28(4): e18139, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38334198

RESUMEN

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans. In this investigation, we delved into the intricate mechanisms through which GK influences human platelets. At low concentrations (0.5-1 µM), GK exhibited robust inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Intriguingly, thrombin and U46619 remained impervious to GK's influence. GK's modulatory effect extended to ATP release, P-selectin expression, intracellular calcium ([Ca2+ ]i) levels and thromboxane A2 formation. It significantly curtailed the activation of various signaling cascades, encompassing phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß and mitogen-activated protein kinases. GK's antiplatelet effect was not reversed by SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor), and GK had no effect on the phosphorylation of vasodilator-stimulated phosphoproteinSer157 or Ser239 . Moreover, neither cyclic AMP nor cyclic GMP levels were significantly increased after GK treatment. In mouse studies, GK notably extended occlusion time in mesenteric vessels, while sparing bleeding time. In conclusion, GK's profound impact on platelet activation, achieved through inhibiting PLCγ2-PKC cascade, culminates in the suppression of downstream signaling and, ultimately, the inhibition of platelet aggregation. These findings underscore the promising therapeutic potential of GK in the CVDs.


Asunto(s)
Biflavonoides , Nucleótidos Cíclicos , Fosfolipasas , Humanos , Animales , Ratones , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/farmacología , Fosfolipasa C gamma/metabolismo , Ácido Araquidónico/farmacología , Ácido Araquidónico/metabolismo , Fosfolipasas/metabolismo , Fosfolipasas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Activación Plaquetaria , Plaquetas/metabolismo , Agregación Plaquetaria , Proteína Quinasa C/metabolismo , Fosforilación , Colágeno/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339201

RESUMEN

Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.


Asunto(s)
Nucleobindinas , Placenta , Placentación , Trofoblastos , Animales , Femenino , Embarazo , Ratas , Cadherinas/metabolismo , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Fusión Celular , Receptores ErbB/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipasa C gamma/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Nucleobindinas/metabolismo
9.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396774

RESUMEN

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Asunto(s)
Eugenol , Embolia Pulmonar , Humanos , Ratones , Animales , Eugenol/farmacología , Eugenol/uso terapéutico , Eugenol/metabolismo , Fosfolipasa C gamma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad , Activación Plaquetaria , Agregación Plaquetaria , Plaquetas/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Tromboxano A2/metabolismo , Colágeno/metabolismo , Embolia Pulmonar/tratamiento farmacológico , Embolia Pulmonar/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo
10.
FEBS J ; 291(12): 2703-2714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38390745

RESUMEN

Glaucoma, an irreversible blinding eye disease, is currently unclear whose pathological mechanism is. This study investigated how transient receptor potential cation channel subfamily V member 1 (TRPV1), 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCγ1), and P2X purinoceptor 7 (P2X7) modulate the levels of intracellular calcium ions (Ca2+) and adenosine triphosphate (ATP) in Müller cells and retinal ganglion cells (RGCs) under conditions of elevated intraocular pressure (IOP). Müller cells were maintained at hydrostatic pressure (HP). TRPV1- and PLCG1-silenced Müller cells and P2X7-silenced RGCs were constructed by transfection with short interfering RNA (siRNAs). RGCs were cultured with the conditioned media of Müller cells under HP. A mouse model of chronic ocular hypertension (COH) was established and used to investigate the role of TRPV1 in RGCs in vivo. Müller cells and RGCs were analyzed by ATP release assays, intracellular calcium assays, CCK-8 assays, EdU (5-ethynyl-2'-deoxyuridine) staining, TUNEL staining, flow cytometry, and transmission electron microscopy. In vivo changes in inner retinal function were evaluated by hematoxylin and eosin (H&E) staining and TUNEL staining. Western blot analyses were performed to measure the levels of related proteins. Our data showed that HP increased the levels of ATP and Ca2+ influx in Müller cells, and those increases were accompanied by the upregulation of TRPV1 and p-PLCγ1 expression. Suppression of TRPV1 or PLCG1 expression in Müller cells significantly decreased the ATP levels and intracellular Ca2+ accumulation induced by HP. Knockdown of TRPV1, PLCG1, or P2X7 significantly decreased apoptosis and autophagy in RGCs cultured in the conditioned media of HP-treated Müller cells. Moreover, TRPV1 silencing decreased RGC apoptosis and autophagy in the in vivo model of COH. Collectively, inhibition of TRPV1/PLCγ1 and P2X7 expression may be a useful therapeutic strategy for managing RGC death in glaucoma.


Asunto(s)
Calcio , Supervivencia Celular , Células Ependimogliales , Glaucoma , Presión Hidrostática , Fosfolipasa C gamma , Células Ganglionares de la Retina , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Glaucoma/patología , Glaucoma/metabolismo , Glaucoma/genética , Ratones , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/genética , Calcio/metabolismo , Supervivencia Celular/genética , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Presión Intraocular , Adenosina Trifosfato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Masculino , Apoptosis , Células Cultivadas
11.
Mol Biol Rep ; 51(1): 140, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236447

RESUMEN

BACKGROUND: Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (PKG-I), a serine/threonine kinase, is important in tumor development. The present study determines that the cGMP/PKG I pathway is essential for promoting cell proliferation and survival in human ovarian cancer cells, whereas cGMP analog has been shown to lead to growth inhibition and apoptosis of various cancer cells. The role of cGMP/PKG I pathway in epithelial ovarian cancer (EOC), therefore, remains controversial. We investigated the effect of cGMP/PKG I pathway and the underlying mechanism in EOC. METHODS AND RESULTS: The results showed that exogenous 8-Bromoguanosine-3', 5'-cyclic monophosphate (8-Br-cGMP) (cGMP analog) could antagonize the effects by EGF, including suppressing proliferation, invasion and migration of EOC cells. In vivo, 8-Br-cGMP hampered the growth of the xenograft tumor. Additionally, the expressions of epidermal growth factor receptor (EGFR), matrix metallopeptidase 9 (MMP9), proliferating cell nuclear antigen and Ki67 in xenograft tumor were decreased after 8-Br-cGMP intervention. Further research demonstrated that 8-Br-cGMP decreased the phosphorylation of EGFR (Y992) and downstream proteins phospholipase Cγ1 (PLC γ1) (Y783), calmodulin kinase II (T286) and inhibited cytoplasmic Ca2+ release as well as PKC transferring to cell membrane. It's worth noting that the inhibition was 8-Br-cGMP dose-dependent and 8-Br-cGMP showed similar inhibitory effect on EOC cells compared with U-73122, a specific inhibitor of PLC γ1. CONCLUSIONS: The activation of endogenous PKG I by addition of exogenous 8-Br-cGMP could inhibit EOC development probably via EGFR/PLCγ1 signaling pathway. 8-Br-cGMP/PKG I provide a new insight and strategy for EOC treatment.


Asunto(s)
GMP Cíclico/análogos & derivados , Neoplasias Ováricas , Tionucleótidos , Humanos , Femenino , Carcinoma Epitelial de Ovario , Fosfolipasa C gamma , Neoplasias Ováricas/tratamiento farmacológico , Receptores ErbB
12.
Neuromodulation ; 27(2): 273-283, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36801128

RESUMEN

OBJECTIVE: Functional dyspepsia (FD), which has a complicated pathophysiologic process, is a common functional gastrointestinal disease. Gastric hypersensitivity is the key pathophysiological factor in patients with FD with chronic visceral pain. Auricular vagal nerve stimulation (AVNS) has the therapeutic effect of reducing gastric hypersensitivity by regulating the activity of the vagus nerve. However, the potential molecular mechanism is still unclear. Therefore, we investigated the effects of AVNS on the brain-gut axis through the central nerve growth factor (NGF)/ tropomyosin receptor kinase A (TrkA)/phospholipase C-gamma (PLC-γ) signaling pathway in FD model rats with gastric hypersensitivity. MATERIALS AND METHODS: We established the FD model rats with gastric hypersensitivity by means of colon administration of trinitrobenzenesulfonic acid on ten-day-old rat pups, whereas the control rats were given normal saline. AVNS, sham AVNS, K252a (an inhibitor of TrkA, intraperitoneally), and K252a + AVNS were performed on eight-week-old model rats for five consecutive days. The therapeutic effect of AVNS on gastric hypersensitivity was determined by the measurement of abdominal withdrawal reflex response to gastric distention. NGF in gastric fundus and NGF, TrkA, PLC-γ, and transient receptor potential vanilloid 1 (TRPV1) in the nucleus tractus solitaries (NTS) were detected separately by polymerase chain reaction, Western blot, and immunofluorescence tests. RESULTS: It was found that a high level of NGF in gastric fundus and an upregulation of the NGF/TrkA/PLC-γ signaling pathway in NTS were manifested in model rats. Meanwhile, both AVNS treatment and the administration of K252a not only decreased NGF messenger ribonucleic acid (mRNA) and protein expressions in gastric fundus but also reduced the mRNA expressions of NGF, TrkA, PLC-γ, and TRPV1 and inhibited the protein levels and hyperactive phosphorylation of TrkA/PLC-γ in NTS. In addition, the expressions of NGF and TrkA proteins in NTS were decreased significantly after the immunofluorescence assay. The K252a + AVNS treatment exerted a more sensitive effect on regulating the molecular expressions of the signal pathway than did the K252a treatment. CONCLUSION: AVNS can regulate the brain-gut axis effectively through the central NGF/TrkA/PLC-γ signaling pathway in the NTS, which suggests a potential molecular mechanism of AVNS in ameliorating visceral hypersensitivity in FD model rats.


Asunto(s)
Dispepsia , Estimulación del Nervio Vago , Animales , Ratas , Dispepsia/terapia , Factor de Crecimiento Nervioso/metabolismo , Fosfolipasa C gamma/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , ARN Mensajero , Transducción de Señal , Tropomiosina/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166978, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061598

RESUMEN

Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Encéfalo/metabolismo , Inmunidad Innata , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fagocitosis/genética , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/farmacología
14.
Mol Cancer Ther ; 23(1): 35-46, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37735104

RESUMEN

Small molecule inhibitors of Bruton's tyrosine kinase (BTK) have been approved for the treatment of multiple B-cell malignancies and are being evaluated for autoimmune and inflammatory diseases. Various BTK inhibitors (BTKi) have distinct potencies, selectivity profiles, and binding modes within the ATP-binding site. On the basis of the latter feature, BTKis can be classified into those that occupy the back-pocket, H3 pocket, and the hinge region only. Hypothesizing that differing binding modes may have differential impact on the B-cell receptor (BCR) signaling pathway, we evaluated the activities of multiple BTKis in B-cell lymphoma models in vitro and in vivo. We demonstrated that, although all three types of BTKis potently inhibited BTK-Y223 autophosphorylation and phospholipase C gamma 2 (PLCγ2)-Y1217 transphosphorylation, hinge-only binders were defective in inhibiting BTK-mediated calcium mobilization upon BCR activation. In addition, PLCγ2 activation was effectively blocked by back-pocket and H3 pocket binders but not by hinge-only binders. Further investigation using TMD8 cells deficient in Rac family small GTPase 2 (RAC2) revealed that RAC2 functioned as a bypass mechanism, allowing for residual BCR signaling and PLCγ2 activation when BTK kinase activity was fully inhibited by the hinge-only binders. These data reveal a kinase activity-independent function of BTK, involving RAC2 in transducing BCR signaling events, and provide mechanistic rationale for the selection of clinical candidates for B-cell lymphoma indications.


Asunto(s)
Linfoma de Células B , Proteínas Tirosina Quinasas , Humanos , Fosfolipasa C gamma/metabolismo , Transducción de Señal , Agammaglobulinemia Tirosina Quinasa , Linfoma de Células B/tratamiento farmacológico , Receptores de Antígenos de Linfocitos B/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
15.
Mol Biol Cell ; 35(1): ar5, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910189

RESUMEN

The interaction between aggregated low-density lipoprotein (agLDL) and macrophages in arteries plays a major role in atherosclerosis. Macrophages digest agLDL and generate free cholesterol in an extracellular, acidic, hydrolytic compartment known as the lysosomal synapse. Macrophages form a tight seal around agLDL through actin polymerization and deliver lysosomal contents into this space in a process termed digestive exophagy. Our laboratory has identified TLR4 activation of MyD88/Syk as critical for digestive exophagy. Here we use pharmacological agents and siRNA knockdown to characterize signaling pathways downstream of Syk that are involved in digestive exophagy. Syk activates Bruton's tyrosine kinase (BTK) and phospholipase Cγ2 (PLCγ2). We show that PLCγ2 and to a lesser extent BTK regulate digestive exophagy. PLCγ2 cleaves PI(4,5)P2 into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). Soluble IP3 activates release of Ca2+ from the endoplasmic reticulum (ER). We demonstrate that Ca2+ release from the ER is upregulated by agLDL and plays a key role in digestive exophagy. Both DAG and Ca2+ activate protein kinase Cα (PKCα). We find that PKCα is an important regulator of digestive exophagy. These results expand our understanding of the mechanisms of digestive exophagy, which could be useful in developing therapeutic interventions to slow development of atherosclerosis.


Asunto(s)
Aterosclerosis , Proteína Quinasa C-alfa , Humanos , Proteína Quinasa C-alfa/metabolismo , Fosfolipasa C gamma/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Lipoproteínas LDL/metabolismo , Agammaglobulinemia Tirosina Quinasa/metabolismo , Aterosclerosis/metabolismo , Digestión
16.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079542

RESUMEN

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Ratones , Animales , Humanos , Antígenos Transformadores de Poliomavirus/metabolismo , Poliomavirus de Células de Merkel/metabolismo , FN-kappa B/metabolismo , Familia-src Quinasas/metabolismo , Fosfolipasa C gamma/metabolismo , Transducción de Señal , Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/genética , Tirosina/metabolismo
17.
Endocrinol Metab (Seoul) ; 38(6): 739-749, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37989267

RESUMEN

BACKGRUOUND: Phospholipase C-γ (PLC-γ) plays a crucial role in immune responses and is related to the pathogenesis of various inflammatory disorders. In this study, we investigated the role of PLC-γ and the therapeutic effect of the PLC-specific inhibitor U73122 using orbital fibroblasts from patients with Graves' orbitopathy (GO). METHODS: The expression of phospholipase C gamma 1 (PLCG1) and phospholipase C gamma 2 (PLCG2) was evaluated using polymerase chain reaction in GO and normal orbital tissues/fibroblasts. The primary cultures of orbital fibroblasts were treated with non-toxic concentrations of U73122 with or without interleukin (IL)-1ß to determine its therapeutic efficacy. The proinflammatory cytokine levels and activation of downstream signaling molecules were determined using Western blotting. RESULTS: PLCG1 and PLCG2 mRNA expression was significantly higher in GO orbital tissues than in controls (P<0.05). PLCG1 and PLCG2 mRNA expression was significantly increased (P<0.05) in IL-1ß, tumor necrosis factor-α, and a cluster of differentiation 40 ligand-stimulated GO fibroblasts. U73122 significantly inhibited the IL-1ß-induced expression of proinflammatory molecules, including IL-6, IL-8, monocyte chemoattractant protein-1, cyclooxygenase-2, and intercellular adhesion molecule-1 (ICAM-1), and phosphorylated protein kinase B (p-Akt) and p38 (p-p38) kinase in GO fibroblasts, whereas it inhibited IL-6, IL-8, and ICAM-1, and p-Akt and c-Jun N-terminal kinase (p-JNK) in normal fibroblasts (P<0.05). CONCLUSION: PLC-γ-inhibiting U73122 suppressed the production of proinflammatory cytokines and the phosphorylation of Akt and p38 kinase in GO fibroblasts. This study indicates the implications of PLC-γ in GO pathogenesis and its potential as a therapeutic target for GO.


Asunto(s)
Oftalmopatía de Graves , Humanos , Oftalmopatía de Graves/tratamiento farmacológico , Oftalmopatía de Graves/metabolismo , Oftalmopatía de Graves/patología , Fosfolipasa C gamma , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Molécula 1 de Adhesión Intercelular/uso terapéutico , Interleucina-6/metabolismo , Interleucina-6/uso terapéutico , Interleucina-8/uso terapéutico , Citocinas/metabolismo , Citocinas/uso terapéutico , ARN Mensajero/metabolismo , ARN Mensajero/uso terapéutico
18.
Adv Sci (Weinh) ; 10(34): e2303091, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863665

RESUMEN

Erlotinib, an EGFR tyrosine kinase inhibitor, is used for treating patients with cancer exhibiting EGFR overexpression or mutation. However, the response rate of erlotinib is low among patients with gastric cancer (GC). The findings of this study illustrated that the overexpression of bromodomain PHD finger transcription factor (BPTF) is partially responsible for erlotinib resistance in GC, and the combination of the BPTF inhibitor AU-1 with erlotinib synergistically inhibited tumor growth both in vivo and in vitro. AU-1 inhibited the epigenetic function of BPTF and decreased the transcriptional activity of c-MYC on PLCG1 by attenuating chromosome accessibility of the PLCG1 promoter region, thus decreasing the expression of p-PLCG1 and p-Erk and eventually improving the sensitivity of GC cells to erlotinib. In patient-derived xenograft (PDX) models, AU-1 monotherapy exhibited remarkable tumor-inhibiting activity and is synergistic anti-tumor effects when combined with erlotinib. Altogether, the findings illustrate that BPTF affects the responsiveness of GC to erlotinib by epigenetically regulating the c-MYC/PLCG1/pErk axis, and the combination of BPTF inhibitors and erlotinib is a viable therapeutic approach for GC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias Gástricas , Humanos , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Fosfolipasa C gamma/farmacología
19.
Cell Rep ; 42(9): 113035, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37616163

RESUMEN

Most gastrointestinal stromal tumors (GISTs) develop due to gain-of-function mutations in the tyrosine kinase gene, KIT. We recently showed that mutant KIT mislocalizes to the Golgi area and initiates uncontrolled signaling. However, the molecular mechanisms underlying its Golgi retention remain unknown. Here, we show that protein kinase D2 (PKD2) is activated by the mutant, which causes Golgi retention of KIT. In PKD2-inhibited cells, KIT migrates from the Golgi region to lysosomes and subsequently undergoes degradation. Importantly, delocalized KIT cannot trigger downstream activation. In the Golgi/trans-Golgi network (TGN), KIT activates the PKD2-phosphatidylinositol 4-kinase IIIß (PKD2-PI4KIIIß) pathway through phospholipase Cγ2 (PLCγ2) to generate a PI4P-rich membrane domain, where the AP1-GGA1 complex is aberrantly recruited. Disruption of any factors in this cascade results in the release of KIT from the Golgi/TGN. Our findings show the molecular mechanisms underlying KIT mislocalization and provide evidence for a strategy for inhibition of oncogenic signaling.


Asunto(s)
Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/metabolismo , Tumores del Estroma Gastrointestinal/patología , Proteína Quinasa D2 , Fosfolipasa C gamma/metabolismo , Aparato de Golgi/metabolismo , Red trans-Golgi/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo
20.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37651195

RESUMEN

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.


Asunto(s)
Permeabilidad Capilar , Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Permeabilidad Capilar/genética , Carcinoma de Células Renales/inmunología , Neoplasias Renales/inmunología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/metabolismo , Fosforilación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA