Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.491
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 313, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840120

RESUMEN

Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.


Asunto(s)
Neoplasias de la Mama , Antígeno CD56 , Células Asesinas Naturales , Fotoquimioterapia , Polietilenglicoles , Neoplasias de la Mama/terapia , Humanos , Femenino , Animales , Fotoquimioterapia/métodos , Ratones , Polietilenglicoles/química , Línea Celular Tumoral , Antígeno CD56/metabolismo , Inmunoterapia Adoptiva/métodos , Apoptosis/efectos de los fármacos , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Ratones Desnudos
2.
Planta Med ; 90(7-08): 588-594, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843798

RESUMEN

Antimicrobial photodynamic therapy (aPDT) is an evolving treatment strategy against human pathogenic microbes such as the Candida species, including the emerging pathogen C. auris. Using a modified EUCAST protocol, the light-enhanced antifungal activity of the natural compound parietin was explored. The photoactivity was evaluated against three separate strains of five yeasts, and its molecular mode of action was analysed via several techniques, i.e., cellular uptake, reactive electrophilic species (RES), and singlet oxygen yield. Under experimental conditions (λ = 428 nm, H = 30 J/cm2, PI = 30 min), microbial growth was inhibited by more than 90% at parietin concentrations as low as c = 0.156 mg/L (0.55 µM) for C. tropicalis and Cryptococcus neoformans, c = 0.313 mg/L (1.10 µM) for C. auris, c = 0.625 mg/L (2.20 µM) for C. glabrata, and c = 1.250 mg/L (4.40 µM) for C. albicans. Mode-of-action analysis demonstrated fungicidal activity. Parietin targets the cell membrane and induces cell death via ROS-mediated lipid peroxidation after light irradiation. In summary, parietin exhibits light-enhanced fungicidal activity against all Candida species tested (including C. auris) and Cryptococcus neoformans, covering three of the four critical threats on the WHO's most recent fungal priority list.


Asunto(s)
Antifúngicos , Cryptococcus neoformans , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/efectos de la radiación , Candida auris/efectos de los fármacos , Luz , Candida/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fotoquimioterapia/métodos , Antraquinonas/farmacología , Fármacos Fotosensibilizantes/farmacología
3.
J Refract Surg ; 40(6): e392-e397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38848056

RESUMEN

PURPOSE: To compare the effects of corneal allogenic intrastromal ring segment (CAIRS) implantation on topographical measurements and visual outcomes of patients with keratoconus with and without corneal cross-linking (CXL) prior to the time of implantation. METHODS: Sixty-seven eyes with corneal allograft intrastromal ring segment implantation (KeraNatural; Lions VisionGift) due to advanced keratoconus were included in the study. Thirty-seven eyes had no CXL and 30 eyes had had CXL before being referred to the authors. The changes in spherical equivalent (SE), uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), steep keratometry (K1), flat keratometry (K2), mean keratometry (Kmean), maximum keratometry (Kmax), and thinnest pachymetry were retrospectively analyzed 6 months after the implantation. RESULTS: The median age was 29 years in the CXL group and 24.0 years in the non-CXL group (P > .05), respectively. All topographical and visual parameters before implantation were similar in both groups (P > .05 for all parameters). At 6 months, CDVA, K1, and Kmean showed higher improvement in the non-CXL group than the CXL group (P = .030, .018, and .039, respectively). CONCLUSIONS: CAIRS surgery has a flattening effect on both the corneas with and without CXL. The cornea with prior CXL treatment had less flattening effect due to the stiffening effect of prior CXL. [J Refract Surg. 2024;40(6):e392-e397.].


Asunto(s)
Colágeno , Sustancia Propia , Topografía de la Córnea , Reactivos de Enlaces Cruzados , Queratocono , Fármacos Fotosensibilizantes , Prótesis e Implantes , Implantación de Prótesis , Refracción Ocular , Agudeza Visual , Humanos , Queratocono/fisiopatología , Queratocono/metabolismo , Queratocono/tratamiento farmacológico , Queratocono/cirugía , Sustancia Propia/metabolismo , Sustancia Propia/cirugía , Reactivos de Enlaces Cruzados/uso terapéutico , Agudeza Visual/fisiología , Adulto , Masculino , Femenino , Fármacos Fotosensibilizantes/uso terapéutico , Estudios Retrospectivos , Adulto Joven , Refracción Ocular/fisiología , Colágeno/metabolismo , Paquimetría Corneal , Riboflavina/uso terapéutico , Fotoquimioterapia/métodos , Adolescente , Rayos Ultravioleta , Trasplante de Córnea/métodos , Persona de Mediana Edad , Reticulación Corneal
4.
Biomed Mater ; 19(4)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38697132

RESUMEN

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Asunto(s)
Doxorrubicina , Liberación de Fármacos , Verde de Indocianina , Indoles , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Polímeros , Fotoquimioterapia/métodos , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Verde de Indocianina/química , Indoles/química , Animales , Compuestos de Manganeso/química , Humanos , Polímeros/química , Línea Celular Tumoral , Óxidos/química , Fármacos Fotosensibilizantes/química , Dióxido de Silicio/química , Ratones , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Porosidad
5.
BMC Ophthalmol ; 24(1): 201, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698363

RESUMEN

BACKGROUND: We aimed to employ Optical Coherence Tomography Angiography (OCTA) to comprehensively assess changes in the optic nerve head (ONH) and macular perfusion before and after the Corneal Collagen Cross-Linking (CCL) procedure in patients with keratoconus. METHODS: A total of 22 keratoconus patient's candidate for CCL procedures were included based on specific criteria, with meticulous exclusion criteria in place to minimize potential confounders. Participants underwent OCTA assessments of the ONH and macula using the Spectralis OCT (Heidelberg) before CCL, as well as at 1- and 3-months post-CCL. MATLAB software was utilized for image analysis. RESULTS: The mean age of the participants was 20.09 ± 6.11, including 59% male, and the mean intraocular pressure (IOP) before the surgery was 13.59 ± 2.85 mmHg. Peripapillary Retinal nerve fiber layer (ppRNFL) thickness and overall retinal thickness remained stable post-CCL. However, significant alterations were observed in macular vessel density, emphasizing regional variations in vascular response. For macular large vessel density (LVD), both superficial and deep vascular complex (SVC and DVC) demonstrated significant differences between before surgery and the 3 months post-surgery follow-up (p < 0.001 and p = 0.002, respectively). Optic nerve head markers demonstrated relative stability, except for changes in avascular complex density, which was 49.2 ± 2.2% before the surgery and decrease to 47.6 ± 1.7% three months after the operation (P-value = 0.005). CONCLUSION: While CCL appears to maintain the integrity of certain ocular structures, alterations in macular perfusion post-CCL suggest potential effects on retinal blood supply. Long-term monitoring is crucial to understand the implications of these changes, particularly in the context of conditions such as diabetes.


Asunto(s)
Colágeno , Reactivos de Enlaces Cruzados , Angiografía con Fluoresceína , Queratocono , Disco Óptico , Vasos Retinianos , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Queratocono/fisiopatología , Queratocono/diagnóstico , Masculino , Femenino , Colágeno/metabolismo , Adulto Joven , Adulto , Angiografía con Fluoresceína/métodos , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/fisiopatología , Disco Óptico/irrigación sanguínea , Adolescente , Estudios Prospectivos , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Mácula Lútea/diagnóstico por imagen , Mácula Lútea/irrigación sanguínea
6.
J Nanobiotechnology ; 22(1): 227, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711078

RESUMEN

BACKGROUND: Elevated interstitial fluid pressure within tumors, resulting from impaired lymphatic drainage, constitutes a critical barrier to effective drug penetration and therapeutic outcomes. RESULTS: In this study, based on the photosynthetic characteristics of algae, an active drug carrier (CP@ICG) derived from Chlorella pyrenoidosa (CP) was designed and constructed. Leveraging the hypoxia tropism and phototropism exhibited by CP, we achieved targeted transport of the carrier to tumor sites. Additionally, dual near-infrared (NIR) irradiation at the tumor site facilitated photosynthesis in CP, enabling the breakdown of excessive intratumoral interstitial fluid by generating oxygen from water decomposition. This process effectively reduced the interstitial pressure, thereby promoting enhanced perfusion of blood into the tumor, significantly improving deep-seated penetration of chemotherapeutic agents, and alleviating tumor hypoxia. CONCLUSIONS: CP@ICG demonstrated a combined effect of photothermal/photodynamic/starvation therapy, exhibiting excellent in vitro/in vivo anti-tumor efficacy and favorable biocompatibility. This work provides a scientific foundation for the application of microbial-enhanced intratumoral drug delivery and tumor therapy.


Asunto(s)
Chlorella , Portadores de Fármacos , Fotosíntesis , Animales , Ratones , Línea Celular Tumoral , Portadores de Fármacos/química , Humanos , Terapia Combinada , Fotoquimioterapia/métodos , Neoplasias/terapia , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Sistemas de Liberación de Medicamentos/métodos , Verde de Indocianina/farmacocinética , Verde de Indocianina/química , Femenino
7.
Int J Nanomedicine ; 19: 4163-4180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751660

RESUMEN

Purpose: The study aimed to address the non-specific toxicity of cytotoxins (CTX) in liver cancer treatment and explore their combined application with the photosensitizer Ce6, co-loaded into carbonized Zn/Co bimetallic organic frameworks. The goal was to achieve controlled CTX release and synergistic photodynamic therapy, with a focus on evaluating anti-tumor activity against human liver cancer cell lines (Hep G2). Methods: Purified cobra cytotoxin (CTX) and photosensitizer Ce6 were co-loaded into carbonized Zn/Co bimetallic organic frameworks, resulting in RGD-PDA@C-ZIF@(CTX+Ce6). The formulation was designed with surface-functionalization using polydopamine and tumor-penetrating peptide RGD. This approach aimed to facilitate controlled CTX release and enhance the synergistic effect of photodynamic therapy. The accumulation of RGD-PDA@C-ZIF@(CTX+Ce6) at tumor sites was achieved through RGD's active targeting and the enhanced permeability and retention (EPR) effect. In the acidic tumor microenvironment, the porous structure of the metal-organic framework disintegrated, releasing CTX and Ce6 into tumor cells. Results: Experiments demonstrated that RGD-PDA@C-ZIF@(CTX+Ce6) nanoparticles, combined with near-infrared laser irradiation, exhibited optimal anti-tumor effects against human liver cancer cells. The formulation showcased heightened anti-tumor activity without discernible systemic toxicity. Conclusion: The study underscores the potential of utilizing metal-organic frameworks as an efficient nanoplatform for co-loading cytotoxins and photodynamic therapy in liver cancer treatment. The developed formulation, RGD-PDA@C-ZIF@(CTX+Ce6), offers a promising avenue for advancing the clinical application of cytotoxins in oncology, providing a solid theoretical foundation for future research and development.


Asunto(s)
Indoles , Neoplasias Hepáticas , Estructuras Metalorgánicas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Zinc , Humanos , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Zinc/química , Zinc/farmacología , Indoles/química , Indoles/farmacología , Indoles/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Células Hep G2 , Cobalto/química , Cobalto/farmacología , Oligopéptidos/química , Oligopéptidos/farmacología , Oligopéptidos/farmacocinética , Polímeros/química , Ratones , Citotoxinas/química , Citotoxinas/farmacología , Citotoxinas/farmacocinética , Ratones Desnudos , Ratones Endogámicos BALB C , Supervivencia Celular/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 121(20): e2321545121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713621

RESUMEN

The efficiency of photodynamic therapy (PDT) is greatly dependent on intrinsic features of photosensitizers (PSs), but most PSs suffer from narrow diffusion distances and short life span of singlet oxygen (1O2). Here, to conquer this issue, we propose a strategy for in situ formation of complexes between PSs and proteins to deactivate proteins, leading to highly effective PDT. The tetrafluorophenyl bacteriochlorin (FBC), a strong near-infrared absorbing photosensitizer, can tightly bind to intracellular proteins to form stable complexes, which breaks through the space-time constraints of PSs and proteins. The generated singlet oxygen directly causes the protein dysfunction, leading to high efficiency of PSs. To enable efficient delivery of PSs, a charge-conversional and redox-responsive block copolymer POEGMA-b-(PAEMA/DMMA-co-BMA) (PB) was designed to construct a protein-binding photodynamic nanoinhibitor (FBC@PB), which not only prolongs blood circulation and enhances cellular uptake but also releases FBC on demand in tumor microenvironment (TME). Meanwhile, PDT-induced destruction of cancer cells could produce tumor-associated antigens which were capable to trigger robust antitumor immune responses, facilitating the eradication of residual cancer cells. A series of experiments in vitro and in vivo demonstrated that this multifunctional nanoinhibitor provides a promising strategy to extend photodynamic immunotherapy.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Microambiente Tumoral , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Humanos , Ratones , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Línea Celular Tumoral , Oxígeno Singlete/metabolismo , Porfirinas/farmacología , Porfirinas/química , Unión Proteica , Nanopartículas/química
9.
Lasers Med Sci ; 39(1): 131, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750381

RESUMEN

Photodynamic therapy (PDT) is a targeted treatment method that utilizes a photosensitizer (PS) to induce cytotoxicity in malignant and non-malignant tumors. Optimization of PDT requires investigation of the selectivity of PS for the target tissues, irradiating light source, irradiation wavelengths, fluence rate, fluence, illumination mode, and overall treatment plan. In this study, we developed the Multi-mode Automatized Well-plate PDT LED Laboratory Irradiation System (MAWPLIS), an innovative device that automates time-consuming well plate light dosage/PS dose measurement experiment. The careful control of LED current and temperature stabilization in the LED module allowed the system to achieve high optical output stability. The MAWPLIS was designed by integrating a 3-axis moving system and motion controller, a quick-switching LED controller unit equipped with interchangeable LED modules capable of employing multiple wavelengths, and a TEC system. The proposed system achieved high optical output stability (1 mW) within the range of 0-500 mW, high wavelength stability (5 nm) at 635 nm, and high temperature stability (0.2 °C) across all radiation modes. The system's validation involved in vitro analysis using 5-ALA across varying concentrations, incubation periods, light exposures, and wavelengths in HT-29 colon cancer and WI-38 human lung fibroblast cell lines. Specifically, a combination of 405 nm and 635 nm wavelengths was selected to demonstrate enhanced strategies for colon cancer cell eradication and system validation. The MAWPLIS system represents a significant advancement in photodynamic therapy (PDT) research, offering automation and standardization of time-intensive experiments, high stability and precision, and improved PDT efficacy through dual-wavelength integration.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Fotoquimioterapia/instrumentación , Humanos , Células HT29 , Ácido Aminolevulínico/administración & dosificación
10.
Photodiagnosis Photodyn Ther ; 45: 103869, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38787766

RESUMEN

BACKGROUND: For malignant glioma, intraoperative photodynamic therapy (PDT) using talaporfin sodium is a powerful tool for local tumor control, when gross total removal is performed. However, the efficacy of PDT for non-totally resectable malignant glioma has not been clearly confirmed. Therefore, the purpose of this study was to clarify the usefulness of PDT using talaporfin sodium for non-totally resectable malignant glioma. METHODS: Eighteen patients with malignant glioma (16 new onset, 2 recurrent) in whom gross total removal was judged to be difficult from the images obtained before surgery were evaluated. Fifteen patients had glioblastoma (14 newly diagnosed, 1 recurrent), and 3 patients had anaplastic oligodendroglioma (2 newly diagnosed, 1 recurrent). The whole resection cavity was subjected to PDT during the surgery. For newly diagnosed glioblastoma, postoperative therapy involved the combined use of radiation and temozolomide. Bevacizumab treatment was also started at an early stage after surgery. RESULTS: In some patients, reduction of the residual tumor was observed at an early stage of chemoradiotherapy after the surgery, suggesting the positive effect of PDT. Recurrence occurred in 15 of the 18 patients during the course of treatment. Distant recurrence occurred in 8 of these 15 patients, despite good local tumor control. In the 14 patients with newly diagnosed glioblastoma, the median progression-free survival was almost 10.5 months, and the median overall survival was almost 16.9 months. CONCLUSIONS: PDT for malignant glioma is expected to slightly improve local tumor control for non-totally resectable lesions.


Asunto(s)
Neoplasias Encefálicas , Glioma , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Humanos , Fotoquimioterapia/métodos , Masculino , Femenino , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/uso terapéutico , Persona de Mediana Edad , Glioma/tratamiento farmacológico , Anciano , Adulto , Neoplasias Encefálicas/tratamiento farmacológico , Recurrencia Local de Neoplasia , Temozolomida/uso terapéutico
11.
Lasers Med Sci ; 39(1): 135, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787412

RESUMEN

In this study, we assess the impact of photodynamic therapy (PDT) using aluminum phthalocyanine tetrasulfonate (AlPcS4) on the viability and cellular stress responses of MCF-7 breast cancer cells. Specifically, we investigate changes in cell viability, cytokine production, and the expression of stress-related genes. Experimental groups included control cells, those treated with AlPcS4 only, light-emitting diode (LED) only, and combined PDT. To evaluate these effects on cell viability, cytokine production, and the expression of stress-related genes, techniques such as 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, enzyme-linked immunosorbent assays (ELISA), and real-time quantitative PCR (RT‒qPCR) were employed. Our findings reveal how PDT with AlPcS4 modulates mitochondrial activity and cytokine responses, shedding light on the cellular pathways essential for cell survival and stress adaptation. This work enhances our understanding of PDT's therapeutic potential and mechanisms in treating breast cancer.


Asunto(s)
Neoplasias de la Mama , Supervivencia Celular , Citocinas , Indoles , Compuestos Organometálicos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Fotoquimioterapia/métodos , Células MCF-7 , Citocinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Compuestos Organometálicos/farmacología , Fármacos Fotosensibilizantes/farmacología , Indoles/farmacología , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Ensayo de Inmunoadsorción Enzimática
12.
Int J Nanomedicine ; 19: 4701-4717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808148

RESUMEN

Purpose: Numerous failures in melanoma treatment as a highly aggressive form of skin cancer with an unfavorable prognosis and excessive resistance to conventional therapies are prompting an urgent search for more effective therapeutic tools. Consequently, to increase the treatment efficiency and to reduce the side effects of traditional administration ways, herein, it has become crucial to combine photodynamic therapy as a promising therapeutic approach with the selectivity and biocompatibility of a novel colloidal transdermal nanoplatform for effective delivery of hybrid cargo with synergistic effects on melanoma cells. Methods: The self-assembled bilosomes, co-stabilized with L-α-phosphatidylcholine, sodium cholate, Pluronic® P123, and cholesterol, were designated, and the stability of colloidal vesicles was studied using dynamic and electrophoretic light scattering, also provided in cell culture medium (Dulbecco's Modified Eagle's Medium). The hybrid compounds - a classical photosensitizer (Methylene Blue) along with a complementary natural polyphenolic agent (curcumin), were successfully co-loaded, as confirmed by UV-Vis, ATR-FTIR, and fluorescent spectroscopies. The biocompatibility and usefulness of the polymer functionalized bilosome with loaded double cargo were demonstrated in vitro cyto- and phototoxicity experiments using normal keratinocytes and melanoma cancer cells. Results: The in vitro bioimaging and immunofluorescence study upon human skin epithelial (A375) and malignant (Me45) melanoma cell lines established the protective effect of the PEGylated bilosome surface. This effect was confirmed in cytotoxicity experiments, also determined on human cutaneous (HaCaT) keratinocytes. The flow cytometry experiments indicated the enhanced uptake of the encapsulated hybrid cargo compared to the non-loaded MB and CUR molecules, as well as a selectivity of the obtained nanocarriers upon tumor cell lines. The phyto-photodynamic action provided 24h-post irradiation revealed a more significant influence of the nanoplatform on Me45 cells in contrast to the A375 cell line, causing the cell viability rate below 20% of the control. Conclusion: As a result, we established an innovative and effective strategy for potential metastatic melanoma treatment through the synergism of phyto-photodynamic therapy and novel bilosomal-origin nanophotosensitizers.


Asunto(s)
Curcumina , Melanoma , Nanomedicina , Fotoquimioterapia , Fármacos Fotosensibilizantes , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Fotoquimioterapia/métodos , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/administración & dosificación , Curcumina/química , Curcumina/farmacología , Supervivencia Celular/efectos de los fármacos , Liposomas/química , Liposomas/farmacología , Colesterol/química , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacología , Colato de Sodio/química , Sistemas de Liberación de Medicamentos/métodos , Poloxaleno/química , Poloxaleno/farmacología
13.
Front Biosci (Landmark Ed) ; 29(5): 168, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38812303

RESUMEN

The review focuses on the recent knowledge on natural anthraquinones (AQs) of plant origin and their potential for application in an exclusive medicinal curative and palliative method named photodynamic therapy (PDT). Green approach to PDT is associated with photosensitizers (PS) from plants or other natural sources and excitation light in visible spectrum. The investigations of plants are of high research interests due to their unique health supportive properties as herbs and the high percentage availability to obtain compounds with medical value. Up-to-date many naturally occurring compounds with therapeutic properties are known and are still under investigations. Some natural quinones have already been evaluated and clinically approved as anti-tumor agents. Recent scientific interests are beyond their common medical applications but also in directions to their photo-properties as natural PSs. The study presents a systematic searches on the latest knowledge on AQ derivatives that are isolated from the higher plants as photosensitizers for PDT applications. The natural quinones have been recognized with functions of natural dyes since the ancient times. Lately, AQs have been explored due to their biological activity including the photosensitive properties useful for PDT especially towards medical problems with no other alternatives. The existing literature' overview suggests that natural AQs possess characteristics of valuable PSs for PDT. This method is based on an application of a photoactive compound and light arrangement in oxygen media, such that the harmful general cytotoxicity could be avoided. Moreover, the common anticancer and antimicrobial drug resistance has been evaluated with very low occurrence after PDT. Natural AQs have been focused the scientific efforts to further developments because of the high range of natural sources, desirable biocompatibility, low toxicity, minimal side effects and low accident of drug resistance, together with their good photosensitivity and therapeutic capacity. Among the known AQs, only hypericin has been studied in anticancer clinical PDT. Currently, the natural PSs are under intensive research for the future PDT applications for diseases without alternative effective treatments.


Asunto(s)
Antraquinonas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Antraquinonas/farmacología , Antraquinonas/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Humanos , Plantas/química
14.
Curr Opin Ophthalmol ; 35(4): 273-277, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700496

RESUMEN

PURPOSE OF REVIEW: To review corneal crosslinking for keratoconus and corneal ectasia, and recent developments in the field. This study will review the mechanism of crosslinking, clinical approaches, current results, and potential future innovations. RECENT FINDINGS: Corneal crosslinking for keratoconus was first approved by U.S. FDA in 2016. Recent studies have confirmed the general long-term efficacy of the procedure in decreasing progression of keratoconus and corneal ectasia. New types of crosslinking protocols, such as transepithelial treatments, are under investigation. In addition, adjunctive procedures have been developed to improve corneal contour and visual function in these patients. SUMMARY: Crosslinking has been found to be well tolerated and effective with the goal of decreasing progression of ectatic corneal diseases, keratoconus and corneal ectasia after refractive surgery. Studies have shown its long-term efficacy. New techniques of crosslinking and adjunctive procedures may further improve treatments and results.


Asunto(s)
Colágeno , Reactivos de Enlaces Cruzados , Queratocono , Fotoquimioterapia , Fármacos Fotosensibilizantes , Riboflavina , Rayos Ultravioleta , Queratocono/tratamiento farmacológico , Humanos , Reactivos de Enlaces Cruzados/uso terapéutico , Riboflavina/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Dilatación Patológica/tratamiento farmacológico , Colágeno/metabolismo , Sustancia Propia/metabolismo
15.
Curr Opin Ophthalmol ; 35(4): 315-321, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700950

RESUMEN

PURPOSE OF REVIEW: This manuscript summarizes contemporary research from 2018 to 2023 evaluating long-term (≥2 years) outcomes of corneal crosslinking (CXL) for progressive keratoconus (KCN). RECENT FINDINGS: The standard Dresden protocol (SDP) has been utilized clinically since the early 2000 s to treat ectatic disorders, primarily progressive KCN and postrefractive ectasia. Various modifications have since been introduced including accelerated and transepithelial protocols, which are aimed at improving outcomes or reducing complications. This review summarizes data demonstrating that the SDP halts disease progression and improves various visual and topographic indices (UDVA, CDVA, Kmax, K1, K2) up to 13 years postoperatively. Accelerated and transepithelial protocols have been found to be well tolerated alternatives to SDP with similar efficacy profiles. Studies focusing on pediatric populations identified overall higher progression rates after CXL. All protocols reviewed had excellent safety outcomes in adults and children. SUMMARY: Recent studies revealed that SDP successfully stabilizes KCN long term, and a variety of newer protocols are also effective. Pediatric patients may exhibit higher progression rates after CXL. Further research is required to enhance the efficacy and ease of these protocols.


Asunto(s)
Colágeno , Reactivos de Enlaces Cruzados , Queratocono , Fotoquimioterapia , Fármacos Fotosensibilizantes , Riboflavina , Agudeza Visual , Humanos , Queratocono/tratamiento farmacológico , Queratocono/fisiopatología , Reactivos de Enlaces Cruzados/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Riboflavina/uso terapéutico , Fotoquimioterapia/métodos , Colágeno/uso terapéutico , Agudeza Visual/fisiología , Rayos Ultravioleta , Sustancia Propia/metabolismo , Sustancia Propia/efectos de los fármacos , Resultado del Tratamiento , Topografía de la Córnea
16.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791462

RESUMEN

Small interfering RNA (siRNA) has significant potential as a treatment for cancer by targeting specific genes or molecular pathways involved in cancer development and progression. The addition of siRNA to other therapeutic strategies, like photodynamic therapy (PDT), can enhance the anticancer effects, providing synergistic benefits. Nevertheless, the effective delivery of siRNA into target cells remains an obstacle in cancer therapy. Herein, supramolecular nanoparticles were fabricated via the co-assembly of natural histone and hyaluronic acid for the co-delivery of HMGB1-siRNA and the photosensitizer chlorin e6 (Ce6) into the MCF-7 cell. The produced siRNA-Ce6 nanoparticles (siRNA-Ce6 NPs) have a spherical morphology and exhibit uniform distribution. In vitro experiments demonstrate that the siRNA-Ce6 NPs display good biocompatibility, enhanced cellular uptake, and improved cytotoxicity. These outcomes indicate that the nanoparticles constructed by the co-assembly of histone and hyaluronic acid hold enormous promise as a means of siRNA and photosensitizer co-delivery towards synergetic therapy.


Asunto(s)
Histonas , Ácido Hialurónico , Nanopartículas , Fármacos Fotosensibilizantes , ARN Interferente Pequeño , Ácido Hialurónico/química , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Nanopartículas/química , Histonas/metabolismo , Células MCF-7 , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Clorofilidas , Supervivencia Celular/efectos de los fármacos
17.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792086

RESUMEN

Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in a tissue under excitation with red or infrared light. Though the method has been known for decades, it has become more popular recently with the development of new efficient organic dyes and LED light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system. AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with PS molecules in an aqueous solution. The applied method of synthesis allows precise control of the size and architecture of polymer nanoparticles as well as the concentration of the components. Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality. Here, we report on the optical properties of the system and detailed mechanisms of the observed enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and anionic polyacrylamide arms allows better local integration of the components and targeted delivery of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite to be a promising PDT system for application to other types of cancer.


Asunto(s)
Resinas Acrílicas , Oro , Nanopartículas del Metal , Fotoquimioterapia , Fármacos Fotosensibilizantes , Oro/química , Fotoquimioterapia/métodos , Nanopartículas del Metal/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Resinas Acrílicas/química , Línea Celular Tumoral , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Supervivencia Celular/efectos de los fármacos , Polímeros/química , Antineoplásicos/farmacología , Antineoplásicos/química
18.
Acta Neurochir (Wien) ; 166(1): 212, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739282

RESUMEN

PURPOSE: Glioblastoma is a malignant and aggressive brain tumour that, although there have been improvements in the first line treatment, there is still no consensus regarding the best standard of care (SOC) upon its inevitable recurrence. There are novel adjuvant therapies that aim to improve local disease control. Nowadays, the association of intraoperative photodynamic therapy (PDT) immediately after a 5-aminolevulinic acid (5-ALA) fluorescence-guided resection (FGR) in malignant gliomas surgery has emerged as a potential and feasible strategy to increase the extent of safe resection and destroy residual tumour in the surgical cavity borders, respectively. OBJECTIVES: To assess the survival rates and safety of the association of intraoperative PDT with 5-ALA FGR, in comparison with a 5-ALA FGR alone, in patients with recurrent glioblastoma. METHODS: This article describes a matched-pair cohort study with two groups of patients submitted to 5-ALA FGR for recurrent glioblastoma. Group 1 was a prospective series of 11 consecutive cases submitted to 5-ALA FGR plus intraoperative PDT; group 2 was a historical series of 11 consecutive cases submitted to 5-ALA FGR alone. Age, sex, Karnofsky performance scale (KPS), 5-ALA post-resection status, T1-contrast-enhanced extent of resection (EOR), previous and post pathology, IDH (Isocitrate dehydrogenase), Ki67, previous and post treatment, brain magnetic resonance imaging (MRI) controls and surgical complications were documented. RESULTS: The Mantel-Cox test showed a significant difference between the survival rates (p = 0.008) of both groups. 4 postoperative complications occurred (36.6%) in each group. As of the last follow-up (January 2024), 7/11 patients in group 1, and 0/11 patients in group 2 were still alive. 6- and 12-months post-treatment, a survival proportion of 71,59% and 57,27% is expected in group 1, versus 45,45% and 9,09% in group 2, respectively. 6 months post-treatment, a progression free survival (PFS) of 61,36% and 18,18% is expected in group 1 and group 2, respectively. CONCLUSION: The association of PDT immediately after 5-ALA FGR for recurrent malignant glioma seems to be associated with better survival without additional or severe morbidity. Despite the need for larger, randomized series, the proposed treatment is a feasible and safe addition to the reoperation.


Asunto(s)
Ácido Aminolevulínico , Neoplasias Encefálicas , Glioblastoma , Recurrencia Local de Neoplasia , Fotoquimioterapia , Cirugía Asistida por Computador , Humanos , Glioblastoma/cirugía , Glioblastoma/tratamiento farmacológico , Glioblastoma/diagnóstico por imagen , Ácido Aminolevulínico/uso terapéutico , Masculino , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/diagnóstico por imagen , Femenino , Persona de Mediana Edad , Fotoquimioterapia/métodos , Recurrencia Local de Neoplasia/cirugía , Anciano , Estudios de Cohortes , Cirugía Asistida por Computador/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Adulto , Estudios Prospectivos , Procedimientos Neuroquirúrgicos/métodos
19.
Int J Nanomedicine ; 19: 3973-3989, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711615

RESUMEN

Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.


Asunto(s)
Antineoplásicos , Grafito , Neoplasias , Grafito/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Fotoquimioterapia/métodos , Autofagia/efectos de los fármacos , Animales , Nanocompuestos/química , Nanocompuestos/uso terapéutico , Nanomedicina
20.
Curr Opin Ophthalmol ; 35(4): 329-342, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813739

RESUMEN

PURPOSE OF REVIEW: The aim of this study was to highlight recent developments in the medical and surgical management of corneal neovascularization (NV). RECENT FINDINGS: Improved understanding and diagnostic criteria among clinicians have led to advancements in the characterization of corneal NV and objective assessment of treatment response through ancillary imaging devices. Developments in corneal NV treatments, such as antivascular endothelial growth factor, fine needle diathermy, and photodynamic therapy, have improved treatment success rates and visual outcomes. More recent surgical treatment advancements include corneal cross-linking, endothelial keratoplasty, and mitomycin intravascular chemoembolization. Finally, a greater appreciation of the molecular pathogenesis and angiogenic factors involved in corneal NV has identified numerous potential targeted therapies in the future. SUMMARY: The management of corneal NV has evolved to include several standalone and combination medical and surgical options. Additionally, improvements in quantifying corneal NV and understanding its molecular basis have contributed to new management strategies with improved outcomes.


Asunto(s)
Inhibidores de la Angiogénesis , Neovascularización de la Córnea , Fotoquimioterapia , Humanos , Neovascularización de la Córnea/terapia , Neovascularización de la Córnea/diagnóstico , Inhibidores de la Angiogénesis/uso terapéutico , Fotoquimioterapia/métodos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA