Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Pathog ; 16(6): e1008566, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32492066

RESUMEN

Host-derived glutathione (GSH) is an essential source of cysteine for the intracellular pathogen Francisella tularensis. In a comprehensive transposon insertion sequencing screen, we identified several F. tularensis genes that play central and previously unappreciated roles in the utilization of GSH during the growth of the bacterium in macrophages. We show that one of these, a gene we named dptA, encodes a proton-dependent oligopeptide transporter that enables growth of the organism on the dipeptide Cys-Gly, a key breakdown product of GSH generated by the enzyme γ-glutamyltranspeptidase (GGT). Although GGT was thought to be the principal enzyme involved in GSH breakdown in F. tularensis, our screen identified a second enzyme, referred to as ChaC, that is also involved in the utilization of exogenous GSH. However, unlike GGT and DptA, we show that the importance of ChaC in supporting intramacrophage growth extends beyond cysteine acquisition. Taken together, our findings provide a compendium of F. tularensis genes required for intracellular growth and identify new players in the metabolism of GSH that could be attractive targets for therapeutic intervention.


Asunto(s)
Proteínas Bacterianas , Francisella tularensis/fisiología , Glutatión , Interacciones Huésped-Patógeno/fisiología , Macrófagos , Transglutaminasas , Tularemia , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Dipéptidos/genética , Dipéptidos/metabolismo , Femenino , Glutatión/genética , Glutatión/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Transglutaminasas/genética , Transglutaminasas/metabolismo , Tularemia/genética , Tularemia/metabolismo
2.
PLoS One ; 14(10): e0224094, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31648246

RESUMEN

Francisella tularensis is a Gram-negative bacterium responsible for causing tularemia in the northern hemisphere. F. tularensis has long been developed as a biological weapon due to its ability to cause severe illness upon inhalation of as few as ten organisms and, based on its potential to be used as a bioterror agent is now classified as a Tier 1 Category A select agent by the CDC. The stringent response facilitates bacterial survival under nutritionally challenging starvation conditions. The hallmark of stringent response is the accumulation of the effector molecules ppGpp and (p)ppGpp known as stress alarmones. The relA and spoT gene products generate alarmones in several Gram-negative bacterial pathogens. RelA is a ribosome-associated ppGpp synthetase that gets activated under amino acid starvation conditions whereas, SpoT is a bifunctional enzyme with both ppGpp synthetase and ppGpp hydrolase activities. Francisella encodes a monofunctional RelA and a bifunctional SpoT enzyme. Previous studies have demonstrated that stringent response under nutritional stresses increases expression of virulence-associated genes encoded on Francisella Pathogenicity Island. This study investigated how stringent response governs the oxidative stress response of F. tularensis. We demonstrate that RelA/SpoT-mediated ppGpp production alters global gene transcriptional profile of F. tularensis in the presence of oxidative stress. The lack of stringent response in relA/spoT gene deletion mutants of F. tularensis makes bacteria more susceptible to oxidants, attenuates survival in macrophages, and virulence in mice. This work is an important step forward towards understanding the complex regulatory network underlying the oxidative stress response of F. tularensis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/fisiología , Macrófagos/microbiología , Estrés Oxidativo , Tularemia/microbiología , Virulencia , Animales , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ligasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ribosomas , Tularemia/epidemiología
3.
J Immunol ; 201(12): 3662-3668, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30404813

RESUMEN

The DNA sensor absent in melanoma 2 (AIM2) forms an inflammasome complex with ASC and caspase-1 in response to Francisella tularensis subspecies novicida infection, leading to maturation of IL-1ß and IL-18 and pyroptosis. AIM2 is critical for host protection against F. novicida infection in vivo; however, the role of pyroptosis downstream of the AIM2 inflammasome is unknown. Recent studies have identified gasdermin D (GSDMD) as the molecule executing pyroptosis by forming pores on the plasma membrane following activation by inflammatory caspase-1 and -11. In this study, we report that GSDMD-deficient mice were susceptible to F. novicida infection compared with wild type mice. Interestingly, we observed that GSDMD is required for optimal caspase-1 activation and pyroptotic cell death in F. novicida-infected bone marrow-derived macrophages. Furthermore, caspase-1 activation was compromised in bone marrow-derived macrophages lacking GSDMD stimulated with other AIM2 inflammasome triggers, including poly(dA:dT) transfection and mouse CMV infection. Overall, our study highlights a function, to our knowledge previously unknown, for GSDMD in promoting caspase-1 activation by AIM2 inflammasome.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/metabolismo , Francisella tularensis/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Inflamasomas/metabolismo , Macrófagos/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasa 1/genética , Caspasa 1/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Femenino , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Lipopolisacáridos/inmunología , Macrófagos/microbiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión a Fosfato , Piroptosis , Receptores Tipo I de Interleucina-1/genética
4.
J Innate Immun ; 10(4): 291-305, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29969788

RESUMEN

Virulent Francisella tularensis subsp. tularensis (Ftt) is a dynamic, intracellular, bacterial pathogen. Its ability to evade and rapidly suppress host inflammatory responses is considered a key element for its profound virulence. We previously established that Ftt lipids play a role in inhibiting inflammation, but we did not determine the lipid species mediating this process. Here, we show that a unique, abundant, phosphatidylethanolamine (PE), present in Francisella, contributes to driving the suppression of inflammatory responses in human and mouse cells. Acyl chain lengths of this PE, C24: 0 and C10: 0, were key to the suppressive capabilities of Francisella PE. Addition of synthetic PE 24: 0-10: 0 resulted in the accumulation of PE in host cells for up to 24 h of incubation, and recapitulated the inhibition of inflammatory responses observed with native Ftt PE. Importantly, this novel PE significantly inhibited inflammatory responses driven by a medically and globally important flavivirus, dengue fever virus. Thus, targeting these lipids and/or the pathways that they manipulate represents a new strategy to combat immunosuppression engendered by Ftt, but they also show promise as a novel therapeutic intervention for significant viral infections.


Asunto(s)
Antiinflamatorios/metabolismo , Células Dendríticas/inmunología , Francisella tularensis/fisiología , Inflamación/inmunología , Macrófagos/inmunología , Fosfatidiletanolaminas/metabolismo , Tularemia/inmunología , Animales , Proteínas Bacterianas/genética , Células Cultivadas , Células Dendríticas/microbiología , Femenino , Humanos , Evasión Inmune , Inflamación/microbiología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Tularemia/microbiología
5.
Front Immunol ; 9: 561, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632532

RESUMEN

Francisella tularensis is a remarkably infectious facultative intracellular bacterium of macrophages that causes tularemia. Early evasion of host immune responses contributes to the success of F. tularensis as a pathogen. F. tularensis entry into human monocytes and macrophages is mediated by the major phagocytic receptor, complement receptor 3 (CR3, CD11b/CD18). We recently determined that despite a significant increase in macrophage uptake following C3 opsonization of the virulent Type A F. tularensis spp. tularensis Schu S4, this phagocytic pathway results in limited pro-inflammatory cytokine production. Notably, MAP kinase/ERK activation is suppressed immediately during C3-opsonized Schu S4-CR3 phagocytosis. A mathematical model of CR3-TLR2 crosstalk predicted early involvement of Ras GTPase-activating protein (RasGAP) in immune suppression by CR3. Here, we link CR3-mediated uptake of opsonized Schu S4 by human monocytes and macrophages with inhibition of early signal 1 inflammasome activation, evidenced by limited caspase-1 cleavage and IL-18 release. This inhibition is due to increased RasGAP activity, leading to a reduction in the Ras-ERK signaling cascade upstream of the early inflammasome activation event. Thus, our data uncover a novel signaling pathway mediated by CR3 following engagement of opsonized virulent F. tularensis to limit inflammasome activation in human phagocytic cells, thereby contributing to evasion of the host innate immune system.


Asunto(s)
Francisella tularensis/inmunología , Inflamasomas/inmunología , Antígeno de Macrófago-1/inmunología , Macrófagos/inmunología , Fagocitosis/inmunología , Proteínas Activadoras de ras GTPasa/inmunología , Caspasa 1/inmunología , Caspasa 1/metabolismo , Células Cultivadas , Francisella tularensis/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune/inmunología , Inflamasomas/metabolismo , Interleucina-18/inmunología , Interleucina-18/metabolismo , Antígeno de Macrófago-1/metabolismo , Macrófagos/microbiología , Monocitos/inmunología , Monocitos/microbiología , Transducción de Señal/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo
6.
Microbiology (Reading) ; 163(11): 1664-1679, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29034854

RESUMEN

During conditions of nutrient limitation bacteria undergo a series of global gene expression changes to survive conditions of amino acid and fatty acid starvation. Rapid reallocation of cellular resources is brought about by gene expression changes coordinated by the signalling nucleotides' guanosine tetraphosphate or pentaphosphate, collectively termed (p)ppGpp and is known as the stringent response. The stringent response has been implicated in bacterial virulence, with elevated (p)ppGpp levels being associated with increased virulence gene expression. This has been observed in the highly pathogenic Francisella tularensis sub spp. tularensis SCHU S4, the causative agent of tularaemia. Here, we aimed to artificially induce the stringent response by culturing F. tularensis in the presence of the amino acid analogue l-serine hydroxamate. Serine hydroxamate competitively inhibits tRNAser aminoacylation, causing an accumulation of uncharged tRNA. The uncharged tRNA enters the A site on the translating bacterial ribosome and causes ribosome stalling, in turn stimulating the production of (p)ppGpp and activation of the stringent response. Using the essential virulence gene iglC, which is encoded on the Francisella pathogenicity island (FPI) as a marker of active stringent response, we optimized the culture conditions required for the investigation of virulence gene expression under conditions of nutrient limitation. We subsequently used whole genome RNA-seq to show how F. tularensis alters gene expression on a global scale during active stringent response. Key findings included up-regulation of genes involved in virulence, stress responses and metabolism, and down-regulation of genes involved in metabolite transport and cell division. F. tularensis is a highly virulent intracellular pathogen capable of causing debilitating or fatal disease at extremely low infectious doses. However, virulence mechanisms are still poorly understood. The stringent response is widely recognized as a diverse and complex bacterial stress response implicated in virulence. This work describes the global gene expression profile of F. tularensis SCHU S4 under active stringent response for the first time. Herein we provide evidence for an association of active stringent response with FPI virulence gene expression. Our results further the understanding of the molecular basis of virulence and regulation thereof in F. tularensis. These results also support research into genes involved in (p)ppGpp production and polyphosphate biosynthesis and their applicability as targets for novel antimicrobials.


Asunto(s)
Adaptación Biológica/fisiología , Francisella tularensis/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Islas Genómicas/genética , Transcriptoma/fisiología , Virulencia/fisiología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Genes Reguladores/genética , Genes Reguladores/fisiología , Islas Genómicas/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Proteoma/fisiología , Análisis de Secuencia de ARN , Serina/análogos & derivados , Serina/toxicidad , Estrés Fisiológico , Activación Transcripcional/genética , Activación Transcripcional/fisiología , Transcriptoma/genética , Virulencia/genética
7.
J Leukoc Biol ; 102(6): 1441-1450, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28951422

RESUMEN

Francisella tularensis is a highly infectious intracellular bacterium that causes the potentially fatal disease tularemia. We used mice with conditional MyD88 deficiencies to investigate cellular and molecular mechanisms by which MyD88 restricts type A F. tularensis infection. F. tularensis-induced weight loss was predominately dependent on MyD88 signaling in nonhematopoietic cells. In contrast, MyD88 signaling in hematopoietic cells, but not in myeloid and dendritic cells, was essential for control of F. tularensis infection in tissue. Myeloid and dendritic cell MyD88 deficiency also did not markedly impair cytokine production during infection. Although the production of IL-12 or -18 was not significantly reduced in hematopoietic MyD88-deficient mice, IFN-γ production was abolished in these animals. In addition, neutralization studies revealed that control of F. tularensis infection mediated by hematopoietic MyD88 was entirely dependent on IFN-γ. Although IL-18 production was not significantly affected by MyD88 deficiency, IL-18 was essential for IFN-γ production and restricted bacterial replication in an IFN-γ-dependent manner. Caspase-1 was also found to be partially necessary for the production of IL-18 and IFN-γ and for control of F. tularensis replication. Our collective data show that the response of leukocytes to caspase-1-dependent IL-18 via MyD88 is critical, whereas MyD88 signaling in myeloid and dendritic cells is dispensable for IFN-γ-dependent control of type A F. tularensis infection.


Asunto(s)
Francisella tularensis/fisiología , Hematopoyesis , Interferón gamma/metabolismo , Interleucina-18/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Tularemia/metabolismo , Tularemia/microbiología , Animales , Caspasa 1/metabolismo , Células Dendríticas/metabolismo , Francisella tularensis/patogenicidad , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Transducción de Señal , Tularemia/patología , Virulencia
8.
Emerg Microbes Infect ; 6(7): e66, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28745311

RESUMEN

Francisella tularensis is a highly infectious intracellular pathogen that infects a wide range of host species and causes fatal pneumonic tularemia in humans. ftlA was identified as a potential virulence determinant of the F. tularensis live vaccine strain (LVS) in our previous transposon screen, but its function remained undefined. Here, we show that an unmarked deletion mutant of ftlA was avirulent in a pneumonia mouse model with a severely impaired capacity to infect host cells. Consistent with its sequence homology with GDSL lipase/esterase family proteins, the FtlA protein displayed lipolytic activity in both E. coli and F. tularensis with a preference for relatively short carbon-chain substrates. FtlA thus represents the first F. tularensis lipase to promote bacterial infection of host cells and in vivo fitness. As a cytoplasmic protein, we found that FtlA was secreted into the extracellular environment as a component of outer membrane vesicles (OMVs). Further confocal microscopy analysis revealed that the FtlA-containing OMVs isolated from F. tularensis LVS attached to the host cell membrane. Finally, the OMV-associated FtlA protein complemented the genetic deficiency of the ΔftlA mutant in terms of host cell infection when OMVs purified from the parent strain were co-incubated with the mutant bacteria. These lines of evidence strongly suggest that the FtlA lipase promotes F. tularensis adhesion and internalization by modifying bacterial and/or host molecule(s) when it is secreted as a component of OMVs.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Francisella tularensis/enzimología , Francisella tularensis/patogenicidad , Lipasa/metabolismo , Macrófagos/microbiología , Células A549 , Animales , Adhesión Bacteriana , Carga Bacteriana , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Escherichia coli/metabolismo , Francisella tularensis/genética , Francisella tularensis/fisiología , Eliminación de Gen , Humanos , Hígado/microbiología , Pulmón/citología , Ratones , Mutación , Células RAW 264.7 , Bazo/microbiología , Tularemia/microbiología , Virulencia
9.
Chem Biol Drug Des ; 90(6): 1190-1205, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28599094

RESUMEN

Small molecules were developed to attenuate proinflammatory cytokines resulting from activation of MyD88-mediated toll-like receptor (TLR) signaling by Francisella tularensis. Fifty-three tripeptide derivatives were synthesized to mimic a key BB-loop region involved in toll-like/interleukin-1 receptor recognition (TIR) domain interactions. Compounds were tested for inhibition of TNF-α, IFN-γ, IL-6, and IL-1ß in human peripheral blood mononuclear cells (PBMCs) and primary human bronchial epithelial cells exposed to LPS extracts from F. tularensis. From 53 compounds synthesized and tested, ten compounds were identified as effective inhibitors of F. tularensisLPS-induced cytokines. Compound stability testing in the presence of human liver microsomes and human serum resulted in the identification of tripeptide derivative 7 that was a potent, stable, and drug-like small molecule. Target corroboration using a cell-based reporter assay and competition experiments with MyD88 TIR domain protein supported that the effect of 7 was through MyD88 TIR domain interactions. Compound 7 also attenuated proinflammatory cytokines in human peripheral blood mononuclear cells and bronchial epithelial cells challenged with a live vaccine strain of F. tularensis at a multiplicity of infection of 1:5. Small molecules that target TIR domain interactions in MyD88-dependent TLR signaling represent a promising strategy toward host-directed adjunctive therapeutics for inflammation associated with biothreat agent-induced sepsis.


Asunto(s)
Diseño de Fármacos , Francisella tularensis/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Péptidos/química , Receptores Toll-Like/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Citocinas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Francisella tularensis/fisiología , Genes Reporteros , Células HEK293 , Semivida , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Lipopolisacáridos/toxicidad , Microsomas Hepáticos/metabolismo , Factor 88 de Diferenciación Mieloide/química , FN-kappa B/genética , FN-kappa B/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Receptores Toll-Like/antagonistas & inhibidores , Activación Transcripcional/efectos de los fármacos
10.
J Exp Med ; 213(12): 2793-2809, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27799620

RESUMEN

Mucosa-associated invariant T (MAIT) cells are a unique innate T cell subset that is necessary for rapid recruitment of activated CD4+ T cells to the lungs after pulmonary F. tularensis LVS infection. Here, we investigated the mechanisms behind this effect. We provide evidence to show that MAIT cells promote early differentiation of CCR2-dependent monocytes into monocyte-derived DCs (Mo-DCs) in the lungs after F. tularensis LVS pulmonary infection. Adoptive transfer of Mo-DCs to MAIT cell-deficient mice (MR1-/- mice) rescued their defect in the recruitment of activated CD4+ T cells to the lungs. We further demonstrate that MAIT cell-dependent GM-CSF production stimulated monocyte differentiation in vitro, and that in vivo production of GM-CSF was delayed in the lungs of MR1-/- mice. Finally, GM-CSF-deficient mice exhibited a defect in monocyte differentiation into Mo-DCs that was phenotypically similar to MR1-/- mice. Overall, our data demonstrate that MAIT cells promote early pulmonary GM-CSF production, which drives the differentiation of inflammatory monocytes into Mo-DCs. Further, this delayed differentiation of Mo-DCs in MR1-/- mice was responsible for the delayed recruitment of activated CD4+ T cells to the lungs. These findings establish a novel mechanism by which MAIT cells function to promote both innate and adaptive immune responses.


Asunto(s)
Diferenciación Celular , Células Dendríticas/inmunología , Espacio Intracelular/microbiología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/microbiología , Pulmón/patología , Monocitos/patología , Células T Invariantes Asociadas a Mucosa/inmunología , Traslado Adoptivo , Animales , Médula Ósea/patología , Antígeno CD11b/metabolismo , Linfocitos T CD4-Positivos/inmunología , Citocinas/farmacología , Femenino , Francisella tularensis/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Antígenos de Histocompatibilidad Clase I/inmunología , Pulmón/microbiología , Enfermedades Pulmonares/patología , Masculino , Ratones Endogámicos C57BL , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Neumonía/inmunología , Neumonía/microbiología , Neumonía/patología , Receptores CCR2/metabolismo , Proteínas Recombinantes/farmacología , Tularemia/inmunología , Tularemia/microbiología , Tularemia/patología , Vacunas/inmunología
11.
Microbes Infect ; 18(12): 768-776, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27477000

RESUMEN

Several bacterial pathogens interact with their host through protein secretion effectuated by a type VI secretion system (T6SS). Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. Proteins encoded by the Francisella pathogenicity island (FPI), which constitute a type VI secretion system, are essential for the virulence of the bacterium and a key mechanism behind this is the escape from the phagosome followed by productive cytosolic replication. It has been shown that T6SS in Francisella is distinct since all putative substrates of F. tularensis T6SS, except for VgrG, are unique to the species. Many of the FPI proteins are secreted into the macrophage cytosol and this is dependent on the functional components of DotU, VgrG, IglC and IglG. In addition, PdpC seems to have a regulatory role for the expression of iglABCD. Since previous results showed peculiar phenotypes of the ΔpdpC and ΔiglG mutants in mouse macrophages, their unique behavior was characterized in human monocyte-derived macrophages (HMDM) in this study. Our results show that both ΔpdpC and ΔiglG mutants of the live vaccine strain (LVS) of F. tularensis did not replicate within HMDMs. The ΔpdpC mutant did not escape from the Francisella containing phagosome (FCP), neither caused cytopathogenicity in primary macrophages and was attenuated in a mouse model. Interestingly, the ΔiglG mutant escaped from the HMDMs FCP and also caused pathological changes in the spleen and liver tissues of intradermally infected C57BL/6 mice. The ΔiglG mutant, with its unique phenotype, is a potential vaccine candidate.


Asunto(s)
Proteínas Bacterianas/genética , Francisella tularensis/inmunología , Francisella tularensis/fisiología , Eliminación de Gen , Macrófagos/microbiología , Factores de Virulencia/genética , Animales , Células Cultivadas , Citosol/microbiología , Francisella tularensis/genética , Francisella tularensis/crecimiento & desarrollo , Voluntarios Sanos , Humanos , Ratones Endogámicos C57BL , Fagosomas/microbiología
12.
Infect Immun ; 84(5): 1387-1402, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26902724

RESUMEN

Francisella tularensis is the causative agent of tularemia and a category A potential agent of bioterrorism, but the pathogenic mechanisms of F. tularensis are largely unknown. Our previous transposon mutagenesis screen identified 95 lung infectivity-associated F. tularensis genes, including those encoding the Lon and ClpP proteases. The present study validates the importance of Lon and ClpP in intramacrophage growth and infection of the mammalian host by using unmarked deletion mutants of the F. tularensis live vaccine strain (LVS). Further experiments revealed that lon and clpP are also required for F. tularensis tolerance to stressful conditions. A quantitative proteomic comparison between heat-stressed LVS and the isogenic Lon-deficient mutant identified 29 putative Lon substrate proteins. The follow-up protein degradation experiments identified five substrates of the F. tularensis Lon protease (FTL578, FTL663, FTL1217, FTL1228, and FTL1957). FTL578 (ornithine cyclodeaminase), FTL663 (heat shock protein), and FTL1228 (iron-sulfur activator complex subunit SufD) have been previously described as virulence-associated factors in F. tularensis Identification of these Lon substrates has thus provided important clues for further understanding of the F. tularensis stress response and pathogenesis. The high-throughput approach developed in this study can be used for systematic identification of the Lon substrates in other prokaryotic and eukaryotic organisms.


Asunto(s)
Endopeptidasa Clp/metabolismo , Francisella tularensis/enzimología , Francisella tularensis/fisiología , Proteasa La/metabolismo , Estrés Fisiológico , Tularemia/microbiología , Factores de Virulencia/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Endopeptidasa Clp/genética , Femenino , Francisella tularensis/genética , Eliminación de Gen , Sitios Genéticos , Humanos , Macrófagos/microbiología , Ratones Endogámicos BALB C , Proteasa La/genética , Tularemia/patología , Factores de Virulencia/genética
13.
BMC Microbiol ; 16: 2, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26739172

RESUMEN

BACKGROUND: Francisella tularensis, a gram-negative bacterium replicates intracellularly within macrophages and efficiently evades the innate immune response. It is able to infect and replicate within Kupffer cells, specialized tissue macrophages of the liver, and to modulate the immune response upon infection to its own advantage. Studies on Francisella tularensis liver infection were mostly performed in animal models and difficult to extrapolate to the human situation, since human infections and clinical observations are rare. RESULTS: Using a human co-culture model of macrophages and hepatocytes we investigated the course of infection of three Francisella tularensis strains (subspecies holarctica--wildtype and live vaccine strain, and mediasiatica--wildtype) and analyzed the immune response triggered upon infection. We observed that hepatocytes support the intracellular replication of Franciscella species in macrophages accompanied by a specific immune response inducing TNFα, IL-1ß, IL-6 and fractalkine (CX3CL1) secretion and the induction of apoptosis. CONCLUSIONS: We could demonstrate that this human macrophage/hepatocyte co-culture model reflects strain-specific virulence of Francisella tularensis. We developed a suitable tool for more detailed in vitro studies on the immune response upon liver cell infection by F. tularensis.


Asunto(s)
Técnicas de Cocultivo/métodos , Francisella tularensis/fisiología , Hepatocitos/microbiología , Macrófagos/microbiología , Tularemia/microbiología , Apoptosis , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Células Cultivadas , Francisella tularensis/clasificación , Francisella tularensis/genética , Hepatocitos/citología , Hepatocitos/inmunología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Macrófagos/citología , Macrófagos/inmunología , Tularemia/inmunología , Tularemia/fisiopatología
14.
J Med Microbiol ; 65(2): 188-194, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26673248

RESUMEN

Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50% killing of F. tularensis at a concentration of 12.5 µM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Bacterianas/microbiología , Burkholderia pseudomallei/efectos de los fármacos , Francisella tularensis/efectos de los fármacos , Yersinia pestis/efectos de los fármacos , Animales , Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Infecciones Bacterianas/tratamiento farmacológico , Burkholderia pseudomallei/fisiología , Francisella tularensis/fisiología , Humanos , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Yersinia pestis/fisiología
15.
ACS Nano ; 9(11): 10778-89, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26435204

RESUMEN

We have optimized mesoporous silica nanoparticles (MSNs) functionalized with pH-sensitive nanovalves for the delivery of the broad spectrum fluoroquinolone moxifloxacin (MXF) and demonstrated its efficacy in treating Francisella tularensis infections both in vitro and in vivo. We compared two different nanovalve systems, positive and negative charge modifications of the mesopores, and different loading conditions-varying pH, cargo concentration, and duration of loading-and identified conditions that maximize both the uptake and release capacity of MXF by MSNs. We have demonstrated in macrophage cell culture that the MSN-MXF delivery platform is highly effective in killing F. tularensis in infected macrophages, and in a mouse model of lethal pneumonic tularemia, we have shown that the drug-loaded MSNs are much more effective in killing F. tularensis than an equivalent amount of free MXF.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fluoroquinolonas/uso terapéutico , Nanopartículas/química , Neumonía/complicaciones , Dióxido de Silicio/química , Tularemia/complicaciones , Tularemia/tratamiento farmacológico , Animales , Bencimidazoles/química , Fluoroquinolonas/farmacología , Francisella tularensis/efectos de los fármacos , Francisella tularensis/fisiología , Humanos , Concentración de Iones de Hidrógeno , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Viabilidad Microbiana/efectos de los fármacos , Moxifloxacino , Ácidos Fosforosos/química , Neumonía/tratamiento farmacológico , Porosidad , Resultado del Tratamiento
16.
Pathog Dis ; 73(6): ftv036, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25986219

RESUMEN

Francisella tularensis (Ft), the etiological agent of tularemia and a Tier 1 select agent, has been previously weaponized and remains a high priority for vaccine development. Ft tularensis (type A) and Ft holarctica (type B) cause most human disease. We selected six attenuating genes from the live vaccine strain (LVS; type B), F. novicida and other intracellular bacteria: FTT0507, FTT0584, FTT0742, FTT1019c (guaA), FTT1043 (mip) and FTT1317c (guaB) and created unmarked deletion mutants of each in the highly human virulent Ft strain Schu S4 (Type A) background. FTT0507, FTT0584, FTT0742 and FTT1043 Schu S4 mutants were not attenuated for virulence in vitro or in vivo. In contrast, Schu S4 gua mutants were unable to replicate in murine macrophages and were attenuated in vivo, with an i.n. LD50 > 10(5) CFU in C57BL/6 mice. However, the gua mutants failed to protect mice against lethal challenge with WT Schu S4, despite demonstrating partial protection in rabbits in a previous study. These results contrast with the highly protective capacity of LVS gua mutants against a lethal LVS challenge in mice, and underscore differences between these strains and the animal models in which they are evaluated, and therefore have important implications for vaccine development.


Asunto(s)
Vacunas Bacterianas/inmunología , Francisella tularensis/genética , Francisella tularensis/inmunología , Animales , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Modelos Animales de Enfermedad , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/fisiología , Eliminación de Gen , Genes Bacterianos , Dosificación Letal Mediana , Macrófagos/microbiología , Ratones Endogámicos C57BL , Viabilidad Microbiana , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Virulencia
17.
Microb Pathog ; 78: 37-42, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25284816

RESUMEN

Francisella tularensis is an intracellular bacterium that has the ability to multiply within the macrophage. The phenotype of a macrophage can determine whether the infection is cleared or the host succumbs to disease. Previously published data has suggested that F. tularensis LVS actively induces the alternative phenotype as a survival mechanism. In these studies we demonstrate that this is not the case for the more virulent strain of F. tularensis SCHU-S4. During an intranasal mouse model of infection, immuno-histochemistry identified that iNOS positive ("classical") macrophages are present at 72 h post-infection and remain high (supported by CCL-5 release) in numbers. In contrast, arginase/FIZZ-1 positive ("alternative") cells appear later and in low numbers during the development of the disease tularemia.


Asunto(s)
Francisella tularensis/inmunología , Macrófagos/inmunología , Tularemia/inmunología , Animales , Modelos Animales de Enfermedad , Francisella tularensis/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Tularemia/enzimología , Tularemia/genética , Tularemia/microbiología
18.
PLoS One ; 9(10): e109525, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25295729

RESUMEN

Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5'-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12-18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18-24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.


Asunto(s)
Regulación hacia Abajo , Francisella tularensis/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , MicroARNs/genética , Factor 88 de Diferenciación Mieloide/genética , Adulto , Vacunas Bacterianas , Regulación hacia Abajo/efectos de los fármacos , Francisella tularensis/inmunología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Inositol Polifosfato 5-Fosfatasas , Ligandos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/biosíntesis , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/biosíntesis , Monoéster Fosfórico Hidrolasas/genética , Biosíntesis de Proteínas/efectos de los fármacos , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Infect Immun ; 82(12): 5035-48, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25245806

RESUMEN

Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/fisiología , Sitios Genéticos , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Citosol/microbiología , Modelos Animales de Enfermedad , Femenino , Francisella tularensis/genética , Francisella tularensis/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Macrófagos/microbiología , Ratones Endogámicos BALB C , Mutagénesis Insercional , Tularemia/microbiología , Tularemia/patología , Virulencia , Factores de Virulencia/genética
20.
PLoS One ; 9(2): e88194, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505427

RESUMEN

Francisella tularensis is a highly infectious bacterial pathogen that invades and replicates within numerous host cell types. After uptake, F. tularensis bacteria escape the phagosome, replicate within the cytosol, and suppress cytokine responses. However, the mechanisms employed by F. tularensis to thrive within host cells are mostly unknown. Potential F. tularensis mutants involved in host-pathogen interactions are typically discovered by negative selection screens for intracellular replication or virulence. Mutants that fulfill these criteria fall into two categories: mutants with intrinsic intracellular growth defects and mutants that fail to modify detrimental host cell processes. It is often difficult and time consuming to discriminate between these two possibilities. We devised a method to functionally trans-complement and thus identify mutants that fail to modify the host response. In this assay, host cells are consistently and reproducibly infected with two different F. tularensis strains by physically tethering the bacteria to antibody-coated beads. To examine the efficacy of this protocol, we tested phagosomal escape, cytokine suppression, and intracellular replication for F. tularensis ΔripA and ΔpdpC. ΔripA has an intracellular growth defect that is likely due to an intrinsic defect and fails to suppress IL-1ß secretion. In the co-infection model, ΔripA was unable to replicate in the host cell when wild-type bacteria infected the same cell, but cytokine suppression was rescued. Therefore, ΔripA intracellular growth is due to an intrinsic bacterial defect while cytokine secretion results from a failed host-pathogen interaction. Likewise, ΔpdpC is deficient for phagosomal escape, intracellular survival and suppression of IL-1ß secretion. Wild-type bacteria that entered through the same phagosome as ΔpdpC rescued all of these phenotypes, indicating that ΔpdpC failed to properly manipulate the host. In summary, functional trans-complementation using bead-bound bacteria co-infections is a method to rapidly identify mutants that fail to modify a host response. Francisella tularensis is a facultative intracellular bacterial pathogen and is the causative agent of the disease tularemia. F. tularensis enters host cells through phagocytosis, escapes the phagosome, and replicates in the host cell cytosol while suppressing cytokine secretion [1]-[4]. Although substantial progress has been made in understanding the intracellular life cycle of F. tularensis, the F. tularensis proteins responsible for manipulating many host cell pathways are unknown. Identifying novel host-pathogen effector proteins is difficult because there is no rapid method to reliably distinguish between bacterial proteins that modify host processes and proteins that are involved in bacterial processes that are required for the bacteria to survive or replicate in the intracellular environment. The ability to identify mutants that are deficient for host-pathogen interactions is important because it can aid in prioritizing the investigation of genes of interest and in downstream experimental design. Moreover, certain mutant phenotypes, such as decreased phagosomal escape, hinder investigation of other potential phenotypes. A method to specifically complement these phenotypes would allow for further characterizations of certain F. tularensis mutants. Thus we sought to develop a method to easily identify and functionally complement mutants that are deficient for interactions with the host.


Asunto(s)
Francisella tularensis/genética , Francisella tularensis/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Tularemia/genética , Tularemia/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Coinfección/genética , Coinfección/microbiología , Citosol/metabolismo , Citosol/microbiología , Citosol/fisiología , Francisella tularensis/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Estadios del Ciclo de Vida/genética , Estadios del Ciclo de Vida/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Fagocitosis/genética , Fagocitosis/fisiología , Fagosomas/genética , Fagosomas/metabolismo , Fagosomas/microbiología , Fenotipo , Tularemia/metabolismo , Tularemia/fisiopatología , Virulencia/genética , Virulencia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA