Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biochem J ; 477(22): 4425-4441, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33141153

RESUMEN

6-Phosphofructokinase-1-kinase (PFK) tetramers catalyse the phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F16BP). Vertebrates have three PFK isoforms (PFK-M, PFK-L, and PFK-P). This study is the first to compare the kinetics, structures, and transcript levels of recombinant human PFK isoforms. Under the conditions tested PFK-M has the highest affinities for F6P and ATP (K0.5ATP 152 µM; K0.5F6P 147 µM), PFK-P the lowest affinities (K0.5ATP 276 µM; K0.5F6P 1333 µM), and PFK-L demonstrates a mixed picture of high ATP affinity and low F6P affinity (K0.5ATP 160 µM; K0.5F6P 1360 µM). PFK-M is more resistant to ATP inhibition compared with PFK-L and PFK-P (respectively, 23%, 31%, 50% decreases in specificity constants). GTP is an alternate phospho donor. Interface 2, which regulates the inactive dimer to active tetramer equilibrium, differs between isoforms, resulting in varying tetrameric stability. Under the conditions tested PFK-M is less sensitive to fructose 2,6-bisphosphate (F26BP) allosteric modulation than PFK-L or PFK-P (allosteric constants [K0.5ATP+F26BP/K0.5ATP] 1.10, 0.92, 0.54, respectively). Structural analysis of two allosteric sites reveals one may be specialised for AMP/ADP and the other for smaller/flexible regulators (citrate or phosphoenolpyruvate). Correlations between PFK-L and PFK-P transcript levels indicate that simultaneous expression may expand metabolic capacity for F16BP production whilst preserving regulatory capabilities. Analysis of cancer samples reveals intriguing parallels between PFK-P and PKM2 (pyruvate kinase M2), and simultaneous increases in PFK-P and PFKFB3 (responsible for F26BP production) transcript levels, suggesting prioritisation of metabolic flexibility in cancers. Our results describe the kinetic and transcript level differences between the three PFK isoforms, explaining how each isoform may be optimised for distinct roles.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Fosfofructoquinasas , Transcripción Genética , Regulación Alostérica , Fructosafosfatos/química , Fructosafosfatos/genética , Fructosafosfatos/metabolismo , Humanos , Isoenzimas/biosíntesis , Isoenzimas/química , Isoenzimas/genética , Especificidad de Órganos , Fosfofructoquinasas/biosíntesis , Fosfofructoquinasas/química , Fosfofructoquinasas/genética , Fosforilación
2.
Biochemistry (Mosc) ; 85(3): 326-333, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32564737

RESUMEN

Hexameric inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) has a number of structural and functional features that distinguish it from homologous enzymes widely occurring in living organisms. In particular, it has unusual zones of inter-subunit contacts and lacks the N-terminal region common for other PPases. In this work, we constructed two mutant forms of the enzyme, Ec-Mt-PPase and R14Q-Mt-PPase. In Ec-Mt-PPase, the missing part of the polypeptide chain was compensated with a fragment of PPase from Escherichia coli (Ec-PPase). In R14Q-Mt-PPase, a point mutation was introduced to the contact interface between the two trimers of the hexamer. Both modifications significantly improved the catalytic activity of the enzyme and abolished its inhibition by the cofactor (Mg2+ ion) excess. Activation of Mt-PPase by low (~10 µM) concentrations of ATP, fructose-1-phosphate, L-malate, and non-hydrolyzable substrate analogue methylene bisphosphonate (PCP) was observed. At concentrations of 100 µM and higher, the first three compounds acted as inhibitors. The activating effect of PCP was absent in both mutant forms, and the inhibitory effect of fructose-1-phosphate was absent in Ec-Mt-PPase. The effects of other modulators varied only quantitatively among the mutants. The obtained data indicate the presence of allosteric sites in Mt-PPase, which are located in the zones of inter-subunit contact or associated with them.


Asunto(s)
Difosfatos/química , Pirofosfatasa Inorgánica/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Adenosina Trifosfato/química , Sitio Alostérico , Catálisis , Escherichia coli/enzimología , Fructosafosfatos/química , Concentración de Iones de Hidrógeno , Hidrólisis , Pirofosfatasa Inorgánica/genética , Iones , Magnesio/química , Malatos/química , Mutagénesis Sitio-Dirigida , Mutación , Péptidos/química , Mutación Puntual , Conformación Proteica , Dominios Proteicos , Temperatura , Ultracentrifugación
3.
Proteins ; 85(1): 117-124, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802586

RESUMEN

The heart-specific isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8 Å, respectively. Citrate, a TCA cycle intermediate and well-known inhibitor of PFKFB2, co-crystallized in the 2-kinase domains of both orthologues, occupying the fructose-6-phosphate binding-site and extending into the γ-phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ-phosphate site by citrate proved highly consequential to the binding of co-complexed ATP analogues. The bovine structure, which co-crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co-complexed with AMPPNP, which, unlike ADP, contains a γ-phosphate. The presence of this γ-phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding-pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate's inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate's negative feed-back loop of the glycolytic pathway via PFKFB2. Proteins 2016; 85:117-124. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Adenosina Difosfato/química , Adenosina Trifosfato/química , Ácido Cítrico/química , Fructosafosfatos/química , Isoenzimas/química , Miocardio/química , Fosfofructoquinasa-2/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Animales , Sitios de Unión , Bovinos , Ácido Cítrico/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosafosfatos/metabolismo , Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Miocardio/enzimología , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Especificidad por Sustrato
4.
Biochimie ; 128-129: 209-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27591700

RESUMEN

We have proposed an allosteric ATP inhibition mechanism of Pfk-2 determining the structure of different forms of the enzyme together with a kinetic enzyme analysis. Here we complement the mechanism by using hybrid oligomers of the homodimeric enzyme to get insights about the allosteric communication pathways between the same sites or different ones located in different subunits. Kinetic analysis of the hybrid enzymes indicate that homotropic interactions between allosteric sites for ATP or between substrate sites for fructose-6-P have a minor effect on the enzymatic inhibition induced by ATP. In fact, the sigmoid response for fructose-6-P observed at elevated ATP concentrations can be eliminated even though the enzymatic inhibition is still operative. Nevertheless, leverage coupling analysis supports heterotropic interactions between the allosteric ATP and fructose-6-P binding occurring between and within each subunit.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Fructosafosfatos/metabolismo , Fosfofructoquinasa-2/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/farmacología , Regulación Alostérica , Sitio Alostérico , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Simulación por Computador , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fructosafosfatos/química , Cinética , Modelos Moleculares , Estructura Molecular , Mutación , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/química , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
5.
Bioorg Chem ; 66: 41-5, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27014866

RESUMEN

The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus.


Asunto(s)
Fructosafosfatos/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Glucosa-6-Fosfato/metabolismo , Thermococcus/enzimología , Animales , Relación Dosis-Respuesta a Droga , Fructosafosfatos/química , Glucosa-6-Fosfato/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Conejos , Estereoisomerismo , Relación Estructura-Actividad
6.
J Am Chem Soc ; 137(43): 13876-86, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26440863

RESUMEN

Substrate recognition is one of the hallmarks of enzyme catalysis. Enzyme conformational changes have been linked to selectivity between substrates with little direct evidence. Aldolase, a glycolytic enzyme, must distinguish between two physiologically important substrates, fructose 1-phosphate and fructose 1,6-bisphosphate, and provides an excellent model system for the study of this question. Previous work has shown that isozyme specific residues (ISRs) distant from the active site are responsible for kinetic distinction between these substrates. Notably, most of the ISRs reside in a cluster of five surface α-helices, and the carboxyl-terminal region (CTR), and cooperative interactions among these helices have been demonstrated. To test the hypothesis that conformational changes are at the root of these changes, single surface-cysteine variants were created with the cysteine located on helices of the cluster and CTR. This allowed for site-specific labeling with an environmentally sensitive fluorophore, and subsequent monitoring of conformational changes by fluorescence emission spectrophotometry. These labeled variants revealed different spectra in the presence of saturating amounts of each substrate, which suggested the occurrence of different conformations. Emission spectra collected at various substrate concentrations showed a concentration dependence of the fluorescence spectra, consistent with binding events. Lastly, stopped-flow fluorescence spectrophotometry showed that the rate of these fluorescence changes was on the same time-scale as catalysis, thus suggesting a link between the different fluorescence changes and events during catalysis. On the basis of these results, we propose that different conformational changes may be a common mechanism for dictating substrate specificity in other enzymes with multiple substrates.


Asunto(s)
Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos/química , Fructosadifosfatos/metabolismo , Fructosafosfatos/química , Fructosafosfatos/metabolismo , Cinética , Modelos Moleculares , Conformación Proteica , Espectrometría de Fluorescencia , Especificidad por Sustrato
7.
J Biomol Screen ; 19(7): 1014-23, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24717911

RESUMEN

In the nuclei of hepatocytes, glucokinase regulatory protein (GKRP) modulates the activity of glucokinase (GK), a key regulator of glucose homeostasis. Currently, direct activators of GK (GKAs) are in development for the treatment of type 2 diabetes. However, this approach is generally associated with a risk of hypoglycemia. To mitigate such risk, we target the GKRP regulation, which indirectly restores GK activity. Here we describe a screening strategy to look specifically for GKRP modulators, in addition to traditional GKAs. Two high-throughput screening campaigns were performed with our compound libraries using a luminescence assay format, one with GK alone and the other with a GK/GKRP complex in the presence of sorbitol-6-phosphate (S6P). By a subtraction method in the hit triage process of these campaigns, we discovered two close analogs that bind GKRP specifically with sub-µM potency to a site distinct from where fructose-1-phosphate binds. These small molecules are first-in-class allosteric modulators of the GK/GKRP interaction and are fully active even in the presence of S6P. Activation of GK by this particular mechanism, without altering the enzymatic profile, represents a novel pharmacologic modality of intervention in the GK/GKRP pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Descubrimiento de Drogas/métodos , Glucoquinasa/química , Adenosina Trifosfato/química , Regulación Alostérica , Animales , Glucemia/análisis , Calorimetría , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Fluorescencia , Fluorometría , Fructosafosfatos/química , Hepatocitos/metabolismo , Hexosafosfatos/química , Homeostasis , Humanos , Hipoglucemia/prevención & control , Concentración 50 Inhibidora , Luminiscencia , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Ratas , Resonancia por Plasmón de Superficie
8.
J Biol Chem ; 289(18): 12232-44, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24573685

RESUMEN

The overproduction of polysaccharide alginate is responsible for the formation of mucus in the lungs of cystic fibrosis patients. Histidine kinase KinB of the KinB-AlgB two-component system in Pseudomonas aeruginosa acts as a negative regulator of alginate biosynthesis. The modular architecture of KinB is similar to other histidine kinases. However, its periplasmic signal sensor domain is unique and is found only in the Pseudomonas genus. Here, we present the first crystal structures of the KinB sensor domain. The domain is a dimer in solution, and in the crystal it shows an atypical dimer of a helix-swapped four-helix bundle. A positively charged cavity is formed on the dimer interface and involves several strictly conserved residues, including Arg-60. A phosphate anion is bound asymmetrically in one of the structures. In silico docking identified several monophosphorylated sugars, including ß-D-fructose 6-phosphate and ß-D-mannose 6-phosphate, a precursor and an intermediate of alginate synthesis, respectively, as potential KinB ligands. Ligand binding was confirmed experimentally. Conformational transition from a symmetric to an asymmetric structure and decreasing dimer stability caused by ligand binding may be a part of the signal transduction mechanism of the KinB-AlgB two-component system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Pseudomonas aeruginosa/metabolismo , Factores de Transcripción/metabolismo , Alginatos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Dicroismo Circular , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Fructosafosfatos/química , Fructosafosfatos/metabolismo , Ácido Glucurónico/biosíntesis , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Histidina Quinasa , Ligandos , Manosafosfatos/química , Manosafosfatos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética
9.
J Biol Chem ; 286(7): 5774-83, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21147773

RESUMEN

Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 Å. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K(0.5) for fructose-6-P and a decrease in the apparent k(cat) as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (n(H) of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Fructosafosfatos/química , Fosfofructoquinasa-2/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Fructosafosfatos/metabolismo , Cinética , Fosfofructoquinasa-1/química , Fosfofructoquinasa-1/metabolismo , Fosfofructoquinasa-2/metabolismo
10.
Math Biosci ; 220(2): 81-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19427873

RESUMEN

Gibbs free energy is the thermodynamic potential representing the fundamental equation at constant temperature, pressure, and molar amounts. Transformed Gibbs energies are important for biochemical systems because the local concentrations within cell compartments cannot yet be determined accurately. The method of Constrained Gibbs Energies adds kinetic reaction extent limitations to the internal constraints of the system thus extending the range of applicability of equilibrium thermodynamics from predefined constraints to dynamic constraints, e.g., adding time-dependent constraints of irreversible chemical change. In this article, the implementation and use of Transformed Gibbs Energies in the Gibbs energy minimization framework is demonstrated with educational examples. The combined method has the advantage of being able to calculate transient thermodynamic properties during dynamic simulation.


Asunto(s)
Fenómenos Bioquímicos , Modelos Químicos , Termodinámica , Adenosina Difosfato/química , Adenosina Trifosfato/química , Algoritmos , Simulación por Computador , Fructosafosfatos/química , Glucosa/química , Glucosa-6-Fosfato/química , Glucofosfatos/química , Ácidos Glicéricos/química , Concentración de Iones de Hidrógeno , Concentración Osmolar , Fosfatos/química , Fosfoenolpiruvato , Presión , Temperatura , Agua/química
11.
Carbohydr Res ; 344(1): 80-4, 2009 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-18947823

RESUMEN

The hydroxyl radical (*OH) has detrimental biological activity due to its very high reactivity. Our experiments were designed to determine the effects of equimolar concentrations of glucose, fructose and mannitol and three phosphorylated forms of fructose (fructose-1-phosphate (F1P); fructose-6-phosphate (F6P); and fructose-1,6-bis(phosphate) (F16BP)) on *OH radical production via the Fenton reaction. EPR spectroscopy using spin-trap DEPMPO was applied to detect radical production. We found that the percentage inhibition of *OH radical formation decreased in the order F16BP>F1P>F6P>fructose>mannitol=glucose. As ketoses can sequester redox-active iron thus preventing the Fenton reaction, the Haber-Weiss-like system was also employed to generate *OH, so that the effect of iron sequestration could be distinguished from direct *OH radical scavenging. In the latter system, the rank order of *OH scavenging activity was F16BP>F1P>F6P>fructose=mannitol=glucose. Our results clearly demonstrate that intracellular phosphorylated forms of fructose have more scavenging properties than fructose or glucose, leading us to conclude that the acute administration of fructose could overcome the body's reaction to exogenous antioxidants during appropriate therapy in certain pathophysiological conditions related to oxidative stress, such as sepsis, neurodegenerative diseases, atherosclerosis, malignancy, and some complications of pregnancy.


Asunto(s)
Fructosa/química , Radical Hidroxilo/química , Espectroscopía de Resonancia por Spin del Electrón , Fructosa-Bifosfatasa/química , Fructosafosfatos/química , Glucosa/química , Peróxido de Hidrógeno/química , Hierro/química , Manitol/química
12.
J Am Chem Soc ; 130(22): 7022-31, 2008 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-18470986

RESUMEN

Phosphoglucose isomerase (PGI), which catalyzes the reversible interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P), is represented by two evolutionarily distinct protein families. One is a conventional type in eubacteria, eukaryotes, and a few archaea, where the active sites contain no metal ions and reactions proceed via the cis-enediol intermediate mechanism. The second type, found recently in euryarchaeota species, belongs to metalloenzymes, and controversies exist over whether the catalyzed isomerization occurs via the cis-enediol intermediate mechanism or a hydride shift mechanism. We studied the reversible interconversion of the open-chain form G6P and F6P catalyzed by the metal-containing Pyrococcus furiosus PGI by performing QM(B3LYP)/MM single-point optimizations and QM(PM3)/MM molecular dynamics simulations. A zwitterion intermediate-based mechanism, which involves both proton and hydride transfers, has been put forward. The presence of the key zwitterionic intermediate in this mechanism can effectively reconcile the controversial mechanisms and rationalize the enzymatic reaction. Computations show that the overall isomerization process is quite facile, both dynamically and thermodynamically. The crucial roles of conserved residues have been elucidated on the basis of computations on their alanine mutants. In particular, Tyr152 pushes the H1 transfer through a hydride-shift mechanism and dominates the stereochemistry selectivity of the hydrogen transfer. The rest of the conserved residues basically maintain the substrate in the near-attack reactive conformation and mediate the proton transfer. Although Zn(2+) is not directly involved in the reaction, the metal ion as a structural anchor constructs a hydrogen bond wire to connect the substrate to the outer region, providing a potential channel for hydrogen exchange between the substrate and solvent.


Asunto(s)
Fructosafosfatos/química , Glucosa-6-Fosfato Isomerasa/química , Glucosa-6-Fosfato/química , Pyrococcus furiosus/enzimología , Simulación por Computador , Fructosafosfatos/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Isomerismo , Conformación Molecular , Teoría Cuántica
13.
Biochemistry ; 47(15): 4439-51, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18355040

RESUMEN

ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 A, b = 93.79 A, and c = 140.29 A (alpha = beta = gamma = 90 degrees ) and space group I 222. The A. tumefaciens ADPGlc PPase model was refined to 2.1 A with an R factor = 22% and R free = 26.6%. The model consists of two domains: an N-terminal alphabetaalpha sandwich and a C-terminal parallel beta-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Proteínas Bacterianas/química , Glucosa-1-Fosfato Adenililtransferasa/química , Modelos Moleculares , Sitio Alostérico , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Fructosafosfatos/química , Cinética , Datos de Secuencia Molecular , Alineación de Secuencia , Solanum tuberosum/enzimología
14.
J Struct Biol ; 159(3): 498-506, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17643314

RESUMEN

Phosphofructokinase (Pfk1; EC 2.7.1.11) is the third enzyme of the glycolytic pathway catalyzing the formation of fructose-1,6-bisphosphate from fructose-6-phosphate (F6P) and ATP. Schizosaccharomyces pombe Pfk1 is a homo-octameric enzyme of 800 kDa molecular weight, distinct from its yeast counterparts which are mostly hetero-octameric enzymes composed of two different subunits. Having an "open" conformation and a tendency to aggregate into higher oligomeric structures, the S. pombe enzyme shows similarities to the mammalian muscle Pfk1. It has been proposed that due to the distinct N-terminal region of the S. pombe subunit, the oligomeric organization of subunits in this enzyme is different from other yeast phosphofructokinases. Electron microscopy studies were carried out to reveal the quaternary structure of the homo-octameric Pfk1 from S. pombe in the F6P-bound and in the ATP-bound state. Random conical tilt data sets have been collected from deep stain preparations of the enzyme in both states. The 0 degrees tilt images have been separated into different classes and a 3D reconstruction has been calculated for each class from the high tilt images. Our results confirm the presence of a variety of views of the particle, most of which can be interpreted as views of the molecule rotating around its long axis. Despite the biochemical differences, the structure of phosphofructokinase from S. pombe in the presence of either F6P or ATP is similar to the hetero-octameric structure of phosphofructokinase from Saccharomyces cerevisiae. The molecule can be described as composed of two subdomains, connected by two well-defined densities. We have been able to establish a correlation between the kinetic behavior and the structural conformation of Pfk1.


Asunto(s)
Fosfofructoquinasa-1/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimología , Adenosina Trifosfato/química , Fructosafosfatos/química , Microscopía Electrónica , Estructura Cuaternaria de Proteína
15.
J Mol Biol ; 370(1): 14-26, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17499765

RESUMEN

To understand the molecular basis of a phosphoryl transfer reaction catalyzed by the 6-phosphofructo-2-kinase domain of the hypoxia-inducible bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), the crystal structures of PFKFB3AMPPCPfructose-6-phosphate and PFKFB3ADPphosphoenolpyruvate complexes were determined to 2.7 A and 2.25 A resolution, respectively. Kinetic studies on the wild-type and site-directed mutant proteins were carried out to confirm the structural observations. The experimentally varied liganding states in the active pocket cause no significant conformational changes. In the pseudo-substrate complex, a strong direct interaction between AMPPCP and fructose-6-phosphate (Fru-6-P) is found. By virtue of this direct substrate-substrate interaction, Fru-6-P is aligned with AMPPCP in an orientation and proximity most suitable for a direct transfer of the gamma-phosphate moiety to 2-OH of Fru-6-P. The three key atoms involved in the phosphoryl transfer, the beta,gamma-phosphate bridge oxygen atom, the gamma-phosphorus atom, and the 2-OH group are positioned in a single line, suggesting a direct phosphoryl transfer without formation of a phosphoenzyme intermediate. In addition, the distance between 2-OH and gamma-phosphorus allows the gamma-phosphate oxygen atoms to serve as a general base catalyst to induce an "associative" phosphoryl transfer mechanism. The site-directed mutant study and inhibition kinetics suggest that this reaction will be catalyzed most efficiently by the protein when the substrates bind to the active pocket in an ordered manner in which ATP binds first.


Asunto(s)
Fosfofructoquinasa-2/química , Fosfofructoquinasa-2/metabolismo , Estructura Terciaria de Proteína , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Cristalografía por Rayos X , Fructosafosfatos/química , Fructosafosfatos/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Oxígeno/metabolismo , Fosfoenolpiruvato/química , Fosfoenolpiruvato/metabolismo , Fosfofructoquinasa-2/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
16.
Biochemistry ; 46(20): 6141-8, 2007 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-17469854

RESUMEN

Escherichia coli phosphofructokinase-2 (Pfk-2) is an oligomeric enzyme characterized by two kinds of interfaces: a monomer-monomer interface, critical for enzymatic activity, and a dimer-dimer interface formed upon tetramerization due to allosteric binding of MgATP. In this work, Pfk-2 was denatured by guanidine hydrochloride (GdnHCl) and the impact of ligand binding on the unfolding pathway of the dimeric and the tertrameric forms of the enzyme was examined. The unligated dimeric form unfolds and dissociates from 0.15 to 0.8 M GdnHCl without the accumulation of native monomers, as indicated by circular dichroism and size exclusion chromatography measurements. However, a monomeric intermediate with an expanded volume and residual secondary structure accumulates above 0.8 M GdnHCl. The dimeric fructose-6-P-enzyme complex shows a shift in the simultaneous dissociation and unfolding process to elevated GdnHCl concentrations (from 0.8 to 1.4 M) together with the expulsion of the ligand detected by intrinsic fluorescence measurements. The unfolding pathway of the tetrameric MgATP-enzyme complex shows the accumulation of a tetrameric intermediate with altered fluorescence properties at about 0.4 M GdnHCl. Above this concentration a sharp transition from tetramers to monomers, without the accumulation of either compact dimers or monomers, was detected by light scattering measurements. Indeed, the most populated species was a partially unfolded monomer about 0.7 M GdnHCl. On the basis of these results, we suggest that the subunit contacts are critical for the maintenance of the overall structure of Pfk-2 and for the binding of ligands, explaining the reported importance of the dimeric state for enzymatic activity.


Asunto(s)
Proteínas de Escherichia coli/química , Fosfofructoquinasa-2/química , Pliegue de Proteína , Transducción de Señal , Naftalenosulfonatos de Anilina/metabolismo , ATPasa de Ca(2+) y Mg(2+)/química , ATPasa de Ca(2+) y Mg(2+)/metabolismo , Cromatografía en Gel , Dicroismo Circular , Dimerización , Activación Enzimática , Proteínas de Escherichia coli/metabolismo , Fructosafosfatos/química , Fructosafosfatos/metabolismo , Luz , Fosfofructoquinasa-2/metabolismo , Unión Proteica , Desnaturalización Proteica , Dispersión de Radiación , Transducción de Señal/fisiología , Espectrometría de Fluorescencia
17.
Arch Biochem Biophys ; 436(1): 178-86, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15752723

RESUMEN

A tryptophan-shift variant of Bacillus stearothermophilus phosphofructokinase (BsPFK), W179F/F76W, was constructed to evaluate the binding and allosteric characteristics associated with MgATP. W179F/F76W BsPFK has a specific activity of 77+/-1 U/mg at pH 7 and 25 degrees C, which is a 35% decrease compared to the wild-type enzyme. The K(m) for MgATP increases from 43+/-3 microM for wild-type BsPFK to 160+/-7 microM in the variant. Binding and allosteric interaction between Fru-6-P and PEP for the variant are similar to those of the wild-type enzyme. W179F/F76W BsPFK has distinct fluorescence properties relative to wild-type or other tryptophan-shifted mutants of BsPFK. The binding of MgATP produces an 80% decrease in the fluorescence intensity while MgADP causes a 70% decrease. Capitalizing on these fluorescence changes, dissociation constants of 30+/-1 microM and 0.53+/-0.02 mM were measured for MgATP and MgADP, respectively. In addition, PEP was shown to enhance MgATP binding by 2.6-fold.


Asunto(s)
Adenosina Trifosfato/metabolismo , Geobacillus stearothermophilus/metabolismo , Fosfofructoquinasas/metabolismo , Triptófano/genética , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Sitio Alostérico/genética , Secuencia de Bases , Sitios de Unión , Fructosafosfatos/química , Variación Genética , Geobacillus stearothermophilus/enzimología , Geobacillus stearothermophilus/genética , Mutación , Fosfoenolpiruvato/farmacología , Fosfofructoquinasas/genética , Espectrometría de Fluorescencia
18.
Artículo en Inglés | MEDLINE | ID: mdl-16511104

RESUMEN

Methanocaldococcus jannaschii nucleoside kinase (MjNK) is an ATP-dependent non-allosteric phosphotransferase that shows high catalytic activity for guanosine, inosine and cytidine. MjNK is a member of the phosphofructokinase B family, but participates in the biosynthesis of nucleoside monophosphates rather than in glycolysis. MjNK was crystallized as the apoenzyme as well as in complex with an ATP analogue and Mg2+. The latter crystal form was also soaked with fructose-6-phosphate. Synchrotron-radiation data were collected to 1.70 A for the apoenzyme crystals and 1.93 A for the complex crystals. All crystals exhibit orthorhombic symmetry; however, the apoenzyme crystals contain one monomer per asymmetric unit whereas the complex crystals contain a dimer.


Asunto(s)
Euryarchaeota/enzimología , Fosfotransferasas/química , Adenosina Trifosfato/química , Apoenzimas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalización/métodos , Dimerización , Escherichia coli/genética , Fructosafosfatos/química , Magnesio/química , Fosfofructoquinasas/química , Fosfotransferasas/genética , Fosfotransferasas/aislamiento & purificación , Volatilización , Difracción de Rayos X
19.
J Biol Chem ; 279(53): 55737-43, 2004 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-15520001

RESUMEN

Phosphomannose isomerase (PMI40) catalyzes the conversion between fructose 6-phosphate and mannose 6-phosphate and thus connects glycolysis, i.e. energy production and GDP-mannose biosynthesis or cell wall synthesis in Saccharomyces cerevisiae. After PMI40 deletion (pmi(-)) the cells were viable only if fed with extracellular mannose and glucose. In an attempt to force the GDP-mannose synthesis in the pmi(-) strain by increasing the extracellular mannose concentrations, the cells showed significantly reduced growth rates without any alterations in the intracellular GDP-mannose levels. To reveal the mechanisms resulting in reduced growth rates, we measured genome-wide gene expression levels, several metabolite concentrations, and selected in vitro enzyme activities in central metabolic pathways. The increasing of the initial mannose concentration led to an increase in the mannose 6-phosphate concentration, which inhibited the activity of the second enzyme in glycolysis, i.e. phosphoglucose isomerase converting glucose 6-phosphate to fructose 6-phosphate. As a result of this limitation, the flux through glycolysis was decreased as was the median expression of the genes involved in glycolysis. The expression levels of RAP1, a transcription factor involved in the regulation of the mRNA levels of several enzymes in glycolysis, as well as those of cell cycle regulators CDC28 and CLN3, decreased concomitantly with the growth rates and expression of many genes encoding for enzymes in glycolysis.


Asunto(s)
Eliminación de Gen , Manosa-6-Fosfato Isomerasa/química , Manosa-6-Fosfato Isomerasa/genética , Manosa/química , Saccharomyces cerevisiae/genética , Sitio Alostérico , Reactores Biológicos , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/química , Ciclinas/química , Relación Dosis-Respuesta a Droga , Fructosafosfatos/química , Regulación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Glucosa/química , Glucosa-6-Fosfato/química , Glucosa-6-Fosfato Isomerasa/química , Glucólisis , Guanosina Difosfato Manosa/química , Manosa-6-Fosfato Isomerasa/fisiología , Modelos Biológicos , Fosfofructoquinasas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Complejo Shelterina , Proteínas de Unión a Telómeros/fisiología , Factores de Tiempo , Factores de Transcripción/fisiología
20.
J Mol Biol ; 342(3): 847-60, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15342241

RESUMEN

Phosphoglucose isomerase (PGI) is an enzyme of glycolysis that interconverts glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P) but, outside the cell, is a multifunctional cytokine. High-resolution crystal structures of the enzyme from mouse have been determined in native form and in complex with the inhibitor erythrose 4-phosphate, and with the substrate glucose 6-phosphate. In the substrate-bound structure, the glucose sugar is observed in both straight-chain and ring forms. This structure supports a specific role for Lys518 in enzyme-catalyzed ring opening and we present a "push-pull" mechanism in which His388 breaks the O5-C1 bond by donating a proton to the ring oxygen atom and, simultaneously, Lys518 abstracts a proton from the C1 hydroxyl group. The reverse occurs in ring closure. The transition from ring form to straight-chain substrate is achieved through rotation of the C3-C4 bond, which brings the C1-C2 region into close proximity to Glu357, the base catalyst for the isomerization step. The structure with G6P also explains the specificity of PGI for glucose 6-phosphate over mannose 6-isomerase (M6P). To isomerize M6P to F6P requires a rotation of its C2-C3 bond but in PGI this is sterically blocked by Gln511.


Asunto(s)
Glucosa-6-Fosfato Isomerasa/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fructosafosfatos/química , Fructosafosfatos/metabolismo , Glucosa-6-Fosfato/química , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Técnicas In Vitro , Sustancias Macromoleculares , Ratones , Modelos Moleculares , Conformación Proteica , Conejos , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Fosfatos de Azúcar/química , Fosfatos de Azúcar/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA