Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 395
Filtrar
1.
Medicina (Kaunas) ; 60(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38793008

RESUMEN

Background and Objectives: Mutations in succinate dehydrogenase (SDH) and fumarate hydratase (FH) give rise to various familial cancer syndromes, with these alterations being characteristic of certain types of histomorphologically specific leiomyomas that hold significant predictive value. Materials and Methods: This study presents two cases of uterine leiomyomas exhibiting rare histomorphological and genetic characteristics, which are crucial for prognosis and further treatment. Results: Distinct histopathological features such as marked nuclear atypia, intracellular eosinophilic globules, and abnormal intratumoral vessels raise suspicion for specific leiomyoma subtypes, which carry predictive significance for additional hereditary cancer syndromes. Immunohistochemical analysis confirmed FH/SDH deficiency in both patients, who underwent careful follow-up. Conclusions: This study describes two cases involving unusual leiomyomas, the histopathological characteristics of which may easily go unrecognized. These features hold predictive significance because their specific mutations point to additional hereditary cancer syndromes, highlighting the need for further examinations.


Asunto(s)
Fumarato Hidratasa , Leiomioma , Succinato Deshidrogenasa , Neoplasias Uterinas , Humanos , Femenino , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Succinato Deshidrogenasa/deficiencia , Succinato Deshidrogenasa/genética , Adulto , Leiomioma/genética , Leiomioma/patología , Persona de Mediana Edad
2.
Cancer Prev Res (Phila) ; 17(5): 201-208, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38638033

RESUMEN

Women with germline pathogenic variants (PV) in the fumarate hydratase (FH) gene develop cutaneous and uterine leiomyomata and have an increased risk of developing aggressive renal cell carcinomas. Many of these women are unaware of their cancer predisposition until an atypical uterine leiomyoma is diagnosed during a myomectomy or hysterectomy, making a streamlined genetic counseling process after a pathology-based atypical uterine leiomyoma diagnosis critical. However, the prevalence of germline pathogenic/likely PVs in FH among atypical uterine leiomyomata cases is unknown. To better understand FH germline PV prevalence and current patterns of genetic counseling and germline genetic testing, we undertook a retrospective review of atypical uterine leiomyomata cases at a single large center. We compared clinical characteristics between the FH PV, FH wild-type (WT), and unknown genetic testing cohorts. Of the 144 cases with atypical uterine leiomyomata with evaluable clinical data, only 49 (34%) had documented genetic test results, and 12 (8.3%) had a germline FH PV. There were 48 IHC-defined FH-deficient cases, of which 41 (85%) had FH testing and nine had a germline FH PV, representing 22% of the tested cohort and 18.8% of the FH-deficient cohort. Germline FH PVs were present in 8.3% of evaluable patients, representing 24.5% of the cohort that completed genetic testing. These data highlight the disconnect between pathology and genetic counseling, and help to refine risk estimates that can be used when counseling patients with atypical uterine leiomyomata. PREVENTION RELEVANCE: Women diagnosed with fumarate hydratase (FH)-deficient uterine leiomyomata are at increased risk of renal cancer. This work suggests a more standardized pathology-genetic counseling referral pathway for these patients, and that research on underlying causes of FH-deficient uterine leiomyomata in the absence of germline FH pathogenic/likely pathogenic variants is needed.


Asunto(s)
Fumarato Hidratasa , Pruebas Genéticas , Mutación de Línea Germinal , Leiomioma , Neoplasias Uterinas , Humanos , Femenino , Fumarato Hidratasa/genética , Fumarato Hidratasa/deficiencia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Neoplasias Uterinas/diagnóstico , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Leiomioma/genética , Leiomioma/patología , Leiomioma/diagnóstico , Predisposición Genética a la Enfermedad , Asesoramiento Genético , Leiomiomatosis/genética , Leiomiomatosis/patología , Leiomiomatosis/diagnóstico
3.
Genes Chromosomes Cancer ; 63(2): e23221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38682608

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant cancer predisposition syndrome characterized by cutaneous leiomyomas, uterine leiomyomas, and aggressive renal cancer. Germline variants in the fumarate hydratase (FH) gene predispose to HLRCC. Identifying germline pathogenic FH variants enables lifetime renal cancer screening and genetic testing for family members. In this report, we present a FH missense variant (c.1039T>C (p.S347P)), initially classified as a variant of uncertain significance. Clinical assessment, histopathological findings, molecular genetic studies, and enzymatic activity studies support the re-classification of the FH c.1039T>C variant to "pathogenic" based on ACMG/AMP criteria. Further insights into pathological recognition of FH-deficient renal cancer are discussed and should be recognized. This study has shown how (a) detailed multi-disciplinary analyses of a single variant can reclassify rare missense variants in FH and (b) careful pathological review of renal cancers is obligatory when HLRCC is suspected.


Asunto(s)
Fumarato Hidratasa , Leiomiomatosis , Mutación Missense , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Humanos , Fumarato Hidratasa/genética , Leiomiomatosis/genética , Leiomiomatosis/patología , Femenino , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Linaje , Mutación de Línea Germinal , Masculino , Adulto , Predisposición Genética a la Enfermedad , Persona de Mediana Edad
4.
Clin Cancer Res ; 30(11): 2571-2581, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512114

RESUMEN

PURPOSE: Fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) is a rare and lethal subtype of kidney cancer. However, the optimal treatments and molecular correlates of benefits for FH-deficient RCC are currently lacking. EXPERIMENTAL DESIGN: A total of 91 patients with FH-deficient RCC from 15 medical centers between 2009 and 2022 were enrolled in this study. Genomic and bulk RNA-sequencing (RNA-seq) were performed on 88 and 45 untreated FH-deficient RCCs, respectively. Single-cell RNA-seq was performed to identify biomarkers for treatment response. Main outcomes included disease-free survival (DFS) for localized patients, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for patients with metastasis. RESULTS: In the localized setting, we found that a cell-cycle progression signature enabled to predict disease progression. In the metastatic setting, first-line immune checkpoint inhibitor plus tyrosine kinase inhibitor (ICI+TKI) combination therapy showed satisfactory safety and was associated with a higher ORR (43.2% vs. 5.6%), apparently superior PFS (median PFS, 17.3 vs. 9.6 months, P = 0.016) and OS (median OS, not reached vs. 25.7 months, P = 0.005) over TKI monotherapy. Bulk and single-cell RNA-seq data revealed an enrichment of memory and effect T cells in responders to ICI plus TKI combination therapy. Furthermore, we identified a signature of memory and effect T cells that was associated with the effectiveness of ICI plus TKI combination therapy. CONCLUSIONS: ICI plus TKI combination therapy may represent a promising treatment option for metastatic FH-deficient RCC. A memory/active T-cell-derived signature is associated with the efficacy of ICI+TKI but necessitates further validation.


Asunto(s)
Carcinoma de Células Renales , Fumarato Hidratasa , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/genética , Masculino , Femenino , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/inmunología , Neoplasias Renales/mortalidad , Neoplasias Renales/terapia , Persona de Mediana Edad , Anciano , Adulto , Activación de Linfocitos/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Memoria Inmunológica , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inmunoterapia/métodos , Células T de Memoria/inmunología , Linfocitos T/inmunología
5.
Genes Chromosomes Cancer ; 63(3): e23229, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481055

RESUMEN

A close relationship has been demonstrated between genomic complexity and clinical outcome in uterine smooth muscle tumors. We studied the genomic profiles by array-CGH of 28 fumarate hydratase deficient leiomyomas and 37 leiomyomas with bizarre nuclei (LMBN) from 64 patients. Follow-up was available for 46 patients (from three to 249 months, mean 87.3 months). All patients were alive without evidence of disease. For 51 array-CGH interpretable tumors the mean Genomic Index (GI) was 16.4 (median: 9.8; from 1 to 57.8), significantly lower than the mean GI in LMS (mean GI 51.8, p < 0.001). We described three groups: (1) a group with FH deletion (24/58) with low GI (mean GI: 11 vs. 22,4, p = 0.02), (2) a group with TP53 deletion (17/58) with higher GI (22.4 vs. 11 p = 0.02), and (3) a group without genomic events on FH or TP53 genes (17/58) (mean GI:18.3; from 1 to 57.8). Because none of these tumors recurred and none showed morphological features of LMS we concluded that GI at the cut-off of 10 was not applicable in these subtypes of LM. By integration of all those findings, a GI <10 in LMBN remains a valuable argument for benignity. Conversely, in LMBN a GI >10 or alteration in tumor suppressor genes, should not alone warrant a diagnosis of malignancy. Nine tumors were tested with Nanocind CINSARC® signature and all were classified in low risk of recurrence. We propose, based on our observations, a diagnostic approach of these challenging lesions.


Asunto(s)
Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Fumarato Hidratasa/genética , Leiomioma/genética , Leiomioma/patología , Genes p53 , Genómica
6.
BMJ Case Rep ; 17(2)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38417936

RESUMEN

Reed's syndrome (RS) is a rare autosomal-dominant disorder characterised by multiple cutaneous and uterine leiomyomas, with a strong tendency for renal cell carcinoma (RCC) development. A woman in her 50s, who had previously undergone total abdominal hysterectomy due to multiple uterine leiomyomas, presented with painful nodules on her trunk and right arm for the past 6 years. These nodules were confirmed as leiomyomas through histopathology. Diagnosis of RS was established through clinicopathological correlation and positive family history, particularly her mother's. Early-onset uterine leiomyomas in patients with a similar family history should raise suspicion for RS, necessitating vigilant long-term follow-up. RCC detection requires mandatory renal imaging. Screening family members and providing genetic counselling are crucial.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Carcinoma de Células Renales/genética , Neoplasias Uterinas/diagnóstico por imagen , Neoplasias Uterinas/cirugía , Leiomiomatosis/diagnóstico por imagen , Leiomiomatosis/cirugía , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/cirugía , Neoplasias Cutáneas/genética , Síndromes Neoplásicos Hereditarios/diagnóstico , Síndromes Neoplásicos Hereditarios/cirugía , Síndromes Neoplásicos Hereditarios/patología , Neoplasias Renales/genética , Fumarato Hidratasa/genética
7.
Aging (Albany NY) ; 16(4): 3631-3646, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38376408

RESUMEN

BACKGROUND: To compare clinicopathologic, molecular features, and treatment outcome between fumarate hydratase-deficient renal cell carcinoma (FH-dRCC) and type 2 papillary renal cell carcinoma (T2 pRCC). METHODS: Data of T2 pRCC patients and FH-dRCC patients with additional next-generation sequencing information were retrospectively analyzed. The cancer-specific survival (CSS) and disease-free survival (DFS) were primary endpoint. RESULTS: A combination of FH and 2-succino-cysteine (2-SC) increased the rate of negative predictive value of FH-dRCC. Compared with T2 pRCC cases, FH-dRCC cases displayed a greater prevalence in young patients, a higher frequency of radical nephrectomy. Seven FH-dRCC and two T2 pRCC cases received systemic therapy. The VEGF treatment was prescribed most frequently, with an objective response rate (ORR) of 22.2% and a disease control rate (DCR) of 30%. A combined therapy with VEGF and checkpoint inhibitor reported an ORR of 40% and a DCR of 100%. FH-dRCC cases showed a shortened CSS (P = 0.042) and DFS (P < 0.001). The genomic sequencing revealed 9 novel mutations. CONCLUSIONS: Coupled with genetic detection, immunohistochemical biomarkers (FH and 2-SC) can distinguish the aggressive FH-dRCC from T2 pRCC. Future research is awaited to illuminate the association between the novel mutations and the clinical phenotypes of FH-dRCC in the disease progression.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Neoplasias Cutáneas , Neoplasias Uterinas , Humanos , Femenino , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/diagnóstico , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Estudios Retrospectivos , Factor A de Crecimiento Endotelial Vascular , Leiomiomatosis/diagnóstico , Leiomiomatosis/genética , Leiomiomatosis/patología , Resultado del Tratamiento , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Neoplasias Cutáneas/genética
8.
Pathol Res Pract ; 253: 155090, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38181579

RESUMEN

Renal cell carcinoma (RCC) is fundamentally a metabolic disease, and RCC associated with mutation of the Krebs cycle enzyme genes include fumarate hydratase-deficient and succinate dehydrogenase-deficient RCC. Most recently, the mutation of isocitrate dehydrogenase 2 (IDH2) has been suggested as the third Krebs cycle enzyme alteration to be associated with oncometabolite-induced RCC tumorigenesis. Herein, we report the second case of RCC harboring an IDH2 (R127M) mutation identified by targeted next-generation sequencing and further confirmed by reverse transcription polymerase chain reaction and Sanger sequencing. This tumor demonstrated a distinctive biphasic morphology, characterized by mixture of a clear cells solid component and an eosinophilic papillary component. These two components were intermingled and formed variably sized nodular or nested structures. Unfavorable histologic features, including infiltration into the perirenal and renal sinus adipose tissues, high nuclei grade, rhabdoid tumor cells, and focal tumor necrosis, were observed. The patient had local lymph nodes metastases at diagnosis and developed brain metastases 3 months after the surgery. This peculiar case provides further insights into RCCs harboring IDH2 mutations.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Mutación , Núcleo Celular/patología , Fumarato Hidratasa/genética
9.
Int J Surg Pathol ; 32(2): 340-355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37312573

RESUMEN

Deficiency of fumarate hydratase (FH) protein expression in uterine corpus leiomyomas may be attributable to either germline or somatic mutations of the FH gene, the former being definitional for the hereditary leiomyomatosis and renal cell cancer syndrome. The authors assess whether, using previously reported FH-associated morphologic features, FH protein-deficient uterine corpus leiomyomas associated with a pathogenic germline mutations of the FH gene (group 1) are distinguishable from FH protein-deficient uterine corpus leiomyomas without such mutations (and whose FH protein loss is presumed to be attributable to somatic/epigenetic inactivation or other unknown phenomena: group 2). Groups 1 and 2 were compared regarding a variety of clinicopathologic features, including 7 core "FH-associated" tumoral morphologic features: staghorn vasculature; alveolar-type edema; bizarre nuclei; chain-like tumor nuclei; hyaline cytoplasmic globules; prominent nucleoli, intranuclear inclusions, and perinucleolar halos; and prominent eosinophilic/fibrillary cytoplasm. Among 2418 patients diagnosed with uterine corpus leiomyoma during the study period, FH-associated morphologic features were reported in 1.5% (37 patients), and FH immunohistochemistry was performed in 29 (1.19%). Fourteen (48.27%) of the 29 patients showed FH protein deficiency by immunohistochemistry. Twelve patients underwent germline testing, of which 8 (66.7%) were classified as group 1 and 4 (33.3%) as group 2. FH protein-deficient tumors were larger (10.44 vs 4.08 cm, P = 0.01) and associated with younger patients (42.05 vs 47.97, P = 0.004) than 370 randomly selected uterine leiomyoma controls. Groups 1 and 2 showed no significant differences in patient age and tumor size. In group 1 tumors, the FH-associated morphologic features were generally present diffusely; all group 1 tumors displayed ≥5 FH-associated features, whereas all group 2 tumors displayed <5 FH-associated features (means 6.5 ± 0.53 vs 3.5 ± 1.00, P < 0.001). Notably, eosinophilic/fibrillary cytoplasm and alveolar-type edema were each significantly more prevalent in group 1 tumors than group 2 tumors (P = 0.018 for both). No single morphologic feature was found to be completely sensitive and specific in making the distinction between group 1 and 2 tumors. Our findings suggest that groups 1 and 2 are unlikely to be morphologically distinguishable by individual morphologic features. Whether there is a combination of features that can reliably make this distinction is unclear and will require additional studies with larger cohorts.


Asunto(s)
Carcinoma de Células Renales , Fumarato Hidratasa/deficiencia , Neoplasias Renales , Leiomiomatosis , Errores Innatos del Metabolismo , Hipotonía Muscular , Trastornos Psicomotores , Neoplasias Cutáneas , Neoplasias Uterinas , Humanos , Femenino , Fumarato Hidratasa/genética , Leiomiomatosis/diagnóstico , Leiomiomatosis/genética , Mutación de Línea Germinal , Edema , Células Germinativas , Neoplasias Uterinas/genética
10.
Int J Surg Pathol ; 32(1): 145-149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37050851

RESUMEN

Fumarate hydratase deficient renal cell carcinoma (FHRCC) can exhibit a heterogenous immunoprofile. In the present case, a solitary 10.5 cm mixed cystic and solid left kidney tumor showed various growth patterns, involving renal sinus adipose tissue and the renal pelvis. Tumor cells showed prominent nucleoli and perinucleolar halos. Aberrant diffuse (>90%), strong, and membranous carbonic anhydrase 9 and variable GATA3 expression were present. Diagnostic loss of fumarate hydratase expression and 2-succinyl cysteine overexpression (cytoplasmic and nuclear) were identified. Carbonic anhydrase 9 and GATA3 expression in FHRCC is rarely reported in the literature, and may cause misdiagnosis of clear cell RCC and/or urothelial carcinoma.


Asunto(s)
Carcinoma de Células Renales , Carcinoma de Células Transicionales , Neoplasias Renales , Neoplasias de la Vejiga Urinaria , Humanos , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/patología , Neoplasias Renales/diagnóstico , Neoplasias Renales/patología , Fumarato Hidratasa/genética , Anhidrasa Carbónica IX , Factor de Transcripción GATA3
12.
Pathol Res Pract ; 253: 154916, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029712

RESUMEN

BACKGROUND: Fumarate hydratase-deficient uterine leiomyomas (FH-dUL) are rare, accounting for only 0.4-1.6% of uterine leiomyomas. FH germline mutation gene is associated with hereditary leiomyomatosis and renal cell carcinoma syndrome (HLRCC). METHODS: In this study, we aim to investigate Clinicopathological features and FH mutation in FH-dUL. We performed a retrospective analysis of 300 cases of uterine leiomyoma, diagnosed from January 2017 to December 2021, within the archives of the Department of Pathology at Peking University People's Hospital. In our review of the immunohistochemical(IHC) staining was performed on 300 uSMTs to detect FH deficiency. RESULTS: We identified 21cases (21/300,7%) of FH-dUL. Nineteen cases (6.33%) displayed negative FH. Twenty-one cases (7%) displayed 2SC diffuse plasma and nuclear staining. The most common FH-d morphological features included staghorn vasculature ( 100%,21/21), alveolar-pattern oedema (71.43%, 15/21), scattered bizarre nuclei (23.81%, 5/21), eosinophilic cytoplasmic (rhabdoid) inclusions (47.62%, 10/21), significant eosinophilic nucleolus with peri-nucleolus hollowing (23.81%, 5/21), ovoid nuclei sometimes arranged in chains (9.52%, 2/21). DNA sequencing for the 21 cases was performed using Next Generation Sequencing (NGS). 6 cases were detected significant variations for the FH gene, 11 cases were detected FH gene mutation forvariants of uncertain significance (VUS), and 2 cases were detected a TP53 gene mutation. No related mutations were detected in the other two cases. CONCLUSIONS: FH-dUL is rare. The combination of predictive Clinicopathological evaluation,FH and 2SC IHC test, and molecular test were helpful for the screening of FH-dUL from uSMTs,or even the screening of HLRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Fumarato Hidratasa/genética , Fumarato Hidratasa/análisis , Inmunohistoquímica , Estudios Retrospectivos , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Leiomiomatosis/diagnóstico , Leiomiomatosis/genética , Leiomiomatosis/patología , Neoplasias Cutáneas/patología , Síndrome , Carcinoma de Células Renales/genética , Neoplasias Renales/genética
13.
J Cutan Pathol ; 51(4): 272-275, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38140939

RESUMEN

Collision tumors, defined as "two independent neoplasms that occur in close proximity to one another but maintain distinct boundaries," are quite rare. We report an exceptional collision tumor composed of a genetically confirmed malignant glomus tumor and a fumarate hydratase (FH)-deficient leiomyoma, presenting as a subcutaneous thigh mass in a 38-year-old male who was known to have hereditary leiomyomatosis and renal cell carcinoma syndrome. Microscopic examination identified a biphasic subcutaneous mass comprising sheets and nodules of glomus cells, with nuclear atypia and mitotic activity, and fascicles of mitotically inactive smooth muscle with variably pleomorphic nuclei and intracytoplasmic eosinophilic inclusions, features of FH-deficient leiomyoma. Immunohistochemistry demonstrated loss of FH and robust 2-succinocysteine expression in the smooth muscle, with a normal (FH-retained) expression pattern in the glomus tumor. Next-generation sequencing, performed on the glomus tumor component, identified CARMN::NOTCH2 fusion, characteristic of malignant glomus tumors. Awareness of the distinctive morphologic, immunohistochemical, and molecular genetic features of glomus tumors and FH-deficient leiomyomas is important for correct clinical management of patients with exceptional collision tumors of this type.


Asunto(s)
Carcinoma de Células Renales , Tumor Glómico , Neoplasias Renales , Leiomiomatosis , Sarcoma , Neoplasias Cutáneas , Neoplasias Uterinas , Masculino , Femenino , Humanos , Adulto , Fumarato Hidratasa/genética , Neoplasias Uterinas/patología , Leiomiomatosis/genética , Neoplasias Cutáneas/patología
14.
Br J Cancer ; 129(10): 1546-1557, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689804

RESUMEN

Fumarate hydratase (FH) is an enzyme of the Tricarboxylic Acid (TCA) cycle whose mutations lead to hereditary and sporadic forms of cancer. Although more than twenty years have passed since its discovery as the leading cause of the cancer syndrome Hereditary leiomyomatosis and Renal Cell Carcinoma (HLRCC), it is still unclear how the loss of FH causes cancer in a tissue-specific manner and with such aggressive behaviour. It has been shown that FH loss, via the accumulation of FH substrate fumarate, activates a series of oncogenic cascades whose contribution to transformation is still under investigation. In this review, we will summarise these recent findings in an integrated fashion and put forward the case that understanding the biology of FH and how its mutations promote transformation will be vital to establish novel paradigms of oncometabolism.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Fumarato Hidratasa/genética , Neoplasias Uterinas/genética , Neoplasias Cutáneas/genética , Síndromes Neoplásicos Hereditarios/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología
15.
Appl Immunohistochem Mol Morphol ; 31(10): 657-660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751278

RESUMEN

Hereditary leiomyomatosis and renal cell carcinoma is caused by germline mutations in the fumarate hydratase (FH) gene and is associated with an increased incidence of leiomyomas and a potentially aggressive variant of renal cell carcinoma. Pathologic evaluation of uterine leiomyoma can provide an opportunity for early recognition of the syndrome. We reviewed all archived slides of the cases to identify the characteristic morphologic features described for FH-deficient leiomyomas. We performed immunohistochemistry on whole sections of patients with uterine leiomyoma to evaluate for both FH and 2-succinocysteine (2SC) expression. Of the 106 cases, 19 showed the characteristic eosinophilic nucleoli with perinuclear halos, and 24 revealed a characteristic eosinophilic cytoplasmic inclusion consisting of pink globules present within the cytoplasm. Both of these morphologic findings were present together in 15 cases, and hemangiopericytomatous vessels were detected in 23 cases. The loss of FH protein expression was detected in 14 out of 106 cases (13%), and 13 out of 106 cases (12%) were positive for 2SC. We detected 10 cases with both 2SC-positive and FH expression loss. The presence of eosinophilic nucleoli with perinuclear halos and eosinophilic cytoplasmic inclusion was associated with both loss of FH protein expression and 2SC positivity ( P < 0.001). These findings underscore the importance of hematoxylin and eosin-based predictive morphology in FH-deficient uterine leiomyomas. Therefore, morphologic assessment of uterine leiomyomas for features of FH deficiency can serve as a screening tool for hereditary leiomyomatosis and renal cell carcinoma syndrome, allowing patients to be divided according to their hereditary risk assessment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Carcinoma de Células Renales/metabolismo , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Neoplasias Renales/patología , Leiomiomatosis/diagnóstico , Leiomiomatosis/genética , Leiomiomatosis/patología , Neoplasias Cutáneas/patología , Neoplasias Uterinas/diagnóstico
16.
Mod Pathol ; 36(11): 100303, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37580017

RESUMEN

Fumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is a rare and distinct subtype of renal cancer caused by FH gene mutations. FH negativity and s-2-succinocysteine (2SC) positivity on immunohistochemistry can be used to screen for FH-deficient RCC, but their sensitivity and specificity are not perfect. The expression of AKR1B10, an aldo-keto reductase that catalyzes cofactor-dependent oxidation-reduction reactions, in RCC is unclear. We compared AKR1B10, 2SC, and FH as diagnostic biomarkers for FH-deficient RCC. We included genetically confirmed FH-deficient RCCs (n = 58), genetically confirmed TFE3 translocation RCCs (TFE3-tRCC) (n = 83), clear cell RCCs (n = 188), chromophobe RCCs (n = 128), and papillary RCCs (pRCC) (n = 97). AKR1B10, 2SC, and FH were informative diagnostic markers. AKR1B10 had 100% sensitivity and 91.4% specificity for FH-deficient RCC. The nonspecificity of AKR1B10 was shown in 26.5% of TFE3-tRCCs and 21.6% of pRCCs. 2SC showed 100% sensitivity and 88.9% specificity. However, nonspecificity for 2SC was evident in multiple RCCs, including pRCC, TFE3-tRCC, clear cell RCCs, and chromophobe RCCs. FH was 100% specific but 84.5% sensitive. AKR1B10 served as a highly sensitive and specific diagnostic biomarker. Our findings suggest the value of combining AKR1B10 and 2SC to screen for FH-deficient RCC. AKR1B10+/2SC+/FH- cases can be diagnosed as FH-deficient RCC. Patients with AKR1B10+/2SC+/FH+ are highly suspicious of FH-deficient RCC and should be referred for FH genetic tests.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Neoplasias Renales/patología , Factores de Transcripción , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Aldo-Ceto Reductasas
18.
Oncol Rep ; 50(4)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615251

RESUMEN

Fumarase hydratase (FH) is an enzyme that catalyzes the reversible hydration and dehydration of fumarate to malate in the tricarboxylic acid cycle. The present study addressed the role of FH in endometrial cancer and clinically observed that the expression of FH was significantly lower in endometrial cancer tissues compared with normal endometrial tissues and, furthermore, that the decreased FH expression in endometrial cancer tissues was significantly associated with increased tumor size and lymph node metastasis. Further analysis in in vitro study showed that cell proliferation, migration and invasion abilities were increased when the expression of FH in the endometrial cancer cells was knocked down, but, by contrast, overexpression of FH in endometrial cancer cells decreased cell proliferative, migratory and invasive abilities. Mechanistic studies showed that the expression of vimentin and twist, being two well-studied mesenchymal markers in endometrial cancer cells, were upregulated in fumarate hydratase-knockdowned cells. In addition, phosphokinase array analysis demonstrated that the expression of phospho-EGFR (Y1086), which promotes carcinogenesis in cancers, was increased in endometrial cancer cells when FH was knocked down. In conclusion, the present study suggested that FH is a tumor suppressor and inhibits endometrial cancer cell proliferation and metastasis by inactivation of EGFR. Further studies are required to clarify its role as a prognostic biomarker and therapeutic target for endometrial cancer.


Asunto(s)
Neoplasias Endometriales , Fumarato Hidratasa , Humanos , Femenino , Fumarato Hidratasa/genética , Neoplasias Endometriales/genética , Ciclo del Ácido Cítrico , Carcinogénesis , Receptores ErbB/genética
19.
Hum Mol Genet ; 32(22): 3135-3145, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37561409

RESUMEN

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant condition characterized by the development of cutaneous and uterine leiomyomas and risk for development of an aggressive form of papillary renal cell cancer. HLRCC is caused by germline inactivating pathogenic variants in the fumarate hydratase (FH) gene, which encodes the enzyme that catalyzes the interconversion of fumarate and L-malate. We utilized enzyme and protein mobility assays to evaluate the FH enzyme in a cohort of patients who showed clinical manifestations of HLRCC but were negative for known pathogenic FH gene variants. FH enzyme activity and protein levels were decreased by 50% or greater in three family members, despite normal FH mRNA expression levels as measured by quantitative PCR. Direct Nanopore RNA sequencing demonstrated 57 base pairs of retained intron sequence between exons 9 and 10 of polyadenylated FH mRNA in these patients, resulting in a truncated FH protein. Genomic sequencing revealed a heterozygous intronic alteration of the FH gene (chr1: 241498239 T/C) resulting in formation of a splice acceptor site near a polypyrimidine tract, and a uterine fibroid obtained from a patient showed loss of heterozygosity at this site. The same intronic FH variant was identified in an unrelated patient who also showed a clinical phenotype of HLRCC. These data demonstrate that careful clinical assessment as well as biochemical characterization of FH enzyme activity, protein expression, direct RNA sequencing, and genomic DNA sequencing of patient-derived cells can identify pathogenic variants outside of the protein coding regions of the FH gene.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Carcinoma de Células Renales/genética , Leiomiomatosis/genética , Leiomiomatosis/patología , Fumarato Hidratasa/genética , Fumarato Hidratasa/análisis , Neoplasias Renales/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Mutación , ARN Mensajero/genética
20.
Cell Rep ; 42(7): 112751, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37405921

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Fumarato Hidratasa/genética , Antioxidantes , Factor 2 Relacionado con NF-E2/genética , Leiomiomatosis/genética , Neoplasias Uterinas/genética , Neoplasias Cutáneas/genética , Síndromes Neoplásicos Hereditarios/genética , Cromatina , Neoplasias Renales/genética , Carcinoma de Células Renales/genética , Factor Nuclear 3-beta del Hepatocito/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA